Similar presentations:
Double integrals, their properties and evaluations. Area. Double integral in Polar form (Lecture 8)
1. Mathematical Analysis 2
Lecture 8 - Double integrals, their properties andevaluations. Area.
Double integral in Polar form. Substitutions in
double integrals.
Akbota Myrzakul
a.myrzakul@astanait.edu.kz
Astana IT University
2. Lecture overview
• Introduction to double integrals. Iterated integrals• Theorem of Fubini. Properties of double integrals
• Integrals over non-rectangular regions
• Reversing the order of integration
• Simple polar regions
• Double integrals in polar coordinates
• Finding area using polar double integrals
• Changing coordinates in integrals
3. Introduction to double integrals
4. Introduction to double integrals
5. Introduction to double integrals
Definition:Definition: The sum in the limit is called the Riemann sum.
6. Introduction to double integrals
7. Introduction to double integrals
8. Iterated integrals
Definition:9. Iterated integrals
10. Iterated integrals
11. Theorem of Fubini
Theorem:12. Theorem of Fubini
13. Properties of double integrals
Theorem:14. Integrals on non-rectangular regions
Definition:15. Integrals on non rectangular regions
16. Properties of double integrals
Theorem:17. Properties of double integrals
18. Properties of double integrals
19. Properties of double integrals
20. Properties of double integrals
21. Reversing the order of integration
22. Reversing the order of integration
23. Racalls
24. Simple polar regions
25. Simple polar regions
26. Double integrals in polar coordinates
27. Double integrals in polar coordinates
28. Double integrals in polar coordinates
29. Double integrals in polar coordinates
30. Double integrals in polar coordinates
31. Double integrals in polar coordinates
32. Double integrals in polar coordinates
33. Finding area using polar double integrals
34. Changing coordinates in integrals
Properties1. Let R {(r, ) | a r b, } be a polar rectangleand 0 - 2 If f is
continuous on R, then
b
f(x, y)dA f(rcos , rsin )rdrd
a
R
2. Let D {(r, ) | , h1 ( ) r h 2 ( )} be a polor region.If f is continuous on
h 2 ( )
D then f(x, y)dA
D
h 1 ( )
f(rcos , rsin )rdrd
35. Changing coordinates in integrals
36. Changing coordinates in integrals
Example : Evaluate (4y2 3x)dA where R {(x, y) | y 0,1 x 2 y 2 4}R
Solution:
R {(x, y) | y 0,1 x 2 y 2 4} {(r, ) |1 r 2, 0 }
2
0
1
(4y 3x)dA (4(rsin ) 3rcos )rdrd
2
2
R
(15sin2 7cos )d
0
15
2
37. Changing coordinates in integrals
2. Find the volume of the solidbounded by the plane z 0and the paraboloid z 1- x 2 - y 2
Sol :
D {(r, ) | 0 r 1, 0 2 }
V (1- x 2 - y 2 )dA
D
2
0
2
2
(1r
)rdrd
1
0
38. Changing coordinates in integrals
2. Find the volume of the solidbounded by the plane z 0and the paraboloid z 1- x 2 - y 2
Sol :
D {(r, ) | 0 r 1, 0 2 }
V (1- x 2 - y 2 )dA
D
2
0
2
2
(1r
)rdrd
1
0
39. Changing coordinates in integrals
Example : Evaluate e-(x y )dAwhere R 2 {(x, y) | - x , - y }2
2
R2
Consider D n {(r, ) | 0 r n, 0 2 }
Solution :
Then
-(x y )
-(x y )
e
dA
dA
lim
e
2
2
2
n
R2
lim
2
n 0
2
Dn
2
1 1 -n 2
e
rdrd
(
- e )d
lim
0
n 0
2 2
n
-r 2
40. Lecture Summary
• Introduction to double integrals• Iterated integrals.Theorem of Fubini
• Properties of double integrals
• Integrals over non-rectangular regions
• Reversing the order of integration
• Simple polar regions
• Double integrals in polar coordinates
• Finding area using polar double integrals
mathematics