Тема: Функция y = x2 и её график.
Свойства функции y = x2
4.12M
Category: mathematicsmathematics

Функция y = x2 и её график

1. Тема: Функция y = x2 и её график.

*
y=
2
x

2.

Назовите координаты точек, симметричных данным точкам
относительно оси y :
y
(- 2; 6)
( 2; 6)
(- 1; 4)
(1; 4)
(0; 0)
(0; 0)
(- 3; - 5)
(3; - 5)
х

3.

4.

На графике видно, что ось OY делит параболу на симметричные
левую и правую части (ветви параболы), в точке с координатами (0; 0)
(вершине параболы) значение функции x 2 — наименьшее.
Наибольшего значения функция не имеет. Вершина параболы — это
точка пересечения графика с осью симметрии OY .
На участке графика при x ∈ (– ∞; 0 ] функция убывает,
а при x ∈ [ 0; + ∞) возрастает.

5.

6.

График функции y = x 2 + 3 — такая же парабола, но её
вершина находится в точке с координатами (0; 3) .

7.

Найдите значение функции
y = 5x + 4, если:
х=-1
y = - 1 y = 19
х=-2
y=-6
y = 29
х=3
х=5

8.

Укажите
область определения функции:
y = 16 – 5x
10
y
х
х – любое
число
х≠0
1
y
х 7
4х 1
y
5
х≠7

9.

Постройте графики функций:
1).У=2Х+3
2).У=-2Х-1;
3).

10.

Математическое
исследование
Тема: Функция y = x2

11.

Постройте
график
функции
y = x2

12.

Алгоритм построения параболы..
1.Заполнить таблицу значений Х и У.
2.Отметить в координатной плоскости точки,
координаты которых указаны в таблице.
3.Соедините эти точки плавной линией.

13.

Невероятно,
но факт!
Перевал Парабола

14.

Знаете ли вы?
Траектория камня, брошенного под
углом к горизонту, будет лететь по
параболе.

15. Свойства функции y = x2

*
Свойства функции
y=
2
x

16.

*Область определения
функции D(f):
х – любое число.
*Область значений
функции E(f):
все значения у ≥ 0.

17.

*Если
х = 0, то у = 0.
График функции
проходит через
начало координат.

18.

II
I
*Если
х ≠ 0,
то у > 0.
Все точки графика
функции, кроме точки
(0; 0), расположены
выше оси х.

19.

*Противоположным
значениям х
соответствует одно
и то же значение у.
График функции
симметричен
относительно оси
ординат.

20.

Геометрические
свойства параболы
*Обладает симметрией
*Ось разрезает параболу на
две части: ветви
параболы
*Точка (0; 0) – вершина
параболы
*Парабола касается оси
абсцисс
Ось
симметрии

21.

Найдите у, если:
«Знание – орудие,
а не цель»
Л. Н. Толстой
х = 1,4
- 1,4
у = 1,96
х = 2,6
-2,6
у = 6,76
х = 3,1
- 3,1
у = 9,61
Найдите х, если:
у=6
у=4
х ≈ 2,5 х ≈ -2,5
х=2 х=-2

22.

постройте в одной
системе координат
графики двух функций
1. Случай :
у=х2
У=х+1
2. случай:
У=х2
у= -1

23.

Найдите
несколько значений
х, при которых
значения функции :
меньше 4
больше 4

24.

• Принадлежит ли графику функции у = х2 точка:
P(-18; 324)
R(-99; -9081)
принадлежит
не принадлежит
S(17; 279)
не принадлежит
• Не выполняя вычислений, определите, какие из
точек не принадлежат графику функции у = х2:
(-1; 1)
*
(-2; 4)
(0; 8)
(3; -9)
(1,8; 3,24)
При каких значениях а точка Р(а; 64) принадлежит графику функции у = х2.
а = 8; а = - 8
(16; 0)

25.

Алгоритм решения уравнения
графическим способом
1. Построить в одной системе
координат графики функций, стоящих
в левой и правой части уравнения.
2. Найти абсциссы точек пересечения
графиков. Это и будут корни
уравнения.
3. Если точек пересечения нет, значит,
уравнение не имеет корней

26.

Удачи вам!
English     Русский Rules