Similar presentations:
Проекційне креслення
1.
Тема:«Проекційне креслення»
2.
Проекційне кресленняПроекційне креслення вивчає способи
побудови
на
площині
зображення
предметів, що мають три виміри.
За допомогою цих зображень можна
відтворити форму предмета, його величину і положення.
Перед тим, хто вивчає курс креслення,
стоїть принаймні дві основні задачі:
1.Навчитися
за
певними
законами
будувати креслення різних предметів.
2.Уміти читати креслення будь-якого
виробу або деталі.
Для побудови зображень предметів
користуються
методом
проектування, тобто відкинутим його
зображенням на площину.
3.
Проекційне креслення4.
Проекційне креслення вивчає способи побудовина площині зображення предметів, що мають
три виміри.
5.
Точка.Пряма. способи завдання
«ТОЧКА» - це геометричний об'єкт, який не має розмірів.
В геометрії під точкою доцільно розуміти фізичний об'єкт, що
має лінійні вимірювання.
Умовно за точку будемо приймати кульку
з нескінченно малим радіусом.
При такому трактуванні, поняття
точки, можна говорити про її проекції.
Пряма на комплексному
кресленні може бути задана:
проекціями прямої;
проекціями двох точок,
що належать прямій;
проекціями відрізка прямої
6.
Предмет і методнарисної геометрії
ОСНОВНИЙ МЕТОД НАСКРІЗНОЇ
ГЕОМЕТРІЇ
МЕТОД ПРОЕКЦІЙ
Проекція – це зображення предмета
(відкинуте) на площину за допомогою
проектуючих променів. Спроектувати предмет – це означає зобразити його на
площині.
Розрізняють два види проекцій: центральні і
паралельні.
Процес
одержання
проекцій
називається проеціюванням.
7.
МЕТОДИ ПРОЕЦІЮВАННЯ ТОЧКИЦЕНТРАЛЬНЕ ПРОЕЦІЮВАННЯ
– проеціюючі промені виходять з
однієї
точки
і
зображення
утворюється
із
спотвореними
розмірами.
ПАРАЛЕЛЬНЕ КОСОКУТНЕ
ПРОЕЦІЮВАННЯ
–
проеціюючі промені паралельні, але падають на
площину проекцій не під
прямим кутом.
8.
МЕТОДИ ПРОЕЦІЮВАННЯ ТОЧКИПАРАЛЕЛЬНЕ
ПРЯМОКУТНЕ
ПРОЕЦІЮВАННЯ проеціюючі промені
паралельні і перетинають
площину проекцій під
прямим кутом.
9.
МЕТОДИ ПРОЕЦІЮВАННЯ ТОЧКИУтворена на площині проекція дає уявлення про
форму плоского предмета. На кресленні проекцію
доповнюють розмірами
10.
ПРОЕЦІЮВАННЯ НА ДВІ ПЛОЩИНИ ПРОЕКЦІЙОдна проекція не завжди однозначно визначає форму
зображуваного предмета.
Це називають НЕВИЗНАЧЕНІСТЮ форми об'ємного предмета
за однією проекцією
Тому, щоб одержати уявлення про форму об'ємного предмета,
проеціювання виконують на дві або три площини проекцій:
ГОРИЗОНТАЛЬНУ - П1 , ВЕРТИКАЛЬНУ - П2 та
ПРОФІЛЬНУ- П3
11.
Площини проекцій у просторі розміщені під прямим кутом одна до одної.Лінію перетину цих площин (її позначають х) називають віссю проекцій.
Проекція
предмета
на
горизонтальну
площину
проекцій
називається ГОРИЗОНТАЛЬНОЮ ПРОЕКЦІЄЮ.
Проекція предмета на фронтальну (вертикальну) площину проекцій
називається ФРОНТАЛЬНОЮ ПРОЕКЦІЄЮ.
12.
Перпендикулярно цим площинам розташовується ще одна вертикальнаплощина, позначена буквою π3, звана ПРОФІЛЬНОЮ ПРОЕКЦІЄЮ.
13.
Скористаємось трьома взаємно перпендикулярними площинами, щоутворюють прямий тригранний кут П1 – горизонтальна, П2 – фронтальна і
П3 –профільна площини проекцій. Розмістимо в просторі тригранного кута
точку А і побудуємо її проекції на площини П1, П2, П3. Для цього з точки А
проведемо проектуючі промені АА1, АА2, АА3. На перетині цих
перпендикулярів дістанемо А1 – горизонтальна, А2 – фронтальна, А3 –
профільна проекції точки А.
14.
15.
Комплексне креслення точки.Від просторового зображення точки переходять до плоского
або комплексного креслення, яке утворюється в наслідок
обертання площин проекцій навколо осей, вважаючи
тригранний кут розщепленим по осі Оу і залишаючи
нерухомою площину П2, площину П1 повертають на 90°
вниз навколо осі Ох, а площину П3 на 90° навколо осі Оz
Таким чином утвориться плоске креслення разом з
побудованими на них проекціями А1, А2, А3- називається
комплексним кресленням. Для побудови профільної
проекції А3 використовують постійну лінію К, яка
проводиться під кутом 45°
16.
17.
Епюр Монжа в системі двох площин проекційПрямокутне проектування є основою методу Монжа, який вивчає реальні
об’єкти за допомогою їх відображень на площинах проекцій просторової
прямокутної системи координат.
Для графічного визначення або однозначного завдання точки в
прямокутній декартовій системі координат необхідно задати не менше двох
її проекцій. В загальному випадку точка задається трьома координатами
X,Y,Z таким способом: A(X,Y,Z).
18.
Епюр Монжа в системі трьох площин проекційПобудова третьої проекції точки.
Тут можливі два випадки:
1) побудова профільної проекції;
2) побудова проекції точки на будь-яку нову площину –
заміна площин проекцій.
19.
20.
1. Висота- це відстань
від осі Х вверх по осі Z.
2. Ширина - це відстань
від центра осей по осі Х.
3. Глибина - це відстань
від фронтальної
площини проекцій вниз
по осі У
21.
Прямокутні координати точкиКоординати
вимірюються по осях
X, Y і Z або по лініях,
паралельним осях.
За
трьома
координатами
точки
можна
побудувати
епюр
(креслення)
точки і визначити її
положення в просторі.
22.
По двум заданним проекціям точки можна дізнатисьусі три координати цієї точки
23.
Епюри точок розташованих в площинах проекцій24.
Епюри точок розташованих на осях площин проекцій25.
Епюр точки розташованої в першому октантіКоординати X, Y, Z позитивні
26.
Епюр точки розташованої в другому октантіКоординати X, Y, Z - негативні
27.
Епюр точки розташованої в третьому октантіКоординати X - ПОЗИТИВНА, Y, Z - НЕГАТИВНІ
28.
Епюр точки розташованої в четвертому октантіКоординати X, Y - ПОЗИТИВНІ, Z - НЕГАТИВНА
29.
Епюр точки розташованої у п’ятому октантіКоординати Z, Y - ПОЗИТИВНІ, X - НЕГАТИВНА
30.
Епюр точки розташованої у шостому октантіКоординати Z - ПОЗИТИВНА, X, Y - НЕГАТИВНА
31.
Епюр точки розташованої У CЬОМОМУ октантіКоординати X, Y, Z - НЕГАТИВНА
32.
Епюр точки розташованої У ВОСЬМОМУ октантіКоординати Y - ПОЗИТИВНА, X, Z - НЕГАТИВНІ
33.
Побудова профільної проекції точки за заданими горизонтальної та фронтальної34.
Побудова профільної проекції точки за заданими горизонтальної та фронтальної35.
Побудова профільної проекції точки за заданими горизонтальної та профільної36.
Побудова профільної проекції точки за заданими горизонтальної та профільної37.
Побудова горизонтальної проекції точки за заданими фронтальної і профільної38.
Положення прямої відносно площинпроекцій
Відносно площин проекцій пряма
може займати безліч положень. Ці
положення можна систематизувати
і розділити на прямі окремого і
загального положення.
Прямі окремого положення
поділяються на проектуючі прямі і
39.
Положення прямої відносно площинпроекцій
Проектуючою прямою називають пряму, яка
перпендикулярна до однієї площини проекцій і
паралельна до двох інших.
Основні властивості проектуючої прямої.
На одну із площин проекцій проектуюча пряма
проектується в точку, а на дві інших у вигляді
відрізків, які займають вертикальне або
горизонтальне положення і величина яких
дорівнює натуральній величині відрізка прямої.
40.
Положення прямої відносно площинпроекцій
На рис а пряма АВ перпендикулярна до
горизонтальної площини проекцій і називається
горизонтально проектуючою прямою, пряма СD
(рис. б) перпендикулярна до фронтальної площини
проекцій і називається фронтально проектуючою,
пряма MN (рис. в) перпендикулярна до
профільної площини проекцій і називається
профільно проектуючою прямою
41.
Положення прямої відносно площинпроекцій
42.
Положення прямої відносно площинпроекцій
Прямими рівня називають прямі, паралельні
одні із площин проекцій.
Пряма АВ (рис. а) паралельна до
горизонтальної площини проекцій і
називається горизонтальною прямою, пряма
CD (рис. 160 б) паралельна фронтальній
площині проекцій і називається фронтальною
прямою, пряма MN (рис. в) паралельна
профільній площині проекцій і називається
профільною прямою
43.
Положення прямої відносно площинпроекцій
44.
Положення прямої відносно площинпроекцій
Прямою загального положення називають
пряму, розташовану похило до всіх площин
проекцій
Жодна проекція цієї прямої не може бути
паралельною осям проекцій або
перпендикулярною до них і не зображується в
натуральну величину.
45.
СПОСОБИ ЗАВДАННЯ ПЛОЩИННА КРЕСЛЕНИКУ
Для графічного завдання площини
досить задати проекції трьох
ії точок, які не належать одній
прямій.
46.
ТРЬОМА ТОЧКАМИ47.
ВІДРІЗКОМ ПРЯМОЇ І ТОЧОЮ48.
ДВОМА ПРЯМИМИ, ЩОПЕРЕТИНАЮТЬСЯ
49.
ДВОМА ПАРАЛЕЛЬНИМИ ПРЯМИМИ50.
ПЛОЩИНИ ЗАГАЛЬНОГОПОЛОЖЕННЯ
51.
ПЛОЩИНИ РІВНЯГОРИЗОНТАЛЬНА ПЛОЩИНА
Σ||∏1 α=0˚ β=90 ˚
ФРОНТАЛЬНА ПЛОЩИНА
Σ||∏2 β=0˚ α=90˚
ПРОФІЛЬНА ПЛОЩИНА
Σ||∏3 α=90˚ β=90˚
52.
ФРОНТАЛЬНО-ПРОЕКЦЮЮЧА ПЛОЩИНАABC П2
53.
ГОРИЗОНТАЛЬНО-ПРОЕКЦЮЮЧА ПЛОЩИНА П1ПРОФИЛЬНО-ПРОЕКЦЮЮЧА ПЛОЩИНА П3
54.
Задача: Площина загального положення заданаплоскою фігурою – трикутником.
Знайти натуральну величину трикутника за
допомогою метода заміни площин проекцій.
Щоб знайти натуральну величину площини загального
положення, треба перетворити ії у площину рівня. Для цього
треба виконати дві заміни.
Увага ! На всі поставлені питання треба обов’язково дати
відповідь. Якщо відповідь дати складно, питання треба
запам’ятати чи записати і обов’язково запитати у викладача.
55.
Треба починати з аналізу положення трикутника в системіплощин проекцій.
1. Якщо задана площина паралельна до основної площини
проекцій, то вона проекцюється на цю площину проекцій без
спотворення, тобто в натуральну величину.
Трикутник розташований паралельно до площини проекцій П2.
У цьому випадку натуральна величина трикутника визначається
за його фронтальною проекцією на площину П2. Трикутник
належить площині, яка має назву – площина рівня.
56.
2.Якщо площина трикутника перпендикулярна доплощини проекцій, то вона проекцюється на цю площину
проекцій у вигляді прямої лінії – сліду проекції, а на іншу
площину проекції спотворено.
У цьому разі треба зробити одну заміну площин проекцій, щоб
знайти натуральну величину заданої плоскої фігури.
ЯК ? – паралельно до площини заданої плоскої фігури
розташувати нову площину проекцій П4 за умовою, що вона
буде перпендикулярна до тієї площини проекцій, що
залишається в системі площин проекцій (тобто, або площини
П1 чи площини П2).
57.
Натуральна величина трикутника на П4.Ця задана площина має назву – проекцююча площина
58. 1 заміна – спочатку перетворити площину загального положення на проекцюючу. Для цього треба провести в площині трикутника лінію
Щоб знайти натуральну величину площини загального положення, требаперетворити ії у площину рівня. Для цього треба виконати дві заміни.
1 заміна – спочатку перетворити площину загального положення на
проекцюючу.
Для цього треба провести в площині трикутника лінію рівня, наприклад
горизонталь і розташувати допоміжну площину проекцій перпендикулярно
до неї. Після виконаних побудов, площина загального положення
проекцюється у вигляді лінії – сліду проекції.
проекцюючу.
59. 2 заміна – перетворити площину проекцюючу у площину рівня. Для цього слід розташувати ще одну допоміжну площину проекцій
паралельно до сліду-проекції проекцюючої площини.60.
В2А2
h2
12
С2
Х П2
П1
В1
К1
А1
Показана побудова центра кола,
описаного навколо НВ трикутника. Центр
знаходиться на перетині
перпендикулярів, яки проведені з
середини двох сторін трикутника.
Проекція кола на П1 є еліпс - велика вісь
якого дорівнюється розміру діаметра
кола, а мала вісь знаходиться
проекцююванням точки К на П1.
O1
К4
α
11
h1
П4
X2
П5
B4
А4=14=h4
O4
С1
С4
К5
С5
П1
O5
П4
X1
В5
А5
61.
X26П6
П2
В6
β
R 22
f2
R О2
R
О1
21
Для знаходження розміру малої осі еліпсу на П2, треба
зробити наступне:
1. Провести в площині П2 фронталь.
2. Розташувати перпендикулярно до f2 Х26.
А6 =О6 3. Спроецюювати по черзі проекції точок А2, В2, С2 до нов
С6 R
Σплощини
6
П6.
4. З‘єднати проекції А6, В6, С6 прямою лінію – слідом
проекцій Σ6.
5.
f1
R