Предел числовой последовательности
Предел числовой последовательности
Рассмотрим последовательность:
Свойства пределов
Примеры:
Сумма бесконечной геометрической прогрессии
386.40K
Category: mathematicsmathematics

Числовые последовательности

1.

2. Предел числовой последовательности

Рассмотрим числовую последовательность, общий член которой
приближается к некоторому числу a при увеличении
порядкового номера n.
В этом случае говорят, что числовая последовательность
имеет предел. Это понятие имеет более строгое определение.
Число а называется пределом числовой последовательности {un}
если для любого ε > 0 найдется такое число N = N(ε), зависящее
от ε, что │un – a│< ε при n > N
lim un a
n

3. Предел числовой последовательности

Это определение означает, что a есть предел числовой
последовательности, если её общий член неограниченно
приближается к a при возрастании n. Геометрически это
значит, что для любого ε > 0 можно найти такое число
N, что начиная с n > N все члены последовательности
расположены внутри интервала (a – ε, a + ε).
Последовательность, имеющая предел, называется
сходящейся; в противном случае – расходящейся.

4. Рассмотрим последовательность:

1;
1 1 1 1
1
; ; ; ; ...; ; ... – гармонический ряд
2 3 4 5
n
Если m N, k R, то lim
k
n n
m
1
0
n n
lim
0
n
lim
q
0
Если │q│< 1, то
n
Если │q│> 1, то последовательность уn = q
n
расходится

5. Свойства пределов

Если
lim хn b,
n
lim yn с,
n
то
1. предел суммы равен сумме пределов:
lim хn уn b c
n
2. предел произведения равен произведению пределов:
lim хn уn bc
n
3. предел частного равен частному пределов:
хn
lim
n у n
b
с
4. постоянный множитель можно вынести за знак предела:
lim kхn kb
n

6. Примеры:

1) lim
1
n n 2
1
1
1 1
lim lim lim 0 0 0
n n n
n n n n
2
5
2 5
2) lim 2 3 lim lim 2 lim 3 0 0 3 3
n n
n
n
n n n n
1
1
1
1 1
lim
...
lim
...
lim
0 ... 0 0
k
n n
n n n
n n n n n
3) lim
1
2n 2
3
3
2
2
2
2
2n 2 3
n
n
n
lim
4) lim 2
lim
4
n n 4
n n 2
n
4
1
2 2
2
n
n
n
3
lim 2 lim 2
n
n n
2 0
2
4 1 0
lim 1 lim 2
n
n n
lim 2 3
2
n
n
4
lim 1 2
n
n

7.

Горизонтальная асимптота графика
функции
lim f ( n ) b
n
Это равенство означает, что прямая у = b
является горизонтальной асимптотой графика
последовательности yn = f(n), то есть графика
функции y = f(х), х N
у
у=b
y = f(x)
0
х

8. Сумма бесконечной геометрической прогрессии

Сумма бесконечной S b1
1 q
геометрической прогрессии
Дано: b1 + b2 + b3 + b4 + … + bn + … = 9;
(b1)2 + (b2)2 + (b3)2 + (b4)2 + … + (bn)2 + … = 40,5.
Найти: b5.
Решение:
b1
1 q 9,
2
b1 40,5;
1 q 2
b1 9 1 q ,
2
2
9 1 q
40,5;
2
1 q
4
b1 9 1 q ,
1 q 1
1 q 2 ;
2
1
b5 6
.
27
3
b1 6,
1
q
.
3
2
Ответ:
.
27
English     Русский Rules