Тема: «Неравенства второй степени с одной переменной».
Какая функция называется квадратичной?
По схемам определите знаки коэффициента а.
Как решить квадратное уравнение?
Неравенства вида ах² + bx + c < 0 и ax² + bx + c > 0 , где х – переменная, a, b и c – некоторые числа, причем а ≠ 0, называют
Решение неравенства ах² + bx + c < 0 и ax² + bx + c > 0 можно рассматривать как нахождение промежутков, в которых функция у =
Вспомним, что необходимо сделать для нахождения промежутков, в которых функция у =ах²+bx+c принимает положительные или
61.34K
Category: mathematicsmathematics

Неравенства второй степени с одной переменной

1. Тема: «Неравенства второй степени с одной переменной».

2. Какая функция называется квадратичной?

Квадратичной функцией называется функция,
которую можно задать формулой вида:
у = ах² + bx + c,
где х – независимая переменная, a, b и c –
некоторые числа, причем а ≠ 0

3. По схемам определите знаки коэффициента а.

а<0
а>0
-3
0
Назовите
нули
функции
Назовите промежутки, при которых у > 0
5
x
(2;9)
( - ∞; -3) и ( 5 ; +∞ )
Назовите промежутки, при которых у < 0 ( - 3; 5)
( - ∞; 2) и ( 9 ; +∞ )

4. Как решить квадратное уравнение?

Надо найти дискриминант квадратного
уравнения
D = b² - 4ac
Если D ≥ 0 , то х₁,₂ =
b D
2a

5. Неравенства вида ах² + bx + c < 0 и ax² + bx + c > 0 , где х – переменная, a, b и c – некоторые числа, причем а ≠ 0, называют

Неравенства вида
ах² + bx + c < 0 и ax² + bx + c > 0 ,
где х – переменная, a, b и c – некоторые
числа, причем а ≠ 0, называют
неравенствами второй степени с одной
переменной.

6. Решение неравенства ах² + bx + c < 0 и ax² + bx + c > 0 можно рассматривать как нахождение промежутков, в которых функция у =

Решение неравенства
ах² + bx + c < 0 и ax² + bx + c > 0
можно рассматривать как
нахождение промежутков, в
которых функция у = ах² + bx + c
принимает положительные или
отрицательные значения.

7. Вспомним, что необходимо сделать для нахождения промежутков, в которых функция у =ах²+bx+c принимает положительные или

отрицательные значения?
Надо проанализировать, как расположен
график функции:
• Куда направлены ветви параболы
• Пересекает ли парабола ось х и в каких
точках
English     Русский Rules