Similar presentations:
Начала тригонометрии
1.
НАЧАЛАТРИГОНОМЕТРИИ
2.
Тригономе́трия (от греч. τρίγονο (треугольник) и греч.μετρειν (измерять),
то есть измерение треугольников) — раздел математики,
в котором изучаются тригонометрические функции и их
приложения к геометрии.
Данный термин впервые появился в 1595 г. как название
книги немецкого математика Бартоломеуса Питискуса
(Bartholomäus Pitiscus, 1561—1613),
а сама наука ещё в глубокой древности использовалась для
расчётов в астрономии, геодезии и архитектуре.
3.
Эти ученые внесли свой вклад в развитие тригонометрииАрхимед
Жозеф Луи
Лагранж
Фалес
4.
Тригонометрия – математическая дисциплина,изучающая зависимость между сторонами и
углами треугольника.
5.
Вспомним:0 90
с
а
a
sin
с
b
cos
c
a
tg
b
в
Синус острого угла в прямоугольном треугольнике —
отношение противолежащего катета к гипотенузе.
Косинус — отношение прилежащего катета к гипотенузе.
Тангенс — отношение противолежащего катета к
прилежащему.
6.
В XVIII веке Леонард Эйлердал современные, более
общие определения,
расширив область
определения этих функций
на всю числовую ось.
угол _ поворота
R
7.
у1
0
х
1
8.
у1
0
х
1
9.
Рассмотрим в прямоугольной системе координатокружность единичного радиуса и отложим от
горизонтальной оси угол
(если величина угла положительна, то откладываем против
часовой стрелки, иначе по часовой стрелке). Точку
пересечения построенной стороны угла с окружностью
у
обозначим Р.
0
Р
1
0
1
х
1
0
10.
Р90у
Р60
Р45
Р30
Р180
Р
1
0
х 0
1
Р270
Р360
11.
cosу
1
P ( x; y)
у
sin
1
0
P (1;0)
х 0
1
х
1
12.
sin yСинус угла определяется как ордината
точки P
cos x
Косинус — абсцисса точки P
y
tg
Тангенс – отношение
ординаты к абсциссе
точки P x
x
Котангенс – отношение
абсциссы
к
ординате
ctgточки
P
y
13.
Р90у
Р60
1
Р45
sin
45
0,7
Р30
cos45 0,7
1
2
-1
1
sin 30
2
cos 30 0,9
Р180
Р
1
0
х 0
1
1
2
1
Р360
sin 60 0,9
1
cos 60
2
-1
Р270
14.
Запомним !cos
tg
ctg
45
60
1
2
2
2
3
2
3
2
2
2
1
2
30
sin
1
3
3
3
3
1
3
1
1
3
3
3
15.
16.
Р90у
Р0 (1; 0)
Р90 (0; 1)
Р180
Р
1
0
х 0
1
Р360
Р180 (-1; 0)
Р270
Р270 (0;-1)
17.
Проверим:180
270
0
-1
0
0
-1
0
1
0
-
0
-
0
-
0
-
0
-
sin
0
0
90
1
cos
1
tg
ctg
360
18.
Знаки синуса, косинуса, тангенса, котангенсав координатных четвертях
у
у
+ +
х
1
- -
0
1
- +
+ 1
1
х
- +
+ 1
1
0
sin68 0
cos 76 0
sin 153 0
cos 236 0
sin 249 0
tg127 0
sin 315 0
ctg195 0
у
0
- +
- +
1
1
0
у
х
х
19.
Четность, нечетность синуса, косинуса,тангенса, котангенса
sin( ) sin
tg ( ) tg
Нечетные функции
ctg ( ) ctg
cos( ) cos
Четная функция
20.
Периодичность тригонометрическихфункций
При изменении угла на целое число оборотов
значения синуса, косинуса, тангенса, котангенса
не изменяются
21.
уsin
sin( 360 )
sin( 2 360 )
у
sin( n 360 )
cos
1
0
cos( 360 )
х
1
х
cos( 2 360 )
cos( n 360 )
tg
tg ( n 180 )
ctg
ctg ( n 180 )
22.
у3
sin 60
2
1
cos 60
2
3
2
60
1
0
1
420 ?
sin 780
х
1
2
1
2
cos420
cos780 ?
sin
sin 780
420
sin( 60
2 360 )
sin( 60 360 )
sin 60
sin 60
3
2 23
cos 780
cos
420
360 ))
cos(
cos(60
60 2360
11
cos
60
cos 60
22
23.
sin 765cos 1110
sin( 45 2 360 )
cos(30 3 360 )
2
sin 45
2
3
cos 30
2
1
sin( 1470 ) sin 1470 sin( 30 4 360 ) sin 30
2
1
cos( 1140 ) cos1140 cos(60 3 360 ) cos 60
2
sin( 810 ) sin 810 sin( 90 2 360 ) sin 90 1
cos( 1170 ) cos1170 cos(90 3 360 ) cos 90 0
24.
Радианная мера углаR
С
центральный угол
R – радиус
С – длина дуги
Если R = C,
то центральный угол равен
одному радиану
Радианной мерой угла называется
отношение длины соответствующей дуги
к радиусу окружности
1 рад 57
25.
180n
n 60
n
180
60
180
3
60
3
180
n
4
180
180
180
n 4
45
4
4
45
4
26.
Градусная и радианная меры угловУгол
в
градусах
n
0 30 45 60
Угол
в
радианах
0
6
4
3
90 180 270 360
2
3
2
2