Similar presentations:
Четыре замечательные точки треугольника
1. Вдохновение нужно в геометрии не меньше, чем в поэзии. А.С.Пушкин
2. Обобщающий урок.
Четыре замечательные точкитреугольника.
3. Цель урока.
Систематизировать, расширить и углубитьваши знания, умения и навыки :
- о свойствах биссектрисы угла и серединного
перпендикуляра треугольника;
- о четырёх замечательных точках треугольника;
- уметь использовать эти знания при решении
задач.
Развивать вашу наблюдательность, умение
анализировать, сравнивать, делать выводы.
Вызвать у вас потребность в обосновании
своих высказываний.
4. План урока.
1.2.
3.
4.
5.
Проверка домашнего задания.
Повторение теоретического
материала.
Решение задач на отработку
знаний, умений и навыков.
Домашнее задание.
Проверочная самостоятельная
работа.
5. Ход урока.
1. Проверка домашнего задания:№ 681.
Дано: АВС, АВ=ВС,НЕ-
В
Н
Е
А
С
серединный перпендикуляр,
Р АЕС=27см, АВ=18см.
Найти: АС.
Решение: …
6. № 720.
Вh
А
Дано: АВС-разносторонний,
h-серединный перпендикуляр.
Выяснит: может ли точка В
принадлежать h?
С
Рассуждения: …
7. 2. Устно: ответить на вопросы!
* Что вам известно о точках биссектрисы неразвёрнутогоугла?
Сформулируйте теорему обратную данной.
* Сформулируйте свойство биссектрис треугольника.
* Дайте определение серединного перпендикуляра к
отрезку.
* Каким свойством обладает каждая точка серединного
перпендикуляра к отрезку?
Сформулируйте теорему обратную данной.
* Сколько серединных перпендикуляров можно построить в
треугольнике? Каким свойством они обладают?
* Сколько высот можно построить в треугольнике? Каким
свойством обладают они?
Перечислите четыре замечательные точки
треугольника !
8. Точка пересечения медиан!
.С
В1
А
М
С1
М – точка пересечения
медиан
АВС;
АМ:МА1=ВМ:МВ1=СМ:МС1=
А1
=2:1
В
9. Точка пересечения биссектрис!
СВ1
О - точка пересечения
биссектрис
АВС
А1
О
А
С1
В
10. Точка пересечения серединных перпендикуляров!
СМ
N
K
А
P
К – точка пересечения
серединных
перпендикуляров к
сторонам АВС;
АК=ВК=СК.
В
11. Точка пересечения высот ( или их продолжений)!
Н.
В
А1
С1
А
С1
А1
В
Н
С
В1
В
С(Н)
С1
А
С
В1
Н – точка пересечения
высот ( или их продолжений)
А
12. Задача 1.
В остроугольном АВС АD перпендикулярнаВС, СF перпендикулярна АВ, АD
пересекает CF в точке М.
Докажите, что угол АВМ равен углу МСА.
В
D
F
А
M
Н
С
13. Задача 2.
В треугольнике АВС биссектрисы AD и СЕпересекаются в точке М, ВМ=m, угол АВС
равен α . Найдите расстояние от точки М
до стороны АС.
С
А
M
D
Е
В
14. Домашнее задание:
1)На рис.1 окружность с центром в точке О касается
сторон угла МКN в точках М и N. Найдите угол
МКN и расстояние МN,
К
если ОМ=1 см,
M
КМ=2см.
О
N
рис.1
2) Стороны угла А касаются окружности радиуса r с
центром в точке О.
а) Найдите ОА, если r=5 см, угол А равен 60 º.
б) Найдите r, если ОА=14 дм, угол А равен 90 º .
15. Самостоятельная работа.
Четыре замечательные точкитреугольника.