Комплексные числа и действия над ними.
Основные понятия.
Основные понятия.
Примеры.
Геометрическое изображение комплексных чисел.
Геометрическое изображение комплексных чисел.
Геометрическое изображение комплексных чисел.
Формы записи комплексных чисел.
2. Действия над комплексными числами
Сложение (вычитание) комплексных чисел
Произведение и частное комплексных чисел в алгебраической форме.
Произведение и частное комплексных чисел в алгебраической форме.
578.50K
Category: mathematicsmathematics

Комплексные числа

1. Комплексные числа и действия над ними.

2. Основные понятия.

Определение.
Комплексным числом Z называется
z = a + bi ,
выражение вида
где a и b- действительные числа, а i - мнимая
единица, и
i 2 = -1
Например, Z1 = 6+2i или Z2 = 1-5i .
Число a называется действительной частью
комплексного числа и обозначается a=Re z,
а b - мнимой частью и обозначается b=Im z.

3. Основные понятия.

Два комплексных числа
называются равными
тогда и только тогда,
когда равны их
действительные и
мнимые части.
Два комплексных числа,
отличающихся лишь
знаком мнимой части,
называются комплексносопряженными.
z1 = a1 + b1i ;
z 2 = a 2 + b 2i
z1 = z2 a1 = a 2 ; b1 = b 2
z1 = a1 + b1i
z2 = a 2 - b 2i

4. Примеры.

Пример 1.
Пример 2.
z1 = 5 + 3i ;
z1 = 5 + 3i ;
z2 = 25 / 5 + 15 / 5i
z2 = 5 - 3i
a = 5 = 25 / 5
b = 3 = 15 / 5
Вывод : z1 = z2
Вывод : z1 и z2
комплексно сопряженные числа.

5. Геометрическое изображение комплексных чисел.

Всякое комплексное число
можно изобразить точкой
плоскости xOy такой, что
x=Re z, y=Im z.
И, наоборот, каждую точку
координатной плоскости
можно рассматривать как
образ комплексного
числа.
Z = a+bi, М(a, b)
y
M(a ; b )
O
x

6. Геометрическое изображение комплексных чисел.

y
M(x;y)
O
x
Плоскость, на которой
изображается
комплексные числа,
называется комплексной
плоскостью.
Ось абсцисс Ox называется
действительной осью.
Ось ординат Oy называется
мнимой осью.

7. Геометрическое изображение комплексных чисел.

y
r = OM
M(x;y)
φ
O
x
Комплексное число можно
задавать с помощью
радиус
вектора r = OM .
Длина вектора называется
модулем этого числа и
обозначается Z или r .
Величина угла между
положительным направлением
оси Ox и вектором r
называется аргументом этого
комплексного числа и
обозначается Arg Z или j.
Аргумент комплексного числа
определяется с точностью до
слагаемого 2pk.

8. Формы записи комплексных чисел.

Модуль r и аргумент j можно
рассматривать как полярные
координаты вектора r = OM
Тогда получаем
Запись числa
z=a+bi
называется
алгебраической формой
комплексного числа.
Комплексное число z=a+bi
можно записать в виде
Запись числа z в виде
z=r(cosφ+isinφ)
называется
тригонометрической
формой
комплексного числа.
x = r cos j
y = r sin j
z = r cos j + ir sin j
Или
z = r (cos j + i sin j )

9. 2. Действия над комплексными числами

Суммой двух комплексных
чисел
z1 = x1 + y1i
z 2 = x2 + y 2 i
Называется комплексное
число
z1 + z2 = ( x1 + x2 ) + ( y1 + y2 )i
Разностью двух комплексных
чисел z = x + y i
1
1
1
z 2 = x2 + y 2 i
Называется комплексное
число
z1 - z2 = ( x1 - x2 ) + ( y1 - y2 )i
Геометрически комплексные числа
складываются и вычитаются, как
векторы.

10. Сложение (вычитание) комплексных чисел

Примеры:
1. z1 = 4 + 2i
z2 = -5 + 3i
z1 + z2 = (4 - 5) + (2 + 3)i = -1 + 5i
2.
z1 = 3 - 5i
z2 = 2 - 7i
z1 - z 2 = (3 - 2) + (-5 - (-7)i = 1 + 2i

11. Произведение и частное комплексных чисел в алгебраической форме.

Произведением двух
комплексных чисел
Частным двух комплексных
чисел
z1 = x1 + y1i
z1 = x1 + y1i
z 2 = x2 + y 2 i
называется комплексное
число
z 2 = x2 + y 2 i
называется комплексное
число
z
xx +yy
y x -x y
z = 1 = 1 22 12 2 + 1 22 12 2 i
z2
x2 + y 2
x2 + y 2
z = z1 z2 = ( x1 x2 - y1 y2 ) + ( x1 y2 + y1 x2 )i
Формула получается путем
перемножения двучленов!
( x1 + y1i)( x2 + y2i)
На практике используют
умножение числителя и
знаменателя на число,
сопряженное ( x1 + y1i ) ( x - y i)
2
2
знаменателю! ( x2 + y2i ) ( x2 - y2i)

12. Произведение и частное комплексных чисел в алгебраической форме.

Произведение:
Частное:
z1 = 1 + 2i
z1 = 1 + 2i
z2 = 3 + 4i
z2 = 1 + i
z1 z2 = (1 + 2i) (3 + 4i) =
1 + 2i (1 + 2i )(1 - i )
=
=
1+ i
(1 + i )(1 - i )
= 1 3 + 2i 3 + 1 4i + 2i 4i =
= 4 + 6i + 4i + 8i 2 = 4 + 10i - 8 =
= -4 + 10i
=
z1 z2 = -4 + 10i
i = -1
2
1 + 2i - i + 2 3 + i
=
1+1
2
z1 3 1
= + i
z2 2 2
English     Русский Rules