Неопределенный интеграл
Элементы интегрального исчисления
Неопределенный интеграл, его свойства и вычисление
Первообразная и неопределенный интеграл
Первообразная и неопределенный интеграл
Первообразная и неопределенный интеграл
Первообразная и неопределенный интеграл
Свойства интеграла, вытекающие из определения
Свойства интеграла, вытекающие из определения
Свойства интеграла
Таблица неопределенных интегралов
Таблица неопределенных интегралов
Свойства дифференциалов
Примеры
Примеры
Независимость от вида переменной
Пример
Методы интегрирования
Интегрирование по частям
Примеры
Примеры
Метод замены переменной
Интегрирование функций, содержащих квадратный трехчлен
Пример
Пример
464.50K
Category: mathematicsmathematics

Неопределенный интеграл

1. Неопределенный интеграл

Лекция7

2. Элементы интегрального исчисления

1.Первообразная и неопределенный
интеграл
2.Основные приемы вычисления
неопределенных интегралов
3.Интегрирование функций, содержащих
квадратный трехчлен
4.Интегрирование дробно-рациональных
функций
5.Интегрирование тригонометрических
функций
6.Интегрирование некоторых
иррациональностей

3. Неопределенный интеграл, его свойства и вычисление

4. Первообразная и неопределенный интеграл

Определение. Функция F x называется
первообразной функции f x , определенной на
некотором промежутке, если F x f x для
каждого x из этого промежутка.
Например, функция cos x является
первообразной функции sin x , так как
cos x sin x .

5. Первообразная и неопределенный интеграл

Очевидно, если F x - первообразная
функции f x , то F x C , где C некоторая постоянная, также является
первообразной функции f x .
Если F x есть какая-либо первообразная
функции f x , то всякая функция вида
Ф x F x C также является
первообразной функции f x и всякая
первообразная представима в таком виде.

6. Первообразная и неопределенный интеграл

Определение. Совокупность всех
первообразных функции f x ,
определенных на некотором
промежутке, называется
неопределенным интегралом от
функции f x на этом промежутке и
обозначается f x dx .

7. Первообразная и неопределенный интеграл

Если F x - некоторая первообразная функции
f x , то пишут f x dx F x C , хотя
правильнее бы писать f x dx F x C .
Мы по устоявшейся традиции будем писать
f x dx F x C .
Тем самым один и тот же символ
f x dx будет обозначать как всю
совокупность первообразных функции f x ,
так и любой элемент этого множества.

8. Свойства интеграла, вытекающие из определения

Производная неопределенного
интеграла равна подынтегральной
функции, а его дифференциалподынтегральному выражению.
Действительно:
1.( f ( x)dx) ( F ( x) C ) F ( x) f ( x);
2.d f ( x)dx ( f ( x)dx) dx f ( x)dx.

9. Свойства интеграла, вытекающие из определения

Неопределенный интеграл от
дифференциала непрерывно
дифференцируемой функции равен
самой этой функции с точностью до
постоянной:
3. d ( x) ( x)dx ( x) C ,
так как (x )
является первообразной
для (x).

10. Свойства интеграла

Сформулируем далее следующие свойства
неопределенного интеграла:
4.Если функции f1 x и f 2 x имеют
первообразные, то функция f1 x f 2 x
также имеет первообразную, причем
f1 x f 2 x dx f1 x dx f 2 x dx ;
5. Kf x dx K f x dx ;
6. f x dx f x C ;
7. f x x dx F x C .

11. Таблица неопределенных интегралов

1. dx x C .
a 1
x
2. x a dx
C, (a 1) .
a 1
dx
3. ln x C .
x
x
a
4. a x dx
C .
ln a
5. e x dx e x C .
6. sin xdx cos x C .
7. cos xdx sin x C .
dx
8. 2 ctgx C .
sin x
dx
9. 2 tgx C .
cos x
dx
arctgx C .
10.
2
1 x

12. Таблица неопределенных интегралов

11.
dx
arcsin x C .
1 x 2
dx
1
x
12. 2 2 arctg C .
a
a
a x
13.
a x
2
arcsin
2
x
C ..
a
x2 a
ln x x 2 a C .
17. shxdx chx C .
18. chxdx shx C .
dx
1
x a
ln
C
2
2
2a x a
x a
19.
dx
1
a x
ln
a 2 x 2 2a a x C .
20.
14.
15.
dx
dx
16.
dx
ch 2 x thx C .
dx
cthx C .
2
sh x

13. Свойства дифференциалов

При интегрировании удобно
пользоваться свойствами:
1
1. dx d (ax)
a
1
2. dx d (ax b),
a
1 2
3. xdx dx ,
2
1 3
2
4. x dx dx .
3

14. Примеры

Пример . Вычислить cos 5xdx .
Решение. В таблице интегралов найдем
cos xdx sin x C .
Преобразуем данный интеграл к табличному,
воспользовавшись тем, что d ax adx .
Тогда:
d 5 x 1
= cos 5 xd 5 x =
cos 5xdx cos 5 x
5
5
1
= sin 5 x C .
5

15. Примеры

Пример. Вычислить x 3x x 1 dx .
Решение. Так как под знаком интеграла
находится сумма четырех слагаемых, то
раскладываем интеграл на сумму четырех
интегралов:
2
3
2 3x3 x 1 dx x 2 dx 3 x3dx xdx dx .
x
x4 x2
x3
x C
3
2
4
3

16. Независимость от вида переменной

При вычислении интегралов удобно
пользоваться следующими свойствами
интегралов:
Если f x dx F x C , то
f x b dx F x b C .
Если f x dx F x C , то
1
f
ax
b
dx
F ax b C .
a

17. Пример

Вычислим
1
6
(2 3x) dx 3 6 (2 3x) C.
5

18. Методы интегрирования

19. Интегрирование по частям

Этот метод основан на формуле udv uv vdu .
Методом интегрирования по частям берут такие интегралы:
а) x n sin xdx , где n 1,2...k ;
б) x n e x dx , где n 1,2...k ;
в) x n arctgxdx , где n 0, 1, 2,... k . ;
г) x n ln xdx , где n 0, 1, 2,... k .
При вычислении интегралов а) и б) вводят
n 1
обозначения: x n u , тогда du nx dx , а, например
sin xdx dv ,тогда v cos x .
При вычислении интегралов в), г) обозначают за u функцию
arctgx , ln x , а за dv берут x n dx .

20. Примеры

Пример. Вычислить x cos xdx .
Решение.
u x, du dx
=
x cos xdx
dv cos xdx, v sin x
x sin x sin xdx x sin x cos x C .

21. Примеры

Пример. Вычислить
x ln xdx
dx
u ln x, du
x
x2
dv xdx, v
2
x 2 dx
x2
ln x
=
2 x
2
1 x2
x2
1
x2
C .
ln x
ln x xdx
=
2 2
2
2
2

22. Метод замены переменной

Пусть требуется найти f x dx , причем
непосредственно подобрать первообразную
для f x мы не можем, но нам известно, что
она существует. Часто удается найти
первообразную, введя новую переменную,
по формуле
f x dx f t t dt , где x t , а t - новая
переменная

23. Интегрирование функций, содержащих квадратный трехчлен

Рассмотрим интеграл
ax b
dx ,
x px q
содержащий квадратный трехчлен в
знаменателе подынтегрального
выражения. Такой интеграл берут также
методом подстановки, предварительно
выделив в знаменателе полный
квадрат.
2

24. Пример

Вычислить
dx
.
x 4x 5
Решение. Преобразуем x 2 4 x 5 ,
2
выделяя полный квадрат по формуле a b 2 a 2 2ab b 2 .
Тогда получаем :
x2 4x 5 x2 2 x 2 4 4 5
x 2 2 2 x 4 1 x 2 2 1
x 2 t
dx
dx
dt
x t 2
2
2
2
x 2 1 dx dt
x 4x 5
t 1
arctgt C arctg x 2 C.

25. Пример

Найти
1 x
1 x
2
dx
tdt
1 t
2
x t, x t 2 ,
dx 2tdt
2
t2
1 t
2
dt
1 t
1 t
d (t 2 1)
t
2
1
2
2tdt
2
dt
ln(t 1) 2 dt 2
2
1 t
ln(t 2 1) 2t 2arctgt C
2
ln( x 1) 2 x 2arctg x C.
1 t 2 1
1 t
2
dt
English     Русский Rules