Similar presentations:
Integrating Rational Functions by Partial Fractions
1.
Week 12.
Integrating RationalFunctions by Partial
Fractions
Objective: To make a difficult/impossible
integration problem easier.
3. Partial Fractions
In algebra, you learn to combine two or morefractions into a single fraction by finding a common
denominator. For example
2
3
2( x 1) 3( x 4)
5 x 10
2
x 4 x 1
( x 4)( x 1)
x 3x 4
4. Partial Fractions
However, for the purposes of integration, the left sideof this equation is preferable to the right side since
each term is easy to integrate.
2
3
2( x 1) 3( x 4)
5 x 10
2
x 4 x 1
( x 4)( x 1)
x 3x 4
2
3
dx
x 4 x 1 dx 2 ln | x 4 | 3 ln | x 1 | C
5. Partial Fractions
We need a method to takeand make it
5 x 10
x 2 3x 4
2
3
.
x 4 x 1
This method is called Partial Fractions. This method
only works for proper rational fractions, meaning that
the degree of the numerator is less than the degree of
the denominator. This is how it works.
6. Partial Fractions
Factor the denominator completely.5 x 10
5 x 10
2
x 3x 4 ( x 4)( x 1)
7. Partial Fractions
Factor the denominator completely.5 x 10
5 x 10
2
x 3x 4 ( x 4)( x 1)
Assign a variable as the numerator to each term of
the denominator and set it equal to the original.
5 x 10
A
B
( x 4)( x 1) x 4 x 1
8. Partial Fractions
Multiply by the common denominator.5 x 10
A
B
( x 4)( x 1) x 4 x 1
5 x 10 A( x 1) B( x 4)
9. Partial Fractions
Multiply by the common denominator.5 x 10
A
B
( x 4)( x 1) x 4 x 1
51
A ) B ( x 4)
5 x 10 A( x10
2 A
Solve for A and B.
To solve for A, let x = 4, which gives us
To solve for B, let x = -1, which gives us 15 5B
3 B
2
3
dx
x 4 x 1 dx 2 ln | x 4 | 3 ln | x 1 | C
10. Example 1
Evaluatedx
x2 x 2
11. Example 1
Evaluatedx
x2 x 2
dx
dx
x 2 x 2 ( x 2)( x 1)
12. Example 1
Evaluatedx
x2 x 2
dx
dx
x 2 x 2 ( x 2)( x 1)
1
A
B
( x 2)( x 1) x 2 x 1
13. Example 1
Evaluatedx
x2 x 2
dx
dx
x 2 x 2 ( x 2)( x 1)
1 A( x 1) B( x 2)
1
A
B
( x 2)( x 1) x 2 x 1
14. Example 1
Evaluatedx
x2 x 2
dx
dx
x 2 x 2 ( x 2)( x 1)
1 A( x 1) B( x 2)
x 1
1 3B
1/ 3 B
x 2
1 3 A
1/ 3 A
1
A
B
( x 2)( x 1) x 2 x 1
15. Example 1
Evaluatedx
x2 x 2
1 1
1
1
1
1
ln | x 1 | ln | x 2 |
3 x 1 3 x 2 3
3
1 x 1
ln
C
3 x 2
16. Linear Factors
Linear Factor Rule.For each factor of the form (ax b) , the partial
m
fractions decomposition contains the following sum of
m partial fractions
Am
A1
A2
...
2
ax b (ax b)
(ax b) m
where A1, A2, …Am are constants to be determined. In
the case where m = 1, only the first term appears.
17. Example 2
Evaluate2x 4
x3 2 x 2 dx
18. Example 2
Evaluate2x 4
x3 2 x 2 dx
2x 4
x 2 ( x 2)
19. Example 2
Evaluate2x 4
x3 2 x 2 dx
2x 4
x 2 ( x 2)
2x 4
A B
C
2
x x( x 2) x x
x 2
20. Example 2
Evaluate2x 4
x3 2 x 2 dx
2x 4
x 2 ( x 2)
2x 4
A B
C
2
x x( x 2) x x
x 2
2 x 4 Ax( x 2) B( x 2) Cx 2
21. Example 2
Evaluate2x 4
x3 2 x 2 dx
2x 4
x 2 ( x 2)
2x 4
A B
C
2
x x( x 2) x x
x 2
2 x 4 Ax( x 2) B( x 2) Cx 2
x 0
4 2 B
2 B
x 2
8 4c
2 C
22. Example 2
Evaluate2x 4
x3 2 x 2 dx
x 2
x 0
2 x 4 Ax( x 2) B( x 2) Cx 2 4 2 B
8 4c
2 B
2 C
Since there is no way to isolate A, we need to solve
with a different method. Let x = 1, substitute our
values for B and C and solve for A.
23. Example 2
Evaluate2x 4
x3 2 x 2 dx
x 2
x 0
2 x 4 Ax( x 2) B( x 2) Cx 2 4 2 B
8 4c
2 B
2 C
Since there is no way to isolate A, we need to solve
with a different method. Let x = 1, substitute our
values for B and C and solve for A.
6 A( 1) ( 2)( 1) 2(1) 2
6 A 4
2 A
24. Example 2
Evaluate2x 4
x3 2 x 2 dx
dx
dx
dx
2 2 2 2
x
x
x 2
2
2 ln | x | 2 ln | x 2 | C
x
2
x 2
2 ln |
| C
x
x
x 0
4 2 B
2 B
x 2
8 4c
2 C
6 A 4
2 A
25. Example 2-WRONG
Evaluate2x 4
x3 2 x 2 dx
2x 4
x 2 ( x 2)
2x 4
A B
C
x x( x 2) x x x 2
2 x 4 Ax( x 2) Bx( x 2) Cx 2
26. Example 2-WRONG
Evaluate2x 4
x3 2 x 2 dx
2x 4
x 2 ( x 2)
2x 4
A B
C
x x( x 2) x x x 2
2 x 4 Ax( x 2) Bx( x 2) Cx 2
What next? This doesn’t work!
x 2
8 4c
2 C
27. Example 2-WRONG
Evaluate2x 4
x3 2 x 2 dx
2x 4
x 2 ( x 2)
2x 4
A B
C
x x( x 2) x x x 2
The denominator on the right is
The denominator on the left is
They are not the same!!
x( x 2)
x 2 ( x 2)
28. Quadratic Factors
Quadratic Factor Rule2
m
(
ax
bx
c
)
For each factor of the form
, the partial
fraction decomposition contains the following sum of
m partial fractions:
Am x Bm
A1 x B1
A2 x B2
...
2
2
2
ax bx c (ax bx c)
(ax 2 bx c) m
where A1, A2,…Am, B1, B2,…Bm are constants to be
determined. In the case where m = 1, only the first
term appears.
29. Example 3
Evaluatex2 x 2
3x3 x 2 3x 1dx
30. Example 3
Evaluatex2 x 2
3x3 x 2 3x 1dx
Factor by grouping
x 2 (3 x 1) 1(3 x 1) (3 x 1)( x 2 1)
x2 x 2
A
Bx C
2
2
(3 x 1)( x 1) 3 x 1 x 1
31. Example 3
Evaluatex2 x 2
3x3 x 2 3x 1dx
Factor by grouping
x 2 (3 x 1) 1(3 x 1) (3 x 1)( x 2 1)
x2 x 2
A
Bx C
2
2
(3 x 1)( x 1) 3 x 1 x 1
x 2 x 2 A( x 2 1) ( Bx C )(3 x 1)
32. Example 3
Evaluatex2 x 2
3x3 x 2 3x 1dx
Multiply the right side of the equation and group the
terms based on powers of x.
x 2 x 2 A( x 2 1) ( Bx C )(3 x 1)
x 2 x 2 Ax 2 A 3Bx 2 Bx 3Cx C
x 2 x 2 ( A 3B) x 2 (3C B) x ( A C )
33. Example 3
Evaluatex2 x 2
3x3 x 2 3x 1dx
Set the coefficients from the right side of the equation
equal to the ones on the left side.
x 2 x 2 ( A 3B) x 2 (3C B) x ( A C )
1 A 3B
1 3C B
2 A C
34. Example 3
Evaluatex2 x 2
3x3 x 2 3x 1dx
Take Eq 1 – Eq 3
1 A 3B
1 3C B
2 A C
1 A 3B
( 2 A C )
3 C 3B
35. Example 3
Evaluatex2 x 2
3x3 x 2 3x 1dx
Take Eq 1 – Eq 3
Take new Eq + 3Eq 2
1 A 3B
1 3C B
2 A C
1 A 3B
( 2 A C )
3 C 3B
3 C 3B
3 9C 3B
6 10C
3/ 5 C
36. Example 3
Evaluatex2 x 2
3x3 x 2 3x 1dx
Take Eq 1 – Eq 3
Take new Eq + 3Eq 2
1 A 3B
1 3C B
2 A C
1 A 3B
( 2 A C )
3 C 3B
3 9C 3B
3 C 3B
6 10C
3/ 5 C
7/5 A
4/5 B
37. Example 3
Evaluatex2 x 2
3x3 x 2 3x 1dx
x2 x 2
7/5
(4 / 5) x 3 / 5
dx
dx
dx
2
2
(3 x 1)( x 1)
3x 1
x 1
x2 x 2
7/5
(4 / 5) x
3/ 5
dx
dx
dx 2
dx
2
2
(3x 1)( x 1)
3x 1
x 1
x 1
38. Example 3
Evaluatex2 x 2
3x3 x 2 3x 1dx
x2 x 2
7/5
(4 / 5) x 3 / 5
dx
dx
dx
2
2
(3 x 1)( x 1)
3x 1
x 1
x2 x 2
7/5
(4 / 5) x
3/ 5
dx
dx
dx 2
dx
2
2
(3x 1)( x 1)
3x 1
x 1
x 1
7
2
3
2
ln | 3x 1 | ln( x 1) tan 1 x C
15
5
5
39. Example 4
Evaluate3x 4 4 x 3 16 x 2 20 x 9
dx
2
2
( x 2)( x 3)
40. Example 4
Evaluate3x 4 4 x 3 16 x 2 20 x 9
dx
2
2
( x 2)( x 3)
3 x 4 4 x 3 16 x 2 20 x 9
A
Bx C Dx E
2
2
2
2
( x 2)( x 3)
x 2 x 3 ( x 3) 2
41.
42.
43.
44.
45.
46.
47.
48.
49. Homework
From 17-50 :Only Odd numbers
mathematics