Thank you for your attention
12.11M
Categories: mathematicsmathematics englishenglish

Expert judgment method. (Lecture 1-4)

1.

National Aviation University
Department of Airnavigation system
Topic 1: Expert Judgment Method
Lecture 1: Basics of decision-making theory
Lecture 2 Classification of systems / Methods of decision-making / Expert
Judgment Method (EJM).
Lecture 3 Algorithm of EJM. Example for using EJM. Estimation the difficulty
of procedures of ATCO for aircrafts control
Lecture 4 Expert Judgment Method. Weight coefficients
Laboratory works
1. Decomposition and aggregation of complex system.
2. Expert Judgment Method / Matrix of individual preferences
3. Expert Judgment Method Standard task “Definition of the systems of preference of
ATC’s workload
4. Expert Judgment Method Individual task, 1 criteria
Professor Shmelova T.

2.

National Aviation University
Department of Airnavigation system
Lecture 1: Basics of decision-making theory
1. Decision problems. Multi-criteria problems
2. Basic definitions of decision-making theory
3. Decision Support System (DSS)
Professor Shmelova T.

3.

Course Basics of decision-making theory/ Informatics of DM

4.

2 semester

5.

6.

7.

1. Decision problems. Multi-criteria problems

8.

Systems analysis of decision problems
Systems analysis is a problem solving method that decomposes a system into
its component pieces for studying of component parts (systems, subsystem,
elements, parameters, procedures, factors, etc).
The basic procedures of system analysis is the decomposition and
aggregation.
• Decomposition - separation of
complex system into separate parts
(subsystems) in order to study separate
systems: determining relationships
between subsystems and its priorities.
• Aggregation – consolidation of the
subsystems in the system with one
main goal.
Aviation criteria:
• safety,
• regularity,
• economic efficiency

9.

Algorithm of systems analysis of complex problems
1.Analysis of complex problems – alternatives,
subsystems, goal..
2.Definition of criteria
3.Decomposition of a complex problem into
subsystems
4.Studying of characteristics of subsystems
5.Identification of priorities (importance)
subsystems using expert estimation by each
criterion
6.Aggregation of subsystems into one system
(additive aggregation, multiplicative
aggregation) - decision multi-criteria problems

10.

Methods of Aggregation of subsystems into one system decision multi-criteria problems
1. Additive aggregation
2.
Multiplicative aggregation
were
wi - weight coefficients
wi
Ci
n
C
i 1
f i - criteria (function) estimation
i
Ri 1
Ci 1
n

11.

Example: Definitions and estimation of the sources
of the projects financing
Where to take 100 000 EUR on the projects financing?
Sources
R
C
w

Credit
3
0,3333
0,1667
16667
Self-financing
1
1
0,5
50000
Stock
2
0,6667
0,3333
33333
2
1
100000
Additive aggregation:

12.

Example 1 Definitions and estimation of the sources of the projects
financing (decomposition and aggregation)
Sources
R
C
w

1
Credit
3
0,6
0,2
20000
2
Self-financing
1
1
0,3333
33333
3
Stock
2
0,8
0,2667
26667
Investmens
Subsidy
4
5
0,4
0,1333
13333
0,2
0,0667
6666,7
3
1
100000
4
5
sum
Example 1 Definitions and estimation of the students of 4 course
(Additive and Multiplicative aggregation)
Estimation
of the
students
Multiplicati
ve
Additive
Subjects
R'
R
C
w
1(good)
W(good)
2 (bad)
W(bad)
1(good)
W(good)
2 (bad)
W(bad)
1
Are Navigation
1,2,3
2
0,833333
0,2380952
5
1,1904762
5
1,190476
5
1,466971
5
1,466971
2
Aerodromes
4,5,6
5
0,333333
0,0952381
4
0,3809524
0
0
4
1,14114
0
0
3
Meteorology
1,2,3
2
0,833333
0,2380952
4
0,952381
4
0,952381
4
1,391066
4
1,391066
0,2380952
5
1,1904762
5
1,190476
5
1,466971
5
1,466971
0,2857143
3
0,285714
3
1,110299
3
1,110299
0,380952
4
1,14114
4
1,14114
4
25
4,328214
21
0
4
Communication
1,2,3
2
0,833333
5
IT
4,5,6
5
0,333333
0,0952381
3
6
English
4,5,6
5
0,333333
0,0952381
4
0,3809524
4
3,5
1
25
4,3809524
21
sum

13.

2. Basic definitions of decision-making theory
Decision-making - a goal-oriented choice of the one alternative from
several alternatives using methods of optimization
Decision-making theory – theory, which studies mathematical methods
for finding optimal solutions in man-machine system.
A system - a set of elements and subsystems that are interconnected to set
and they have main goal

14.

Maine properties of systems:
Emergence - the appearance of the property not previously observed as a
functional characteristic of the system (the emergence of new properties in the
system)
Synergetic - enhancing properties of the system (2+2=5),
working together; cooperative. In system theory - optimization of system,
emergence additional properties by using mathematical methods
Remark
(Синергетика (от греч. synergetike - содружество, коллективное
поведение) - наука, изучающая системы, состоящие из многих подсистем
самой различной природы; наука о самоорганизации простых систем и
превращения хаоса в порядок. - http://www.milogiya2008.ru/sinergia.htm)
Method - a way to achieve the goal (Metodos (latin)) word)

15.

Decision-making theory answers questions:
where decisions are made - man-machine systems
(pilot – aircraft, air traffic controller - pilot – aircraft, etc)
who make decisions - the human - operator, the
decision-maker, manager
how to make optimal decisions – using decisionmaking methods

16.

Decision-making stages:
I.
II.
III.
IV.
perception of information
identification of information
decision-making
action

17.

OODA Model

18.

3. Decision Support System (DSS)
Decision Support System (DSS) is a computerized system designed to help a user make decisions
Database (DB) - information
structure that reflects the status and
relationship of objects analyzed
Database management system
The model base - a set of
mathematical, logical, linguistic and
other models used for comparative
analysis of multi-alternative
decision
Users interface

19.

Human Factors (HF) problem. Evolution of HFs Models.
Statistical data shows that human errors account for up to 80 % of all causes
of aviation accidents
<SHEL→SHELL→SHELL-T→SCHELL → balance models
→Collaborative Decision Making (CDM) / AI > etc.
SCHELL model and CRM
C - culture
SCHELL-T model M
T – TEAM
SHELL model
Artificial Intelligence (AI ):
FF-ICE - Flight and Flow Information for a
Collaborative Environment
SWIM -System-Wide Information Management
PBA - Performance-based approach
CDM - Collaborative decision making
DM - Decision Making
ES – expert systems
DSS – decision support system, etc.
Socio-technical
systems
Culture is a “collective
programming of the mind”
(Hofstede)
ICAO: Human Factors
Guidelines for Safety Audits
Manual, Doc. 9806
James Reason model - mistakes
Safety - effectivity /balance model
Example of AI / CDM Collaborative DM
19

20.

Evolution of HFs Models.
Socio-technical systems - “Large-scale, high-technology systems such as nuclear power generation
and aviation have been called socio-technical systems because they require complex interactions
between their human and technological components”
Cross-Cultural Factors in Aviation Safety : Human Factors Digest No. 16 / Сirc. ІСАО 302-AN/175. – Canada, Montreal : ICAO, 2004
Culture is a “collective programming of the mind” (Hofstede)
ICAO: Human Factors Guidelines for Safety Audits Manual, Doc. 9806
AI (artificial intelligence) is the simulation of human intelligence processes by modeling,
computer systems, and machines
IATA, White paper, 2018
Stages of the evolution of the HF’s models:
1) Professional Skills of H-O / Interaction of H-O’s /
Definitional of H-O’s Errors.
2) Cooperation in team / Interaction of H-O’s in team / Error
detection.
3) Influence of Culture / Safety / Error prevention.
4) Safety Management
/ Safety balance models /
Minimization of errors.
5) Collaborative Decision Making (CDM) / Data for DM
6) Artificial Intelligence in aviation, etc.
Factors:
• social-psychological;
• individual-psychological;
• psycho-physiological, etc.
AI
• minimization of errors
• CDM

20

21.

Evolution Human factor's models
Years
Models
1972
SHEL
1990
Reason's “Swiss
Cheese Model”
1993
SHELL
1999
2000
2000
CRM
TEM
MRM
SHELL-T (SHELLTeam)
2004
2004
2004
2009
2010
2013
2016-now
Content of models
Content
Software (procedures) - Hardware (machines) Environment - Liveware
I stage
Active errors - Latent errors - Windows of opportunity Professional skills
Causation chain
Interaction
Software (procedures) - Hardware (machines) Errors
Environment - Liveware - Liveware (humans)
Crew - Resource - Management
Threat and Error - Management
II stage
Maintenance - Resource - Management
Cooperation in team
Software (procedures) - Hardware (machines) Error detection
Environment – Liveware - Liveware (humans) - Team
SCHELL model and Software (procedures) – Culture - Hardware (machines) CRM
Environment - Liveware - Liveware (humans)
LOSA
HEAD
PBA
HFACS
Line - Operation - Safety - Audit
Human - Environment - Analysis - Design
Performance-Based Approach
Human Factors - Accident - Classification - System
III stage
Culture
Safety
Error prevention
SMS
Safety Balance
Model
Safety Management System
IV stage
Safety / Efficiency /
Minimization of
errors
AI
CDM
Collaborative Decision Making (CDM)
System-Wide Information Sharing and Management
(SWIM)
Flight & Flow Information for a Collaborative
Environment
(FF-ICE)
V stage
Collaborative DM
Artificial Intelligence
21

22.

The synergetic effect - LS of aviation technique with using
AI capability
AI White Paper / IATA
https://www.iata.org/publications/Pages/AI
-white-paper.aspx
Artificial Intelligence Applications in the Aviation and
Aerospace Industries 2019
https://www.igi-global.com/publish/call-for-papers/calldetails/3799
22

23.

The synergetic effect: analysis of problem (DM) and
synthesis of problem (AI)
Analysis (DM) – integrated of models
Synthesis (AI) – classification of
problem and obtained
deterministic models od DM by AI
23

24.

Books about DM of H-O in ANS: DM of ATC; pilot of AC/ UAV; engineer; flight dispatch etc.
Ukraine
http://er.nau.edu.ua/
2020
МАТЕРІАЛИ
НАУКОВО-ДОСЛІДНОЇ РОБОТИ:
МЕТОДОЛОГІЯ СИТУАЦІЙНОГО КОЛЕКТИВНОГО
УПРАВЛІННЯ ПІЛОТОВАНИМИ І БЕЗПІЛОТНИМИ
ЛІТАЛЬНИМИ АПАРАТАМИ В ЄДИНОМУ
ПОВІТРЯНОМУ ПРОСТОРІ
Том 2
Інтегровані корпоративні моделі для колективного
управління пілотованими і БПЛА в єдиному повітряному
просторі в умовах ризику і невизначеності
IGI GLOBAL (USA)
https://www.igi-global.com/
Київ 2017
2017
2018
2019

25.

National Aviation University
Department of Airnavigation system
Lecture 2:
Classification of systems / Methods of decision-making.
Expert Judgment Method (main steps of Method). Matrix
of individual preference
1. Types of system
2. Classification of methods of decision-making
3. Expert Judgment Method (main steps of Method). Matrix
of individual preference
Professor Shmelova T.

26.

1. Types of Analysis and Synthesis of system (SISO & MIMO)
1) One input - One output.
Mathematics for solving problems - differential equations (f(x)=dy/dx etc)
Engineering approach - this is the theory of automatic control (W(p)= Y(p)/X(p) etc)
∑ - system
x - input
y - output
f - disturbing influences
Research methods - Analysis and
synthesis of aviation ergatic system (manmachine system), for example, pilot –
aircraft, operator - aircraft for using
theory of automatic control

27.

Using optimization methods we choose from many alternatives to one
alternative. Optimization problem must have
• goal (objective function)
• constraints
• criteria (minimum, maximum) of optimality
Remark . According on the type of task variables, constraints and objective function there are
following methods:
• Decision making under certainty (LP/DP)
• Decision making under risk.
• Decision making under uncertainty
• Game Theory
• Neural Networks
• Fuzzy logic etc

28.

APPLICATIONS - systems
Ergatic (man-machine system) system
Artificial Intelligence АІS
•Decision support system
•Expert Systems

29.

2. Classification of Decision Making Methods – 3D - Classification
It is known a lot of types of classification, but the simplest is the classification by
Howard ([2] Jozef KOZIELECKI)
Classification is a cube in space, which has the axises (3d - Classification):
•Axis of uncertainty (measure (level) of uncertainty) - x,
•Axis of dynamics (measure of dynamics ) – y
•Axis of complexity (measure of complexity) – z .
Extent of uncertainty - Axis x .
At point O, we have methods for solving deterministic problems - decision-making
in certainty
At point R - we know the law of the probability distribution of the random
variable, such as problem in risk R (decision-tree)
At point D - we don’t know the law of the probability distribution of the random
variable. We have methods for solving uncertainty problems - decision-making in
uncertainty (for example, minmax-criteria Vald, Savage, Hurwitz and Laplace etc)

30.

Extent of dynamics – Axis y
At point O, we have methods for
solving one-step decision-making
problem, such as linear programming.
At point B, we have methods for
solving many-step decision-making
problem,
such
as
dynamic
programming.
Extent of complexity – Axis z
At point O, we have methods for solving decisionmaking tasks with a one-criterion problems
At point B, we have methods for solving decisionmaking tasks with multi-criteria problems

31.

According with the variables types, constraints and objective function type
there are following main methods:
Decision making under certainty (LP, DP, NLP, etc)
Decision making under risk (decision-tree)
Decision making under uncertainty (minimax)
Game Theory
Fuzzy-logic
Neural Networks, etc
But!
One of the methods for solving multi-criteria decision problems Expert Judgment Method for define the quantitative values of quality
indicators – after Decomposition (more - less, complex - simple,
difficult - easy).

32.

3. Expert Judgment Method
The main steps of Expert Judgment Method
0. Questionary for experts –
1. Matrix of individual preferences –
2. Matrix of group preferences –
3. Experts’ group opinion (sample average, arithmetical mean) 4. Coordination of experts’ opinion for each factor:
Dispersion for each factor –
Square average deviation –
Coefficient of the variation for each factors –
5. Coordination of experts’ opinion for all factors
(Kendal’s coordination coefficient) –
6 . Spirman’s correlation coefficient –
7. The significance of the calculations:
W , criterion - χ2
Rs – Student's t – criterion
8. Weight coefficients
9. Graph of results of calculation
Ri
Rij
Rgrj
Dj
σj
νj
W
Rs
χ2
t
wi

33.

Examples. Matrix of individual preferences
Number of expert, m≥30
Methods for building Matrix of individual preferences :
of paired comparisons method
Example 1: Estimation of the sources of the
ranking method
projects financing, criteria – efficiency
Matrix 2. Estimation of the approach systems, criteria - efficiency

34.

Matrix 3. To determine the significance (complexity) of
the phases of flight of the aircraft
Methods:
• paired comparison method
• method of ranking
Takeoff
Take-off
Departure
Route (horizontal
flight)
Descend
Landing
Departure
1
0
0
0
0
1
0
1
Route
(horizontal
flight)
1
1
0
1
Take-off
2 places
Departure
3 places
Route (horizontal flight)
4 places
Descend
5 places
Landing
1 places
System of preferences expert №1
Descend
1
1
1
1
Landing
R
0
0
0
3
2
1
2
3
4
0
0
4
5
1

35.

Algorithm
of
Expert Judgment Method
Thunderstorm
Fog
Icing
Windshear
Windshear
Snow
Snow
Icing
TAKE OFF
CLIMB
ENROUTE
DESCEND
LANDING

36.

National Aviation University
Department of Airnavigation system
Lecture 3:
”Algorithm of Expert Judgment Method (EJM).
Example for using EJM. Estimation the difficulty
of procedures of ATCO for aircrafts control”
1. Algorithm of Expert Judgment Method
2. Example of Expert Judgment Method.
Professor Shmelova T.

37.

1.Algorithm of Expert Judgment Method
0. Questionary for experts
1. Matrix of individual preferences - determine opinion of the experts and their
systems of individual preferences, Ri , i=1,…m
2. Matrix of group preferences Rij, i=1,…m, j = 1,n
m - number of expert, m≥30
n - number of factors for expert estimates.
3. Determine the experts’ group opinion (sample average, arithmetical mean) Rgrj:
m
R grj
m - number of expert, m≥30
R
i 1
m
i

38.

4. Determine the coordination of experts’ opinion:
4.1 Dispersion for each factors (procedure, phases of flight of the
aircraft,…):
R
m
Dj
i 1
Ri
2
grj
m 1
In statistics, dispersion also called variability, scatter, or spread.
4.2 Determine square average deviation (Squared deviations):
j Dj
Determine coefficient of the variation for each each factors (procedure,
phases of flight of the aircraft,…):
j
j
100%
Rgrj
If coefficient of a variation is νj< 33 % - opinion of the experts coordinated
If coefficient of a variation is νj > 33 % - opinion of the experts don’t
coordinated

39.

5.For evaluation of coordination on all procedures it is necessary to use
Kendal’s coefficient of concordance or to provide interrogation of the experts
again.
W
12S
m
m 2 ( n 3 n) m T j
,
j 1
If coefficient of concordance is W > 0,7 - opinion of the experts coordinated
If coefficient of concordance is W < 0,7- opinion of the experts don’t
coordinated
We must to provide interrogation of the experts again

40.

6 . Compare opinion of the group of experts and expert №1 by helping of rating
correlation coefficient Rs (Spirmans correlation coefficient)
n
R s 1
6 ( x y ) 2
1
n(n 2 1)
7. The significance of the calculations W , criterion - χ2:
ф2
S
m
1
1
m(n 1)
R
2
12(n 1) j 1
t
2
8. The significance of the calculations Rs , Student's t – criterion
t ф rs
9. Weight coefficients
10. Graph
n 2
t st
2
1 rs

41.

2. Example N1 of using Expert Judgment Method. Definition the difficulty of
procedures of ATCO for aircrafts control
Method of EXPERT ESTIMATES for definition of difficulty of aircraft service and
definition the workload of ATCO for TOWER
For TOWER we have next procedures:
1.
Take-off,
2.
Landing
3.
Taxiing
4.
Coordination
1.Matrix of individual preferences.
Procedures
Take-off , w1
Landing,w2
Take-off, w1
Taxiing,w3
1
Landing, w2
0
Taxiing, w3
0
0
Coordination, w4
0
0
Coordination,w4
∑r
R
R
1
1
3 1
1
1
1
2 2
2
0,5
0,5
0,5 3;4
3,5
0,5 3;4
3,5

42.

2.Matrix of group preferences
Experts
Procedures
Take-off , w1
Landing,w2
Taxiing,w3 Coordination,w4
R1
R2
R3
R4
1
2
3
4
5
ΣRij
Rгр
R’гр
Di
σi
1
1,5
1,5
1
1,5
6,5
1,3
1
0,075
0,27386
2
1,5
3,5
2
1,5
10,5
2,1
2
0,675
0,8215838
3,5
3,5
1,5
3
3,5
15
3
3
0,75
0,8660254
3,5
3,5
3,5
4
3,5
18
3,6
4
0,05
0,223606798
υi , %
21,0663
39,12304
28,867513
6,211299937
- if variation is less than υ ≤ 33% - opinion of experts are coordinated.
- if variation is more than υ > 33% - opinion of experts are not coordinated.

43.

3 Definition of Kendal’s coordination coefficient

44.

4 Correlation coefficient of Spirman rs
Procedure
Ranks
Takeoff
Landing
Taxiing
Coordination
Ranks of group, Rgr
xi
1,3
2,1
3
3,6
R1-ranks of expert N2
yi
1,5
1,5
3,5
3,5
n
4
0,04
0,36
0,25
0,01
rsi
0,934
n
rsi 1
6 ( xi yi ) 2
i 1
n(n 2 1)
6 * ((1,3 1,5) 2 (2,1 1,5) 2 (3 3,5) 2 (3,6 3,5) 2 )
6 * 0,66
1
1
0,934
4 *15
4(4 2 1)
0 ≤ rs ≤ 1
Our result is 0.934. So, the coordination of opinions of the group and expert 2
is high.

45.

The significance of the calculations:
Significance W , for using
criterion - χ2

46.

Significance Rs , for using Student's t – criterion

47.

National Aviation University
Department of Airnavigation system
Lecture 4: Expert Judgment Method.
Weight coefficients
1. Algorithm of Definition the weight coefficients
2. Definition of ATCO’s loads for using weight coefficients
Professor Shmelova T.

48.

1. Definition the weight coefficients / Multi-criteria
decision problems

49.

Task. Definition of importance coefficient workloads for a controller’s on Tower
w1 - Take-off;
w2 Landing;
w3 - Taxiing;
w4 - Coordination.
4
F w j ,
1
1 method (linear dependence between a rank,
Estimates and weight coefficients)
Procedure
Take-off, w 1j
Rank Rgrj
1
Landing, w2
wi
Ci
Total load
1
0,4
7
2,8
2
0,75
0,3
3
0,9
Taxiing, w3
3
0,5
0,2
10
2
Coordination, w4
Σ
4
0,25
0,1
5
0,5
2,5
1
25
6,2
С 1=1- (1-1) /4 = 1
С 2=1- (2-1) /4 = 0,75
С 3=1- (3-1) /4 = 0,5
С 4=1- (4-1) /4 = 0,25
ΣCj = 1 + 0,75 + 0,5 + 0,25 = 2,5
w1 = 1/2,5 = 0,4
w2 = 0,75/2,5 = 0,3
w3= 0,5/2,5 = 0,2
w1 = 0,25/2,5 = 0,1
Σwj = 0,4 + 0,3 + 0,2 + 0,1 = 1

50.

51.

2 method
Estimates Cj are determining by helping experts, from 1 to 0, descending
importance rank from more importance to less importance value
Procedure
Rank
Rgrj
Total
load
w
Ci
Take-off, w1
1
1
0,35
7
2,5
Landing, w2
Taxiing, w3
Coordination,
w4
Σ
2
3
0,9
0,7
0,32
0,25
3
10
0,96
2,5
4
0,2
0,071
5
0,36
2,8
1
25
6,32

52.

References
1. John Boyd. Organic Design for Command and Control, 2003
2. Юзеф Козелецкий Психологическая теория принятия решений, 1979
3. Бешелев С.Д., Гурвич Ф.Г. Математико-статистические методы
экспертных оценок, 1980
4. Institute of Marketing & Innovation http://www.boku.ac.at/mi/
5. http://paginas.fe.up.pt/~als/mis10e/ch12/chpt12-1bullettext.htm
6. http://php.scripts.psu.edu/dept/it/strategies/planning.php
7. Збірка типових аналітично-розрахункових задач з курсу «Операційний
менеджмент» Методичні вказівки/укладачі Ю.В.Сікірда, Т.Ф.Шмельова, А.В.Залевський,
Н.В.Столярчук, С.Т.Кузнєцов.-Кіровоград:ДЛАУ, 2008.-80с.
8. Методические указания для практических занятий по дисциплине «Теория
управления» по темам: Принятие решений путем выявления предпочтений Ч-О АЭС,
Многокритериальные задачи, Эвристические методы принятия решений» /Сост.:
Шмелева Т.Ф. Джума Л.В. Сагановська Л.А, 2008 .-Кіровоград: ДЛАУ, 2008. -39 с.
9. Харченко В.П. Прийняття рішень оператором аеронавігаційної системи: монографія
/ В.П. Харченко, Т.Ф. Шмельова, Ю.В. Сікірда. – Кіровоград: КЛА НАУ, 2012. – 292 с.
10. Збірка типових задач з курсу «Інформаційні системи в менеджменті»: Методичні
вказівки / Укладачі: Ю.В. Сікірда, Т.Ф. Шмельова, А.В. Залевський, Н.В. Столярчук. –
Кіровоград: ДЛАУ, 2011. – 78 с.
11. Харченко В.П. Прийняття рішень оператором аеронавігаційної системи: монографія
/ В.П. Харченко, Т.Ф. Шмельова, Ю.В. Сікірда. – Кіровоград: КЛА НАУ, 2012. – 292 с.

53.

Books about DM of H-O in ANS: DM of ATC; pilot of AC/ UAV; engineer; flight dispatch etc.
Ukraine
http://er.nau.edu.ua/
2020
МАТЕРІАЛИ
НАУКОВО-ДОСЛІДНОЇ РОБОТИ:
МЕТОДОЛОГІЯ СИТУАЦІЙНОГО КОЛЕКТИВНОГО
УПРАВЛІННЯ ПІЛОТОВАНИМИ І БЕЗПІЛОТНИМИ
ЛІТАЛЬНИМИ АПАРАТАМИ В ЄДИНОМУ
ПОВІТРЯНОМУ ПРОСТОРІ
Том 2
Інтегровані корпоративні моделі для колективного
управління пілотованими і БПЛА в єдиному повітряному
просторі в умовах ризику і невизначеності
IGI GLOBAL (USA)
https://www.igi-global.com/
Київ 2017
2017
2018
2019

54.

Homework:
1. Choose a multi-criteria problems:
Remark:
1.
2.
3.
4.
5.
Choosing a telecommunication system
Choosing a product marketing strategy
Choosing Software
Cross-Browser Website Testing
Aviation: Quantitative estimation of the complexity of the stages the
aircraft flight; Quantitative estimation of the complexity of the
navigation parameters of flight; Air Craft Landing system (GNSS, ILS,
GNSS +EGNOS,VOR,…); Quantitative estimation of the complexity
procedures operators during working process; Quantitative estimation of
the Human factor problem; Aviation Safety (safety, regularity, economic
efficiency)
6. Management of enterprise
7. Select the best Smart Phone
8. Select of the sources of projects financing

55.

Individual research work (RW) for course IDM.
Application EJM for building “Expert system”
1.
Algorithm
PREPARING. To choose the topic of the system (process, technology, etc.) of research work (RW)
a.
b.
c.
d.
e.
f.
g.
h.
i.
j.
k.
l.
2.
Quantitative estimation of the complexity of the stages the aircraft flight;
Quantitative estimation of the complexity of the navigation parameters of flight;
Aircraft Approach system (GNSS, ILS, VOR,…);
Quantitative estimation of the procedures of operators during working process;
Quantitative estimation of the Human factor problem;
The significance of the procedures performed by the dispatcher – Air Traffic Controller (ATC)
Sources of projects funding projects.
Criteria for assessing the skills.
The importance of individual psychological factors influencing the Decision Making (DM)
The importance of social and psychological factors influencing the decision
Definition the difficult of procedures for aircraft control of ATC
Aviation Safety (safety, regularity, economic efficiency,
etc.
INTRODUCTION
a. Describing the system (link on literature need - [1; 2])
b. Building main components of ES: Users interface; Database; Base Knowledge (figure).
c. System analysis of the system as a complex system. Decomposition of complex systems on
subsystems:
i.
ii.
iii.
3.
4.
5.
6.
7.
8.
9.
Definition subsystems for expert estimation of their significance and description of the characteristics of
subsystems.
Definition of criteria estimation (3-5 criteria) and description of criteria features.
Definition of criteria estimation and description of criteria features.
Algorithm of EXPERT JUDGEMENT METHOD (EJM)
EJM for estimation of subsystems in system by criterion and obtaining weight coefficients of subsystem
significance by criterion.
a. Estimation of subsystems using EJM by criterion №1 and obtaining weight coefficients of
subsystem significance by criterion №1
b. The analogical calculation for the next criteria.
Aggregation subsystems in systems.
a. Additive aggregation of subsystems
b. Multiplicative aggregation of subsystems
Graphical presentation of the significance of subsystems in Expert System.
CONCLUSION
REFERENCES
Presentation and report

56.

Examples (results – weights coefficients of subsystems):

57.

Індивідуальна науково-дослідна робота (РГР) для курсу IDM. Застосування EJM для побудови
"Експертної системи"
Алгоритм
1. ПІДГОТОВКА. Вибрати тему роботи (система, процес, технологія тощо) науково-дослідної
роботи (РГР)
а. Кількісна оцінка складності етапів польоту літака;
б. Кількісна оцінка складності навігаційних параметрів польоту;
c. Система наближення літаків (GNSS, ILS, VOR,…);
г. Кількісна оцінка процедур операторів під час робочого процесу;
е. Кількісна оцінка проблеми людського фактора;
f. Значення процедур, які виконує диспетчер - диспетчер повітряного руху (УВД)
г. Джерела проектів, що фінансують проекти.
год. Критерії оцінювання вмінь.
i. Важливість окремих психологічних факторів, що впливають на прийняття рішень (DM)
j. Важливість соціальних та психологічних факторів, що впливають на рішення
к. Визначення складності процедур управління літаками АТС
л. Авіаційна безпека (безпека, регулярність, економічна ефективність,
тощо.
2. ВСТУП
а. Опис системи (посилання на літературу - [1; 2])
б. Побудова основних компонентів ES: інтерфейс користувача; База даних; Базові знання (рисунок).
c. Системний аналіз системи як складної системи. Декомпозиція складних систем на підсистемах:
i. Визначення підсистем для експертної оцінки їх значущості та опису характеристик підсистем.
ii. Визначення оцінки критеріїв (3-5 критеріїв) та опис особливостей критеріїв.
iii. Визначення оцінки критеріїв та опис особливостей критеріїв.
3. АЛГОРИТМ МЕТОДУ ЕКСПЕРТНОГО ОЦІНЮВАННЯ (МЕО)
4. Оцінка підсистем з використанням МЕО за критеріями та отримання вагових коефіцієнтів
значущості підсистеми за критеріями.
а. Оцінка підсистем за допомогою методу експертного судження (EJM) за критерієм №1 та
отримання вагових коефіцієнтів значущості підсистеми за критерієм №1
б. Аналогічний розрахунок для наступних критеріїв.
5. Агрегування системи.
а. Адитивна агрегування підсистем
б. Мультиплікативна агрегування підсистем
6. Графічне представлення значення підсистем у Експертній системі.
7. ВИСНОВОК
8. ЛІТЕРАТУРА
9. Презентація та звіт

58.

INDIVIDUAL WORK by Rodrigo Pillajo

59. Thank you for your attention

English     Русский Rules