Similar presentations:
Шпренгельное усиление с демпфирующими амортизаторами из автопокрышек для повышение грузоподъемности пролетного строения
1.
Шпренгельное усиление с демпфирующими амортизаторами из автопокрышек дляповышение грузоподъемности пролетного строения металлических железнодорожных
мостов с ездой по низу на безбалластных плитах мостового полотна пролетами 33 -110
метров (Пролетное строение пролетами 33 -55 метра) ШИФП 2948358 ОАО "РЖД" 190005,
СПб, 2-я Красноармейская ул.д 4 СПб ГАСУ "Сейсмофонд" ОГРН: 1022000000824 ИНН
2014000780 (911) 175-84-65, (921) 962-67-78
2.
"СПОСОБ усиления основания пролетного строения мостовго сооружения с использованием подвижных треугольных балочных ферм длясейсмоопасных районв имени В.В.Путина" RU 2024106154 МПК
E 01 D 21 /06 https://t.me/resistance_test Фонд поддержки и развития
сейсмостойкого строительства «Защита и безопасность городов» «Сейсмофонд» при СПб ГАСУ ИНН : 2014000780 ОГРН : 1022000000824
[email protected] Счет получателя СБЕР № 40817 810 5 5503 1236845 СБЕР 2202 2056 3053 9333 тел привязан (911) 175-84-65 (812) 694-78-10
3.
4.
5.
Авторы изобртения скрипучего моста, повышенной грузоподьемностью засчеьт шпренгельного усиленияс, с повышением грузоподъемности в двар раза,
пролетного железнодорожного строение существующего мостовых сооружений, с
использованием демпфирующих амортизаторо. Расчеты и проект выполнен,
учеными Сейсмофонд СПбГАСУ (ИНН 2014000780 ОГРН 1022000000824 ) для
6.
реконструкции старых мостов с использованием шпренгельного усиления,пролетного железнодорожного реконструируемого существующего мостового
строения, с повышением в два раза грузоподьемности моста, без остновки
дижения поездов и автотранспорта, благодаря большим перемещениеи, за счет
использования фланцевызх фрикциооно-подвижных соединений проф дтн
А.М.Уздина,Богданова И.А , Коваленко А.И. Егорова О А,
Е.И.Коваленко:выполненную по изобретению" «Антисейсмическое фланцевое
фрикционно -подвижное соединение с овальными отверстиями, для мостовых
сооружений ( RU № 2018105803/20 (008844) 15.02.2018 ) для сейсмоопасных
районов" : ДНР, ЛНР, Херсона, Мариуполя, Бахмута, Донецской, Луганской,
Херсонской обл Приобрести альбом " ШИФР 2948358 для обектов
инфпростуктуры железнодорожного транспортс для проельных строений
металлических железнодорожных мостов с ездой по низу на безбалстнызъ\х
плитах мостовго полотна пролетами 33-110 для пролетного строения
пролеитом 33-55метров шпренгельным способо м ипользванием АМ-1, АМ-2
выполенных изобретателями: Коваленко А. И, Егоровой О.А,Уздиным, А. М,
Богдановой И.А, тел/факс (812)694-78-10, (921) 962-67-78, (911) 175-84-65
[email protected] МИР социальная СБЕР 2202 2056 3053 9333 тел привязан (911) -17584-65 https;//t.me/resistance_test Карта СБЕР: 2202 2006 4085 5233 Aleksandr kovalenko
Счет получателя 40817 810 5 5503 1236845 Вся стоимость альбома и проектной
7.
документации 10 тыс руб [email protected] [email protected][email protected] [email protected] (981) 276-49-92 ( 981) 886-5742
https://t.me/resistance_test СПб ГАСУ (921) 44223-36
8.
(812) 694-7810 [email protected] [email protected]https://t.me/resistance_test (921) 944-67-10, (911) 175-8465
[email protected]
Шпренгельное усиление пролетного строения металлических железнодорожных
мостов с ездой по низу на безбалластных плитах мостового полотна пролетами 33 -110
метров (Пролетное строение пролетами 33 -55 метра) ШИФП 2948358 ОАО "РЖД"
190005, СПб, 2-я Красноармейская ул.д 4 СПбГАСУ "Сейсмофонд" ОГРН:
1022000000824 ИНН 2014000780
Повышение грузоподъемности мостового сооружения и учебное пособие
для студентов
строительных вузов пособие по усиление и реконструкция пролетного строения
мостового сооружения с использованием комбинированных пространственных
структур для сейсмоопасных районов
Тезисы доклада организации "Сейсмофонд" СПб ГАСУ: "Способ шпренгельного
усиления пролетного строения мостового сооружения с использованием трехгранных
балочных ферм, для сейсмоопасных районов" Для дистанционного доклада на VII
[email protected] (921)944-67-10, (911) 175-84-65, т/ф (812) 694-78-10
https://t.me/resistance_test СПб ГАСУ
9.
СПОСОБ ШПРЕНГЕЛЬНОГО УСИЛЕНИЯ ПРОЛЕТНОГО СТРОЕНИЯ мостовогосооружения с использованием треугольных балочных ферм для сейсмоопасных
А.М. Уздин , О.А. Егорова, И.А.Богданова, А.И.Коваленко, В.К.Елисеева,
Я.К.Елисеева, Е.И.Коваленко, Политехнический Университет , ПГУПС, СПб
ГАСУ, организация «Сейсмофонд»
Аннотация: В статье способ шпренгельного усиления пролетного строения
мостового сооружения с использованием трехгранных балочных ферм для
сейсмоопасных районов, рассматривается проблема реконструкции мостовых
сооружений, а именно восстановление грузоподъемности, снизившейся в
процессе многолетней эксплуатации. Отмечена актуальность исследования, его
цели и задачи. Предложена классификация конструкций усиления по различным
признакам. Разобраны часто используемые на практике ввиду усилений мостов
их достоинства и недостатки. Изложенный материал иллюстрирован
фотографиями объектов. Представлен современный способ усиления на основе
использования углеродного композита. Отмечены значительные недостатки
этого способа для усиления мостов и его модификация, использующая натяжное
устройство для закрепления и натяжения углеродных ламелей.
Представлены основные выводы.
10.
Ключевые слова: мост, усиление, реконструкция, шпренгель, углеродныйкомпозит, ламель, грузоподъѐмность, несущая способность, натяжение.
Введение
Развитие автомобильного транспорта в Российской Федерации остается
приоритетной задачей и сейчас и в будущем. Железнодорожный транспорт
может конкурировать с автомобильным только при перевозках на очень большие
расстояния. В других случаях выигрыш остается за автотранспортом и по
времени, и в стоимости. Для успешного функционирования автомобильного
транспорта необходимо поддерживать в хорошем состоянии существующие
дороги и развивать современную сеть автомобильных дорог. Есть устойчивое
экспертное мнение, и с ним согласны экономисты, что нет ни одного случая
успешного экономического развития региона без опережающего развития
национальной сети автомобильных дорог высшей технической категории.
Это мнение основано на детальных экономических исследованиях, проводимых
по итогам реализации проекта Highway Interstate System в США. Еще более
мощные позитивные эффекты обеспечит реализация аналогичного китайского
проекта National Trunk Road System of China. Этот проект позволил создать
11.
суммарную протяженность сети межрегиональных дорог высших техническихкатегорий к концу 2015 года 120 тыс. км [1].
Строительство автодорог высшей технической категории требует огромных
капиталовложений, поэтому экономное расходование средств на обслуживание
существующей инфраструктуры дорог является актуальной проблемой.
Мостовые сооружения на дорогах, построенные десятки лет назад, не исчерпали
свой ресурс, но перестали удовлетворять предъявляемым к ним требованиям
частично из-за физического износа, частично из-за изменившихся требований.
Вернуть мостовым сооружениям их функциональные качества при
незначительных финансовых затратах - задача эксплуатирующих организаций, и,
в целом, дорожного комплекса.
Цели и задачи исследования способа шпренгельного усиления пролетного
строения мостового сооружения с использованием трехгранных балочных
ферм для сейсмоопасных районов
Мосты и в прежние времена ремонтировали и реконструировали.
Сложнейшей задачей реконструкции является восстановление или увеличение
его грузоподъемности. В современных условиях выбрать подходящий способ
увеличения грузоподъемности - сложная задача проектирования. Требуется
12.
провести обзор имеющихся способов увеличения грузоподъемности мостов,выявить их достоинства и недостатки. Здесь следует учитывать не только
особенности усиливаемого сооружения, многообразие известных способов
усиления, но и квалификацию и имеющееся оборудование подрядной
организации, выполняющей комплекс необходимых работ.
Работы по усилению пролетных строений мостов выполняются наряду с
ремонтными работами, исправляя накопившиеся дефекты. Для выявления и
фиксации дефектов проводится обследование мостового сооружения и его
диагностика [2,3].
В задачи обследования входят также изучение условий работы мостового
сооружения, выявление причин, вызывающих появления неисправностей и их
влияние на долговечность, безопасность и грузоподъемность. Целью все этих
мероприятий является восстановление эксплуатационных качеств мостовых
сооружений в сложившихся условиях [4].
Материалы и методы исследования Конструкции усиливающие пролетные
строения мостов можно рассматривать в соответствии с предлагаемой
классификацией, представленной в таблице 1.
13.
Эта классификация позволяет провести анализ конструкций усиления с разныхточек зрения.
таблица 1 Классификация конструкций усиления мостов
1 По материалу металлическое неметаллическое
2 По толщине конструкции до 2 см
до 10 см до 20 см более 20 см
3 По способу работы усиления
не напрягаемые напрягаемые
4 По расчетной схеме конструкции усиления
с изменением расчетной схемы без изменения расчетной схемы
5 По способности воспринимать постоянные нагрузки сооружения
только временные нагрузки постоянные и временные нагрузки
Усиление пролетных строений с увеличением площади поперечного сечения
несущих конструкций. Эти способы увеличивают несущую способность
конструкций, незначительно снижают подмостовой габарит. Вместе с тем
ликвидируют все дефекты сечения, такие, как сколы, трещины, отслоение и
14.
разрушение защитного слоя бетона. Нет необходимости и выполнятьремонтные работы.
К недостаткам относятся увеличение собственного веса, «мокрые» процессы,
необходимость опалубки, сложности укладки бетонной смеси и ее
вибрирование. А также сама конструкция усиления не воспринимает усилия от
постоянного веса сооружения, что в железобетонных мостах является большей
частью полной нагрузки.
Этот способ применен для усиления крайних (наиболее напряженных) арок
Астраханского моста в Волгограде (Рис.1) при его реконструкции.
Применить другие способы усиления здесь не представлялось возможным из-за
кривизны профиля.
Рис. 1. Усиление крайних арок моста в Волгограде
Усиление балочных пролетных строений шпренгелями способно, в
зависимости от конструктивной схемы, воспринимать не только изгибающие
моменты, но и поперечные силы в приопорных зонах.
15.
Здесь нет «мокрых» процессов, поэтому работы можно проводить в любое времягода. Конструкция усиления представлена на рисунке 2: многоэлементная,
Рис. 2. Шпренгельное усиление мостовой балки [5]. крепится к балке (1)
анкерами (3) и состоит из стального стержня или троса (4), соединяемого муфтой
(2).
Стержню придают заданную форму стойки (5) и раскосы (6). Муфта имеет
резьбу и при закручивании создает усилие в стержне - выбирает люфты. Усилие
в тросе определяется расчетом статически неопределимой системы методом сил.
16.
Такую конструкцию необходимо защищать от коррозии. К недостаткамотносится значительная высота усиления, что уменьшает подмостовой габарит.
Не следует использовать на путепроводах. Существует несколько модификаций
шпренгельных затяжек: треугольные, линейные, укороченные.
Все они расчитываются, устраиваются и работают одинаково. Возможно
устройство прямых шпренгелей, которые не уменьшают подмостовой габарит.
Однако такое усиление воспринимает меньший изгибающий момент за счѐт
малого плеча используемых усилений является усиление наклеиванием швеллера
на
17.
Рис. 3. Усиление балок путепровода в Волгограде. ребро мостовой балки (Рис. 3).Этот вид усиления наиболее прост в исполнении, не уменьшает габарит.
18.
Может применяться только на балках из обычного железобетона и восприниматьнебольшие изгибающие моменты из-за малого плеча внутренней пары и
использования швеллера из обычной стали.
Одним из лучших усилений следует считать усиление напрягаемыми пучками
высокопрочной проволоки, представленной на рисунке
4. Это усиление воспринимает как временную нагрузку, так и постоянную. При
соответствующем креплении и усилии натяжения оно способно значительно
повысить несущую способность пролетного строения. Так можно усиливать
любые балки мостов. Однако натяжение - сложный процесс, требует грамотного
инженерного решения и исполнения.
Сложности связаны с креплением троса и установкой домкратов, а также с
равномерностью передачи усилия натяжения. Поэтому этот способ не всегда
применяется или часто реализуется не в полном объеме с недогрузкой пролетных
строений [6].
19.
Рис. 4. Усиление напрягаемым пучком [7].В последнее десятилетие активно развиваются способы усиления
строительных конструкций, основанные на использовании композиционных
материалов [8, 9]. Композиционные материалы в виде лент из углеродных
волокон применяются при реконструкции мостовых сооружений, чему
посвящено целый ряд исследований [10-13].
20.
Преимуществами способ шпренгельного усиления пролетного строениямостового сооружения с использованием трехгранных балочных ферм для
сейсмоопасных районов, по сравнению с традиционными материалами и
методами усиления являются малый собственный вес элементов усиления, малые
габаритные размеры, высокая коррозионная стойкость, простота исполнения,
проведение работ по усилению без перерыва движения по мостам.
Мостостроительные организации, для того, чтобы легализовать применение
углеродных лент и ламелей, провели испытания усиленных конструкций и
создали свои ведомственные нормативные документы (Стандарт организации.
СТО - 01 - 2011).
Однако до сих пор нет государственного стандарта на прочностные качества
углеволокна, есть только рекомендации производителя, а это не одно и то же.
Усиление углеволоконными лентами не может воспринимать постоянные
нагрузки от сооружения и обычные временные, так как работы ведутся без
остановки движения по мосту. Таким образом усиление не разгружает
перенапряженные несущие конструкции, а только предохраняет от возможно
большего нагружения. Перед применением такого усиления необходимо
выполнить ремонт пролетных строений, так как ленты наклеиваются на ровную
поверхность. Ленты закрепляются приклеиванием к усиливаемой конструкции, и
21.
если в процессе эксплуатации произойдет отклеивание, то возможно разрушениепролетного строения.
Можно устранить ряд недостатков традиционного использования
углеволоконных ламелей и нового способ шпренгельного усиления пролетного
строения мостового сооружения с использованием трехгранных балочных
ферм для сейсмоопасных районов если использовать устройство их натяжения,
предложенного в исследовании [14].
Способ шпренгельного усиления пролетного строения мостового сооружения с
использованием трехгранных балочных ферм для сейсмоопасных районов с
использованием, натяжение ламели устранит угрозу отклеивания, позволит
воспринять частично усилия от временной и постоянной нагрузки и повысит
надежность конструкции усиления, и в целом мостового сооружения.
Выводы
1. Многообразие способов увеличения грузоподъемности мостов с
использованием способа А.М.Уздина (ПГУПС) шпренгельного усиления
пролетного строения мостового сооружения с использованием трехгранных
22.
балочных ферм для сейсмоопасных районов позволяет избрать наиболееэффективный , это способ шпренгельного усиления пролетного строения
мостового сооружения с использованием трехгранных балочных ферм для
сейсмоопасных районов.
2. При выборе способа усиления следует рассматривать все подходящие
способы с учетом особенностей сооружения условий эксплуатации и
квалификацию исполнителя.
3. Неверный выбор способа усиления и напряжения в тросах не способствует
разгружению несущих конструкций пролетного строения, которые продолжают
испытывать завышенные напряжения и, накапливая дефекты, постепенно
разрушаются.
4. При устройстве усиления выбранным способом, всегда следует
предусматривать мероприятия по разгрузке пролетного строения, с тем, чтобы
конструкция усиления в своей работе могла воспринимать как временную
нагрузку, так и часть постоянной.
Литература
1. Блинкин М. Вечные ценности: почему нужно строить дороги за пределами
городов. URL: rbc.ru/opinions/economics/17/03/2016/
56ea97339a79477c5c6cfaa3?from=materials_on_subject
23.
2. Макаров А.В., Крошнева Е.В., Файзалиев А.Ф., Павлова М.А., ЛепехинаД.М. Обследование мостовых сооружений с помощью современного
оборудования. Инженерный вестник Дона. 2021. № 7. URL:
ivdon.ru/ru/magazine/archive/n7y2021/7095.
3. Makarov AV., Kalinovsky S.A., Ereschenko N.V., Pavlova M.A. Some aspects
of the bridges' functional qualities restoration. IOP Conference Series: Materials
Science and Engineering. Vol. 1083: International Scientific Conference «Construction
and Architecture: Theory and Practice of Innovative Development» (CATPID 2020, p.
II). IOP Publishing, 2021. 7 p. (012069). URL:
iopscience.iop.org/article/10.1088/1757-899X/1083/1/012069/pdf. Doi:10.1088/1757-899X/1083/1/012069.
4. Макаров А.В., Гулуев Г.Г., Шатлаев С.В. Реконструкция путепровода как
требование безопасности. Инженерный вестник Дона. 2017. № 2. URL:
ivdon.ru/ru/magazine/archive/N2y2017/4161.
5. StudFiles. Файловый архив студентов. URL:
studfile.net/preview/4306357/page:48/
6. Белый А.А., Зайцев В.М., Карапетов Э.С. Опыт эксплуатации усиленных
железобетонных мостовых сооружений Санкт-Петербурга. Интернет-журнал
«Науковедение», Том 9, №3. URL: naukovedenie.ru/PDF/08TVN317.pdf.
7. Усиления мостов - фото. URL: stranabolgariya.ru/foto/usileniya- mostov.html.
24.
8. Маяцкая И. А. Федченко А. Е. Беляева Д. А. Применение новых материаловпри усилении строительных конструкций подземных сооружений и мостовых
переходов. Молодой исследователь Дона. 2018. №5. URL: midjournal.ru/publications/5-2018
9. Васильев В.В. Композиционные материалы. Справочник. М.
Машиностроение. 1990. 512 с.
10. Кугаевский Н.М., Овчинников И.И. Оценка эффективности усиления
железобетонных балок пролетных строений автодорожных мостовых
сооружений полимерными композиционными материалами. Вестник
Евразийской науки, 2021. Т 13. №2. URL: esj .today/PDF/09SAVN221 .pdf
11. Хрюкин А.А., Смолина М.В. Оценка напряженно- деформированного
состояния пролетных строений моста, усиленного композитными материалами.
Наука и образование. 2016. №4. URL: cyberleninka.ru/article/n/otsenkanapryazhenno-deformirovannogo-sostoyaniya- proletnyh-stroeniy-mosta-usilennogokompozitnymi-materialami/viewer
12. Бокарев С.А., Смердов Д.Н. Экспериментальные исследования изгибаемых
железобетонных элементов, усиленных КМ. Известия Вузов. Строительство.
2010, №2. С. 112-124.
13. Овчинников И.И., Овчинников И.Г., Чесноков Г.В., Михалдыкин Е.С.
Анализ экспериментальных исследований по усилению железобетонных
конструкций полимерными композитными материалами. Часть 1 Отечественные
25.
эксперименты при статическом нагружении. Интернет- журнал «Науковедение»Том 8, 2016. №3. URL: naukovedenie.ru/PDF/24TVN316.pdf
14. Makarov A.V., Rekunov S.S. Strengthening bridge spans by composite
materials. IOP Conference Series: Materials Science and Engineering. Vol. 687:
International Conference on Construction, Architecture and Technosphere Safety
(ICCATS-2019) Issue 3: Construction, buildings and structures. [Published by IOP
Publishing], 2019. 7 p. URL: iopscience.iop.org/article/10.1088/1757899X/687/3/033038/pdf. Doi:10.1088/1757-899X/687/3/033038.
References
14. Способ Уздина А. М. шпренгельного усиления пролетного строения
мостового сооружения с использованием трехгранных балочных ферм для
сейсмоопасных районов
1. Blinkin M. Vechny'e cennosti: pochemu nuzhno stroit dorogi za predelami
gorodov. [Eternal values: why it is necessary to build roads outside cities] URL:
rbc.ru/opinions/economics/17/03/2016/56ea97339a
79477c5c6cfaa3?from=materials on subject
2. Makarov A.V., Kroshneva E.V., Fajzaliev A.F., Pavlova M.A., Lepexina D.M.
Inzhenernyj vestnik Dona. 2021. № 7. URL:
ivdon.ru/ru/magazine/archive/n7y2021/7095.
26.
3. MakarovA.V., Kalinovsky S.A., Ereschenko T.V., Pavlova M.A. Some aspects ofthe bridges' functional qualities restoration. IOP Conference Series: Materials Science
and Engineering. Vol. 1083: International Scientific Conference «Construction and
Architecture: Theory and Practice of Innovative Development» (CATPID 2020, p. II).
IOP Publishing, 2021. 7 p. (012069). URL:
iopscience.iop.org/article/10.1088/1757899X/1083/1/012069/pdf.Doi:10.1088/175 7899X/1083/1/012069.
4. Makarov A.V., Guluev G.G., Shatlaev S.V. Inzhenernyj vestnik Dona. 2017. №
2. URL: ivdon.ru/ru/magazine/archive/N2y2017/4161.
5. StudFiles. Fajlovy'j arxiv studentov. [Student File Archive]. URL:
studfile.net/preview/43063 57/page:48/
6. Bely'j A.A., Zajcev V.M., Karapetov E'.S. Internet-zhurnal «Naukovedenie».
Tom 9. №3. URL: naukovedenie.ru/PDF/08TVN317.pdf.
7. Usileniya mostov - foto. [Bridge Reinforcements - Photo]. URL:
stranabolgariya.ru/foto/usileniya-mo stov.html.
8. Mayaczkaya I. A. Fedchenko A. E. Belyaeva D. A. Molodoj issledovateF Dona.
2018. №5. URL: mid-journal.ru/publications/5-2018/
9. Vasil'ev V.V. Kompozicionny'e materialy' spravochnik. [Composite materials
reference book] M. Mashinostroenie. 1990. 512 p.
10. Kugaevskij N.M., Ovchinnikov I.I. Vestnik Evrazijskoj nauki, 2021. T 13. №2.
URL: esj.today/PDF/09SAVN221.pdf
27.
11. Hryukin A.A., Smolina M.V. Nauka i obrazovanie. 2016. №4. URL:cyberleninka.ru/article/n/otsenka-napryazhenno-deformirovannogo-sostoyaniyaproletnyh-stroeniy-mosta-usilennogo-kompozitnymi-materialami/viewer
12. Bokarev S.A., Smerdov D.N. Izvestiya Vuzov. Stroitel'stvo. 2010, №2, pp. 112124.
13. Ovchinnikov I.I., Ovchinnikov I.G., CHesnokov G.V., Mihaldykin E.S.
Internet-zhurnal «Naukovedenie» Tom 8, 2016. №3. URL:
naukovedenie.ru/PDF/24TVN316.pdf
14. Makarov A.V., Rekunov S.S. Strengthening bridge spans by composite
materials. IOP Conference Series: Materials Science and Engineering. Vol. 687:
International Conference on Construction, Architecture and Technosphere Safety
(ICCATS-2019) Issue 3: Construction, buildings and structures. [Published by IOP
Publishing], 2019. 7 p. URL: iopscience.iop.org/article/10.1088/1757899X/687/3/033038/pdf. Doi:10.1088/1757-899X/687/3/033038.
Инженерный вестник Дона, №10 (2023)
ivdon.ru/ru/magazine/archive/n10y2023/8767
© Электронный научный журнал «Инженерный вестник Дона», 2007-2023
Инженерный вестник Дона, №10 (2023)
ivdon.ru/ru/magazine/archive/n10y2023/8767
28.
© Электронный научный журнал «Инженерный вестник Дона», 2007-2023© Электронный научный журнал «Инженерный вестник Дона», 2007-2023
29.
30.
Современные технологии и проектированиестроительства и эксплуатации пролетных строений
мостовых шпренгельных усилений с использованием
треугольных балочных ферм для гидротехнических
сооружений ( с использованием изобретения "Решетчато
пространственный узел покрытия (перекрытия ) из
перекрестных ферм типа "Новокисловодск" № 153753,
"Комбинированное пространственное структурное покрытие"
№ 80471, и с использованием типовой документации серия
1.460.3-14 , с пролетами 18, 24, 30 метров, типа Молодечно" ,
чертежи КМ ГПИ "Ленпроектстальконструкция" и
изобретений проф дтн ПГУПС Уздина А М №№ 1143895,
1168755, 1174616, заместителя организации "Сейсмофонд"
СПб ГАСУ ( ОГРН 1022000000824 , ИНН 2014000780 ) инж
Коваленко А.И №№ 167076, 1760020, 2010136746
The Uzdin A M METHOD OF SPRENGTHENING THE
SUPERSTRUCTURE of a bridge structure using triangular
girder trusses for earthquake-prone areas IPC E 01 D 22
СПОСОБ имени Уздина А М ШПРЕНГЕЛЬНОГО
УСИЛЕНИЯ ПРОЛЕТНОГО СТРОЕНИЯ мостового
сооружения с использованием треугольных балочных ферм
для сейсмоопасных районов МПК
E 01 D 22 /00
ОПОРА СЕЙСМОСТОЙКАЯ
RU165
/00
31.
076(51) МПКE04H 9/02 (2006.01) Коваленко
Александр Иванович (RU)
Комбинированное пространственное структурное
покрытие № 80471
Помощь для внедрения изобретения "Способ им Уздина А. М.
шпренгельного усиления пролетного строения мостового сооружения с
использованием трехгранных балочных ферм" , аналог "Новокисловодск"
Марутян Александр Суренович МПК Е01ВD 22/00 для ветеранf боевых
действий , инвалида второй группы по общим заболеваниям , изобретателю
по СБЕР карта МИР 2202 2056 3053 9333 тел привязан 911 175 84 65
Aleksandr Kovalenko (996) 785-62-76 [email protected]
https//t.me/resistance_test
(54) СПОСОБ ЗАЩИТЫ ЗДАНИЯ И СООРУЖЕНИЯ ПРИ ВЗРЫВЕ С
ИСПОЛЬЗОВАНИЕМ СДВИГОУСТОЙЧИВЫХ И
ЛЕГКОСБРАСЫВАЕМЫХ СОЕДИНЕНИЙ, ИСПОЛЬЗУЮЩИЕ
СИСТЕМУ ДЕМПФИРОВАНИЯ ФРИКЦИОННОСТИ И
СЕЙСМОИЗОЛЯЦИЮ ДЛЯ ПОГЛОЩЕНИЯ ВЗРЫВНОЙ И
СЕЙСМИЧЕСКОЙ ЭНЕРГИИ
136 746
RU 2010
(51) МПК E04C 2/00 (2006.01)
Коваленко Александр Иванович (RU)
https://t.me/resistance_test т/ф (812) 694-78-10, (921) 944-6710, (911) 175-84-65, (996) 785-62-76
[email protected] [email protected]
[email protected] СБЕР карта 2202 2006 4085 5233
Elena Kovalenko
[email protected]
[email protected] [email protected]
32.
[email protected] СБЕР карта МИР 2202 2006 40855233 Elena Kovalenko МИР карта 2202 2056 3053 9333
(921) 175 84 65 т/ф (812) 694-78-10
[email protected]
[email protected] [email protected]
Reinforcement structure of truss bridge or arch bridge
тел привязан
https://patents.google.com/patent/EP1396582A2/es
https://patentimages.storage.googleapis.com/a3/0b/99/68bd
a2d0c463eb/EP1396582A2.pdf
10
Методичка учебное пособие для студентов строительных вузов пособие по
усиление и реконструкция пролетного строения мостового сооружения с
использованием комбинированных пространственных структур для сейсмоопасных
районов
Благодаря взаимодействию между вспомогательными треугольными
конструктивными рамами, каждая из которых выполнена на противоположных
концах ферменной балки или арочной балки, и тросом, натянутым между
вспомогательными треугольными конструктивными рамами, к ферменной балке
или арочной балке прикладывается направленное вверх усилие, тем самым
эффективно создавая усилие сопротивления нагрузке.
Усилительная конструкция ферменного моста или арочного перемычки состоит
из ферменной балки или арочного прогона, первый и второй концы которых
33.
снабжены основным треугольным конструктивным каркасом. Основнойтреугольный конструктивный каркас снабжен с внутренней стороны
вспомогательным треугольным конструктивным каркасом
Трос проходит в продольном направлении ферменного моста, будучи натянутым
между близлежащей частью соединяемой детали на одной из вершин
вспомогательной треугольной конструктивной рамы со стороны первого конца
ферменной балки
или арочной балки и близлежащую часть соединяемой детали на
соответствующей одной из вершин вспомогательной треугольной
конструктивной рамы со стороны второго конца стропильной балки или арочной
балки.
Отклоняющая конструкция, приспособленная для приложения направленного
вниз усилия к тросу, вставляется между тросом и нижним поясом ферменной
балки или арочной балки для натяжения троса, и направленное вверх усилие
прикладывается к нижнему поясу за счет силы реакции, относящейся к
натяжению троса через отклоняющая конструкция.
34.
Учебно-методическим объединением по образованию в области железнодорожноготранспорта и транспортного строительства в качестве учебного пособия для студентов
строительных вузов для разработки курсовых работ и гуманитарной и интеллектуальной
помощи инженерным и железнодорожным войскам истекающей кровью из –за
отсутствия научной методики по скоростному повышению грузоподъемности
пролетных строений мостовых сооружений, хотя бы повысить грузоподъемность до
60- 90 тонн, за 24 часа как в КНР и СЩА, для грузовых автомашин и военной
техники Все для Фронта Все для Победы
Уздин А М, Егорова О А , Коваленко А.И Усиление и реконструкция мостов на
автомобильных дорогах с использованием шпренгельного усиления пролетного
строения мостового сооружения с использованием трехгранных структур и балочных
ферм для сейсмоопасных районо [Текст]: учеб. пособие / А.М. Уздин; О.А.Егорова
под общ. ред. аспирант СПбЗНИИЭП . А.И. Коваленко; СПб ГАСУ . гос. арх.- строит.
ун-т. - СПб, 2024. - 8 с.
Рассмотрены вопросы содержания мостов на автомобильных дорогах, их
обследования, испытаний и методы определения грузоподъемности. Подробно, на
многих примерах, разобраны способы усиления и реконструкции железобетонных и
металлических мостов. Приведены методы определения расчета экономической
35.
целесообразности реконструкции мостов с учетом их технического состояния иопределения стоимости работ.
36.
37.
38.
Разгрузка конструкций и усиление и реконструкция пролетного строения мостовогосооружения с использованием комбинированных пространственных структур для
сейсмоопасных районов , зависит
от собственного веса может быть осуществлена различными способами в зависимости от
местных условий, особенностей конструкции и способа усиления. Решение выбирают на
основании технико- экономического обоснования вариантов усиления.
39.
40.
Когда высота моста небольшая и воды в реке немного, при усилении балочныхразрезных пролетных строений их разгрузка может быть произведена путем
поддомкрачивания. Для этого под пролетным строением устанавливают временные
опоры или шпальные клетки и пролетные строения поддомкрачиваются. После усиления
и снятия разгружающих устройств элементы усиления (добавочная арматура,
шпренгели) будут работать не только на усилия от временной нагрузки, но и от
собственного веса пролетных строений.
41.
42.
4.2 . Усиление пролетных строений изменением расчетной схемыУсиление разрезных железобетонных балок может быть произведено путем
превращения их в неразрезные (рис. 4.5). Опорный участок при этом омоноличивается,
возникающий на опоре отрицательный изгибающий момент воспринимается
предварительно напряженной арматурой. Напряжения в пучках арматуры разгружают
перенапряженные элементы. Эти особенности усиления путем изменения расчетной
схемы конструкции делают данный способ во многих случаях выгодным.
43.
44.
Шпренгели составляют из двух ветвей, располагаемых симметрично по отношению кребру главной балки.
45.
46.
ЗаключениеРассмотренные в пособии вопросы позволят студентам лучше изучить методы
усиления и реконструкции мостов, способы их расчета, методы производства работ и
условия применения и усиление и реконструкция пролетного строения мостового
сооружения с использованием комбинированных пространственных структур для
сейсмоопасных районов
Методы усиления и реконструкции мостов имеют много различных решений. Одно
из самых экономичных является усиление и реконструкция пролетного строения
мостового сооружения с использованием комбинированных пространственных
структур для сейсмоопасных районов
Выбор наиболее рационального и экономичного решения для конкретного случая задача студентов при курсовом и дипломном проектировании.
ТЕРМИНЫ И ОПРЕДЕЛЕНИЯ
Содержание мостов, труб и других искусственных сооружений - это надзор за их
состоянием и проведение необходимых ремонтных работ по предупреждению
появления и устранению на ранней стадии развития возникающих в сооружениях
расстройств и повреждений.
47.
Содержание искусственных сооружений должно обеспечивать исправное их состояниедля бесперебойного и безопасного движения автотранспорта с установленными
скоростями и длительным сроком службы всех элементов конструкции. Содержание
включает в себя комплекс мероприятий и работ, состоящих из текущего содержания и
ремонта.
Усилением моста - это увеличение грузоподъемности. Необходимость в усилении
возникает вследствие потери конструкций несущей способности (физический износ) или
возрастания нагрузок (моральный износ). В отличие от ремонтных работ при усилении
конструкция усиляемого элемента может быть изменена, тогда как при ремонте
конструкция сохраняется. Но генеральные размеры сооружения при усилении
сохраняются.
Реконструкция моста - это капитальное переустройство, повышающее его
технические характеристики, при котором в общем случае понимается приспособление
его к новым изменившимся эксплуатационным нормам и требованиям. При
реконструкции изменяются генеральные размеры: габарит моста, его грузоподъемность;
может быть изменена его схема, увеличен подмостовой габарит, расположение моста в
плане и профиле, увеличена пропускная способность. При реконструкции может быть
сделано усиление отдельных элементов или всего моста. Наиболее распространенным
видом реконструкции мостов на автомобильных дорогах является их уширение и
увеличение грузоподъемности.
Грузоподъемность - это наибольшая масса (класс) транспортного средства
определенного вида, которая может быть безопасно пропущена в транспортном потоке
или отдельном порядке по сооружению.
48.
Несущая способность - это предельное усилие, которое может быть воспринятосечением элемента до достижения им предельного состояния.
Дефект - это каждое отдельное несоответствие конструкции установленным
требованиям.
Повреждение - это недостаток в виде нарушения формы или целостности элемента,
возникающее в результате силового, температурного или влажностно- го воздействия,
приводящее к снижению его грузоподъемности и долговечности.
Накладные расходы - это расходы, связанные с обслуживанием строительного
производства, содержанием аппарата управления и административных зданий, техникой
безопасности, разъездным характером работ и т.д.
Нормативная прибыль - это плановая прибыль строительной организации,
включаемая в сметную стоимость строительно-монтажных работ.
Капитальные затраты - это единовременные вложения, связанные с производством
работ по строительству и реконструкции
Эксплуатационные затраты - это текущие затраты связанные с содержанием мостов.
БИБЛИОГРАФИЧЕСКИЙ СПИСОК
1. СНиП 2.05.03-84* Мосты и трубы - М., Изд-во Госстрой, 1985 - 199с.
2. СНиП 2.05.02-85 Автомобильные дороги - М., Изд-во Госстрой, 1986 - 51с.
3. СНиП 11-44-78 Автодорожные тоннели - М., Изд-во Госстрой, 1978.
4. ГОСТ 24-451-80 Автодорожные тоннели - М., Изд-во Стандартов, 1980..
49.
5. ГОСТ 26775-97 Габариты подмостовых судоходных пролетов - М., Изд- воСтандартов, 1997.
6. СНиП 3.06.07-86 Мосты и трубы. Правила обследований и испытаний - М., Изд-во
Госстрой, 1986 - 40 с.
7. ГОСТ 19537-83 Антикоррозионная смазка «Пушечная».
8. СНиП II-22-81 Каменные и армокаменные конструкции - М., Стройиздат, 1983.
9. ВСН 32-89 Инструкция по определению грузоподъемности железобетонных балочных
пролетных строений эксплуатируемых автодорожных мостов - М., Транспорт, 1991 165с.
10. ВСН 51-88 Инструкция по уширению автодорожных мостов - М., Минав- тодор
РСФСР, 1989.
11. ВСН 4-81 Инструкция по проведению осмотров мостов и труб на автомобильных
дорогах - М., Минавтодор РСФСР, 1981.
12. Брик А.А., Давыдов В.Г., Савельев В.Н. Эксплуатация искусственных сооружений на
железных дорогах. - М., Транспорт, 1990.
13. Кириллов В.С. Эксплуатация и реконструкция мостов и труб на автомобильных
дорогах - М., Транспорт, 1971 - 196с.
14. Никонов И. Н. Искусственные сооружения железнодорожного транспорта - М.,
Трансжелдориздат, 1963 - 338с.
15. Осипов В.О., Козьмин Ю.Г. и др. Содержание, реконструкция, усиление и ремонт
мостов и труб. - М., Транспорт 1996 - 471с.
16. Методические рекомендации по содержанию мостовых сооружений на
автомобильных дорогах. - М., Росавтодор, М., 1999.
50.
17. Нормы денежных затрат на ремонт и содержание мостовых сооружений наавтомобильных дорогах. - Утв. ФДС России, М., 1999.
18. ГСЭН - 2001-30 Государственные элементные сметные нормы на строительные
работы. Сборник № 30 Мосты и трубы. М., Стройиздат, 2000.
19. Методические указания по определению величины накладных расходов в
строительстве. - МДС 81 - 33. 2004. М., Стройиздат, 2003. - 51с.
20. Требования к техническому отчету по обследованию и испытаниям мостового
сооружения на автодороге.
21. Справочник проектировщика. Расчетно-теоретический. Государственное
издательство литературы по строительству, архитектуре и строительным материалам.
М.,1960.
51.
52.
53.
Более подробно смотрите учебное пособие :УСИЛЕНИЕ И РЕКОНСТРУКЦИЯ МОСТОВ НА АВТОМОБИЛЬНЫХ ДОРОГАХ
Учебное пособие
Федеральное агентство по образованию Государственное образовательное учреждение
высшего профессионального образования Воронежский государственный архитектурно
- строительный университет
В.А. Дементьев, В.П. Волокитин, Н.А. Анисимова
Рекомендовано Учебно-методическим объединением по образованию в области
железнодорожного транспорта и транспортного строительства в качестве учебного
пособия для студентов строительных вузов
Воронеж 2006
ББК 39.112 УДК 625.745.1
Дементьев, В.А. Усиление и реконструкция мостов на автомобильных дорогах
[Текст]: учеб. пособие / В.А. Дементьев, В.П. Волокитин, Н.А. Анисимова; под общ. ред.
проф. В.А. Дементьева; Воронеж. гос. арх.- строит. ун-т. - Воронеж, 2006. - 116 с.
54.
ISBN 5-89040-144-0 Приобрети бесплатно (гуманитарная миссия) длявосстановления разрушенных мостов в ЛНР , ДНР, Херсоне, Мариуполе, Авдеевке
[email protected] 6947810@mail/ru [email protected] (812) 694-78-10
Фигуры СПОСОБ имени Уздина А М ШПРЕНГЕЛЬНОГО УСИЛЕНИЯ ПРОЛЕТНОГО
СТРОЕНИЯ мостового сооружения с использованием треугольных балочных ферм для
сейсмоопасных районов МПК
E 01 D 22 /00
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.
75.
76.
77.
78.
79.
80.
81.
82.
83.
84.
85.
86.
87.
88.
89.
90.
91.
92.
93.
94.
95.
96.
97.
98.
99.
100.
101.
102.
103.
104.
105.
106.
107.
108.
109.
110.
111.
112.
113.
114.
115.
116.
117.
118.
119.
120.
121.
122.
123.
124.
125.
126.
127.
128.
129.
130.
131.
132.
133.
134.
135.
136.
137.
138.
139.
140.
141.
142.
143.
144.
145.
146.
147.
148.
149.
150.
151.
152.
153.
154.
155.
156.
РАСЧЁТ И КОНСТРУИРОВАНИЕ СТРОПИЛЬНОЙ ФЕРМЫ ИЗ ГНУТОСВАРНЫХПРОФИЛЕЙ
Требуется рассчитать и сконструировать стропильную ферму покрытия со стержнями из гнутосварных профилей при заданных условиях. При расчёте фермы в примере 5
используются СП 16.13330.2011 «Стальные конструкции. Актуализированная редакция СНиП 11-23—81*», СП 20.13330.2011 «Нагрузки и воздействия. Актуализированная
редакция СНиП 2.01.07—85*».
1. Исходные данные
Район строительства, состав конструкции покрытия и кровли приняты по аналогии с примером 4.
Назначение проектируемого здания — механосборочный цех. Уровень ответственности здания - нормальный. Для примера 5 назначаем коэффициент надёжности по
ответственности уп = 1,0.
Условия эксплуатации здания: здание отапливаемое.
Здание однопролётное, одноэтажное. Габариты объекта (размеры даны по осям здания): длина 90,0 м; пролёт 18,0 м. Высота до низа стропильной конструкции 9,0 м; шаг
колонн 6,0 м.
Краткое описание покрытия: двускатное, бесфонарное, уклон кровли 2,5%. Фермы стальные с параллельными поясами высотой по наружным граням поясов 2,0 м, пролётом
18,0 м, располагаются с шагом Вф = 6,0 м. Устойчивость и геометрическая неизменяемость покрытия обеспечивается постановкой связей по поясам ферм и вертикальных связей
с развязкой их распорками в пролёте и по опорам стропильных конструкций (в соответствии с требованиями *29+). Опирание ферм осуществляется на стальные колонны, тип
узла сопряжения фермы с колоннами — шарнирный.
Кровля рулонная из наплавляемых материалов. В качестве основания под кровлю принята стяжка. Покрытие утеплённое, утеплитель - минераловатные плиты повышенной
жёсткости; толщина утеплителя определяется по теплотехническим строительным нормативам. Пароизоляция принята из наплавляемых материалов согласно нормативам.
Несущие ограждающие конструкции покрытия — стальные профилированные листы, монтируемые по прогонам. Конструкция кровли (состав кровельных слоев), а также
конструкция покрытия принимаются в соответствии с нормами проектирования.
Равномерно распределённая нагрузка от покрытия, в том числе от массы кровли (с учётом всех кровельных слоёв), стяжки, теплоизоляции, пароизоляции, а также от
собственного веса профнастила покрытия: нормативная q"p п = 10 гН/м2; расчётная <7крп = 12,4 гН/м2. Данная нагрузка рассчитана как сумма нагрузок от 1 м2 всех принятых в
проекте слоёв кровли и покрытия с учётом их конструктивных особенностей и в соответствии с укзаниями норм проектирования *31+.
Фермы не подвержены динамическим воздействиям и работают на статические нагрузки.
Согласно *29, табл. В.2+ принимаем материалы конструкций: верхний, нижний пояса и решётка из гнутосварных профилей по ТУ 36-2287-80 и ТУ 67-2287-80 - сталь С255; фасонки
157.
- сталь С255 по ГОСТ 27772—88*; фланцы для стыка верхнего пояса — сталь С255 по ГОСТ 27772—88*; фланцы для стыка нижнего пояса — сталь С345-3 поГОСТ 27772-88*.Сварка полуавтоматическая в среде углекислого газа (ГОСТ 8050—85*) сварочной проволокой марки СВ-08Г2С (ГОСТ 2246—70*) диаметром 2 мм.
Антикоррозионное покрытие проектируемых стальных конструкций назначается в соответствии с указаниями норм проектирования по защите строительных конструкций от
коррозии.
2. Статический расчёт фермы
Заданный уклон кровли / = 2,5%. Требуемый уклон создаётся за счёт строительного подъёма фермы. При выполнении сбора нагрузок уклоном пренебрегаем ввиду его
незначительности.
Сбор нагрузок ведём в табличной форме (табл. 28).
Расчётные узловые силы на ферму (см. пример 4):
• от постоянной нагрузки Fg = qgd = 100,2 • 3 = 300,6 гН;
• от снеговой нагрузки Fs = psd = 108-3 = 324,0 гН.
Горизонтальную рамную нагрузку условно принимаем Fp = 500 гН. Обозначения стержней при расчёте стропильной фермы — см. на
рис. 64. Усилия в ферме определяем методом построения диаграммы Максвелла—Кремоны (рис. 65). Результаты расчёта заносим в табл. 33.
Рис. 64. Обозначение стержней и узлов фермы из ГСП (пример 5)
158.
159.
Посмотреть оригинал< Пред
СОДЕРЖАНИЕ
ОРИГИНАЛ
След >
ПРИМЕРЫ РАСЧЁТА И КОНСТРУИРОВАНИЯ СТРОПИЛЬНЫХ ФЕРМ
Расчѐт ферм покрытия в соответствии со СНиП II-23-81* широко представлен в технической литературе. Примеры расчѐта конструкций
покрытия по СП 16.13330.2011 в технической литературе встречаются редко. Опыт применения актуализированных СНиП практически
небольшой, так как новые нормативы были приняты совсем...
(Проектирование и расчѐт стальных ферм покрытий промышленных зданий)
РАСЧЁТ И КОНСТРУИРОВАНИЕ СТРОПИЛЬНОЙ ФЕРМЫ ИЗ ПАРНЫХ УГОЛКОВ
Требуется рассчитать и сконструировать стропильную ферму покрытия со стержнями из парных уголков при определѐнных заданных
условиях. При расчѐте фермы в этом примере используются СП 16.13330.2011 «Стальные конструкции. Актуализированная редакция
СНиП 11-23—81*», СП 20.13330.2011 «Нагрузки и воздействия....
(Проектирование и расчѐт стальных ферм покрытий промышленных зданий)
РАСЧЁТ И КОНСТРУИРОВАНИЕ СТРОПИЛЬНОЙ ФЕРМЫ С ПОЯСАМИ ИЗ ТАВРОВ И РЕШЁТКОЙ ИЗ ПАРНЫХ УГОЛКОВ
Требуется рассчитать и сконструировать стропильную ферму покрытия с поясами из широкополочных тавров и решѐткой из парных
уголков при заданных условиях. При расчѐте фермы в примере 2 применяются СП 16.13330.2011 «Стальные конструкции.
Актуализированная редакция СНиП 11-23-81*», СП 20.13330.2011 «Нагрузки...
(Проектирование и расчѐт стальных ферм покрытий промышленных зданий)
РАСЧЁТ И КОНСТРУИРОВАНИЕ СТРОПИЛЬНОЙ ФЕРМЫ С ВЕРХНИМ ПОЯСОМ ИЗ ШИРОКОПОЛОЧНОГО ДВУТАВРА
Требуется рассчитать и сконструировать стропильную ферму покрытия при заданных условиях. При расчѐте фермы в примере 3
используются СП 16.13330.2011 «Стальные конструкции. Актуализированная редакция СНиП 11-23-81*», СП 20.13330.2011 «Нагрузки и
воздействия. Актуализированная редакция СНиП 2.01.07—85*»....
160.
(Проектирование и расчѐт стальных ферм покрытий промышленных зданий)РАСЧЁТ И КОНСТРУИРОВАНИЕ СТРОПИЛЬНОЙ ФЕРМЫ ИЗ КРУГЛЫХ ТРУБ
Требуется рассчитать и сконструировать стропильную ферму покрытия со стержнями из круглых труб при заданных условиях. При
расчѐте фермы в примере 4 используются СП 16.13330.2011 «Стальные конструкции. Актуализированная редакция СНиП 11-23 — 81*»,
СП 20.13330.2011 «Нагрузки и воздействия. Актуализированная...
(Проектирование и расчѐт стальных ферм покрытий промышленных зданий)
РАСЧЁТ И КОНСТРУИРОВАНИЕ СТРОПИЛЬНОЙ ФЕРМЫ С ПОЯСАМИ ИЗ ТАВРОВ И РЕШЁТКОЙ ИЗ ОДИНОЧНЫХ УГОЛКОВ
Требуется рассчитать и сконструировать стропильную ферму покрытия с поясами из широкополочных тавров и решѐткой из одиночных
уголков при заданных условиях. При расчѐте фермы в примере 6 используются СП 16.13330.2011 «Стальные конструкции.
Актуализированная редакция СНиП Н-23—81», СП 20.13330.2011 «Нагрузки...
(Проектирование и расчѐт стальных ферм покрытий промышленных зданий)
ФЕРМЫ ИЗ ЗАМКНУТЫХ ГНУТОСВАРНЫХ ПРОФИЛЕЙ (ГСП)
Общие положения Типовые фермы из замкнутых гнутосварных профилей проектируются с узлами без фасонок и опиранием покрытия
непосредственно на верхний пояс. Геометрические схемы решѐтки ферм из ГСП показаны на рис. 11. Углы примыкания раскосов к поясу
должны быть не менее 30°, в этом случае обеспечивается...
(Проектирование и расчѐт стальных ферм покрытий промышленных зданий)
РАСЧЁТ И КОНСТРУИРОВАНИЕ СТРОПИЛЬНОЙ ПРУТКОВОЙ ФЕРМЫ
Требуется рассчитать и сконструировать стропильную прутковую ферму покрытия при заданных условиях. При расчѐте фермы в примере
7 используются СП 16.13330.2011 «Стальные конструкции. Актуализированная редакция СНиП 11-23—81», СП 20.13330.2011 «Нагрузки
и воздействия. Актуализированная редакция СНиП 2.01.07-85*»....
(Проектирование и расчѐт стальных ферм покрытий промышленных зданий)
161.
ПОКРЫТИЯ ЗДАНИЙ ПО СТРОПИЛЬНЫМ ФЕРМАМПокрытие здания состоит из кровли (ограждающих конструкций), несущих элементов (прогонов, стропильных ферм), на которые
опирается кровля, и связей по покрытию. Кроме того, для освещения помещений верхним светом и их естественной вентиляции в
системе покрытия многопролетных зданий устраивают фонари, опирающиеся...
(Инженерные конструкции. Металлические конструкции и конструкции из древесины и пластмасс)
© Studref - Студенческие реферативные статьи и
материалы (info,aт-studref.com) © 2017 - 2023
https://studref.com/542649/stroitelstvo/raschyot_konstruirovanie_stropilnoy_fermy_gnutosvarnyh_profiley
162.
Особенности расчетной схемы пространственной трехгранной фермыАндрей Левич
Резервное размещение материалов: Ruindex.net | Алфавитный указатель рубрик
УДК 624.01/04
А. В. МАТВЕЕВ, асп.
Особенности расчетной схемы пространственной трехгранной фермы
с пентагональным сечением верхнего пояса
В статье рассматривается расчетная схема трехгранной фермы - образующего блока бесфасоночного
складчатого покрытия с пентагональным сечением верхнего пояса. В такой стержневой системе при
действии внешней нагрузки происходит изменение формы сечения поясов, что приводит к возникновению
податливости в узлах сопряжения поясов с раскосной решеткой и снижению пространственной жесткости
конструкции. Произведенная оценка податливости узловых соединений позволяет уточнить расчетную
схему. В результате этого получена деформированная схема трехгранной фермы, которая хорошо
согласуется с экспериментальными данными.
Трехгранная пространственная ферма является образующим блоком стального складчатого покрытия с
пентагональным сечением верхнего пояса. Особенностью данной конструктивной формы является
составное сечение верхнего пояса, которое образовано путем стыковки швеллера и уголка так, чтобы они
формировали пятигранный контур замкнутого сечения [1, 2]. К поясному уголку без фасонок примыкают
раскосы из одиночных уголков. Таким образом, в узлах конструкции к стержню замкнутого сечения
примыкают стержни открытого сечения.
Для проведения экспериментальных исследований данной конструктивной формы была изготовлена
163.
натурная модель трехгранной пространственной фермы, пролетом 12 м и высотой 1,5 м *3+, котораяобразована из двух наклонных ферм с нисходящими опорными раскосами и треугольной раскосной
решеткой. Для обеспечения геометрической неизменяемости в процессе эксперимента смежные узлы
нижних поясов по горизонтали связаны затяжками из уголков. Расчетная схема такой конструкции
представляет пространственную стержневую систему с шарнирным примыканием раскосов к поясам
(рис. 1).
Рис. 1. Расчетная схема трехгранной фермы
При реализации расчетной схемы были учтены как технологические факторы (расцентровка узлов), так и
дефекты изготовления (погнутия элементов, не предусмотренные проектом эксцентриситеты в узлах). В
результате проведения расчетов было оценено напряженно-деформированное состояние конструкции.
Проведенные испытания конструкции на стенде при проектном положении (цель, задачи, методика
проведения и основные результаты эксперимента опубликованы в [3]) для упругой стадии работы материала
выявили достаточно хорошее совпадение напряжений в поясах с теоретическими значениями. Среднее
расхождение в каждом исследуемом сечении не превысило ±5%. В раскосах расхождение значительно
больше, что вызвано появлением изгибных нормальных напряжений, не учитываемых расчетной схемой,
которая предусматривает шарнирное примыкание раскосов к поясам. Причем возникают оба изгибающих
момента MX и MY, относительные эксцентриситеты которых для наиболее сжатого раскоса (раскосы 3-10,
7-13 на рис. 1) составляют mX = 0,9, mY = 1,7.
Характер вертикальных перемещений соответствует расчетной схеме пространственной фермы. Однако
измеренные перемещения при максимальной нагрузке значительно превышают полученные из расчета для
всех реализованных вариантов загружения. Наименьшее расхождение между максимальными
теоретическими и экспериментальными прогибами, составляющее 6%, происходит при внеузловой нагрузке
сосредоточенной силой, приложенной в центре каждой панели верхнего пояса. Наибольшее расхождение,
достигающее 25%, происходит при узловом загружении трехгранной фермы. При равномерно
164.
распределенной нагрузке это расхождение составляет 10 – 12,5%. Такое явление происходит из-засниженной пространственной жесткости конструкции.
Студенческие работы
Возможными причинами снижения пространственной жесткости могут стать:
1. податливость прерывистых сварных швов, соединяющих швеллер и уголок верхнего пояса;
2. продольная (по направлению раскосов) упругая податливость узлов сопряжения поясов и раскосов.
Для оценки податливости поясных сварных швов верхнего пояса в панели 3-5 (рис. 1) экспериментальной
модели были установлены индикаторы МИТ (цена деления 0,001 мм), которые фиксировали смещение
верхней части сечения относительно нижней в местах сварных швов и в местах их отсутствия. При
загружении конструкции нагрузкой, составляющей 75% от предельной, показания приборов не превышали
0,005 мм. При таких смещениях происходит снижение изгибной жесткости верхнего пояса трехгранной
фермы. Однако введение пониженной эквивалентной жесткости верхнего пояса не приводит к
значительному увеличению прогибов всей конструкции, а лишь вызывает увеличение местных прогибов в
пределах каждой панели.
Другой возможной причиной снижения пространственной жесткости трехгранной фермы является
податливость узловых сопряжений поясов с раскосной решеткой. Это явление связано с конструктивной
особенностью узлов: раскосы из одиночных уголков торцами примыкают к поясному уголку, вызывая в них
местный изгиб полок от усилий, возникающий в раскосах.
Происходит изменение пространственной формы сечения верхнего пояса (рис. 2).
Таким образом, расчетная схема трехгранной пространственной фермы будет представлять стержневую
систему с продольной (по направлению раскоса) податливостью в узлах, примыкающих к поясам раскосов
(рис. 3).
165.
Для оценки влияния податливости узлов на пространственную жесткость конструкции решен комплексзадач изгиба полки поясного уголка, загруженного локальной нагрузкой от усилия, возникающего в раскосе.
Полка равнополочного уголка 80х10 рассматривалась в виде полосы, находящейся в состоянии равновесия
под действием нагрузки. Полоса, длина которой принята в 10 раз больше ширины, разбивалась сеткой
конечных элементов оболочки, каждый из которых имеет 6 степеней свободы в узлах. После проведенных
расчетов проанализирована деформированная схема полосы. Нагрузка от примыкающих раскосов вызывает
в полосе локальные деформации полки уголка, которые быстро угасают.
Рис. 2. Изменение
пространственной
формы сечения
Рис. 3. Податливое
примыкание раскосов
к верхнему поясу
На рис. 4 представлены изолинии перемещений полосы поясного уголка для узла 5 (см. рис. 1) при общей
нагрузке на трехгранную ферму 8,4 тонн. Цифрами обозначены значения перемещений в мм. Значительные
перемещения происходят лишь на одной четверти пластины в области примыкания раскосной решетки (в
области действия нагрузки). На расстоянии 0,3 длины пластины от ее центра, они снижаются в три раза. К
концу пластины перемещения практически равны 0.
Рис. 4. Изолинии перемещений полки поясного уголка
При проведении эксперимента производилось наблюдение за изгибом полки поясных уголков в области
примыкающих раскосов. Были установлены индикаторы МИТ, регистрирующие максимальные прогибы
полок уголков. Полученные значения прогибов достаточно близки к расчетным данным. Так в
контролируемой точке узла 16 (см. рис. 1) экспериментальные перемещения составили 8 × 10-2 мм, а
расчетные - 11 × 10-2.
https://pandia.ru/text/77/470/952.php
166.
https://cyberleninka.ru/article/n/raschet-konstruktsii-uzla-besfasonochnoy-fermy-s-pentagonalnym-secheniempoyasov/viewer7.3 Особенности расчета пространственных ферм
Плоская ферма не устойчива, поэтому в металлоконструкциях не применяется, а
используются исключительно пространственные фермы.
Простейшая пространственная ферма представляет собой элементарный тетраэдр,
составленный из 6 стержней, и имеет 4 узла.
Рисунок 18 – Тетраэдр
Этот элементарный тетраэдр может быть развит в ферму любых размеров путем
последовательного присоединения новых узлов с помощью 3-х стержней (рис 19).
Рисунок 19 – Простейшая пространственная ферма
Образованные таким образом фермы получили название простейшие. Фермы,
полученные любым другим способом, называют сложные.
https://studfile.net/preview/7078663/page:5/
Особенности расчетной схемы пространственной трехгранной фермы
Андрей Левич
167.
Резервное размещение материалов: Ruindex.net | Алфавитный указатель рубрикУДК 624.01/04
А. В. МАТВЕЕВ, асп.
Особенности расчетной схемы пространственной трехгранной фермы
с пентагональным сечением верхнего пояса
В статье рассматривается расчетная схема трехгранной фермы - образующего блока бесфасоночного
складчатого покрытия с пентагональным сечением верхнего пояса. В такой стержневой системе при
действии внешней нагрузки происходит изменение формы сечения поясов, что приводит к возникновению
податливости в узлах сопряжения поясов с раскосной решеткой и снижению пространственной жесткости
конструкции. Произведенная оценка податливости узловых соединений позволяет уточнить расчетную
схему. В результате этого получена деформированная схема трехгранной фермы, которая хорошо
согласуется с экспериментальными данными.
Трехгранная пространственная ферма является образующим блоком стального складчатого покрытия с
пентагональным сечением верхнего пояса. Особенностью данной конструктивной формы является
составное сечение верхнего пояса, которое образовано путем стыковки швеллера и уголка так, чтобы они
формировали пятигранный контур замкнутого сечения *1, 2+. К поясному уголку без фасонок примыкают
раскосы из одиночных уголков. Таким образом, в узлах конструкции к стержню замкнутого сечения
примыкают стержни открытого сечения.
168.
Для проведения экспериментальных исследований данной конструктивной формы была изготовленанатурная модель трехгранной пространственной фермы, пролетом 12 м и высотой 1,5 м *3+, которая
образована из двух наклонных ферм с нисходящими опорными раскосами и треугольной раскосной
решеткой. Для обеспечения геометрической неизменяемости в процессе эксперимента смежные узлы
нижних поясов по горизонтали связаны затяжками из уголков. Расчетная схема такой конструкции
представляет пространственную стержневую систему с шарнирным примыканием раскосов к поясам
(рис. 1).
Рис. 1. Расчетная схема трехгранной фермы
При реализации расчетной схемы были учтены как технологические факторы (расцентровка узлов), так и
дефекты изготовления (погнутия элементов, не предусмотренные проектом эксцентриситеты в узлах). В
результате проведения расчетов было оценено напряженно-деформированное состояние конструкции.
Проведенные испытания конструкции на стенде при проектном положении (цель, задачи, методика
проведения и основные результаты эксперимента опубликованы в *3+) для упругой стадии работы
материала выявили достаточно хорошее совпадение напряжений в поясах с теоретическими значениями.
Среднее расхождение в каждом исследуемом сечении не превысило ±5%. В раскосах расхождение
169.
значительно больше, что вызвано появлением изгибных нормальных напряжений, не учитываемыхрасчетной схемой, которая предусматривает шарнирное примыкание раскосов к поясам. Причем возникают
оба изгибающих момента MX и MY, относительные эксцентриситеты которых для наиболее сжатого раскоса
(раскосы 3-10, 7-13 на рис. 1) составляют mX = 0,9, mY = 1,7.
Характер вертикальных перемещений соответствует расчетной схеме пространственной фермы. Однако
измеренные перемещения при максимальной нагрузке значительно превышают полученные из расчета для
всех реализованных вариантов загружения. Наименьшее расхождение между максимальными
теоретическими и экспериментальными прогибами, составляющее 6%, происходит при внеузловой
нагрузке сосредоточенной силой, приложенной в центре каждой панели верхнего пояса. Наибольшее
расхождение, достигающее 25%, происходит при узловом загружении трехгранной фермы. При равномерно
распределенной нагрузке это расхождение составляет 10 – 12,5%. Такое явление происходит из-за
сниженной пространственной жесткости конструкции.
Студенческие работы
Возможными причинами снижения пространственной жесткости могут стать:
1. податливость прерывистых сварных швов, соединяющих швеллер и уголок верхнего пояса;
2. продольная (по направлению раскосов) упругая податливость узлов сопряжения поясов и раскосов.
Для оценки податливости поясных сварных швов верхнего пояса в панели 3-5 (рис. 1) экспериментальной
модели были установлены индикаторы МИТ (цена деления 0,001 мм), которые фиксировали смещение
верхней части сечения относительно нижней в местах сварных швов и в местах их отсутствия. При
загружении конструкции нагрузкой, составляющей 75% от предельной, показания приборов не превышали
170.
0,005 мм. При таких смещениях происходит снижение изгибной жесткости верхнего пояса трехграннойфермы. Однако введение пониженной эквивалентной жесткости верхнего пояса не приводит к
значительному увеличению прогибов всей конструкции, а лишь вызывает увеличение местных прогибов в
пределах каждой панели.
Другой возможной причиной снижения пространственной жесткости трехгранной фермы является
податливость узловых сопряжений поясов с раскосной решеткой. Это явление связано с конструктивной
особенностью узлов: раскосы из одиночных уголков торцами примыкают к поясному уголку, вызывая в них
местный изгиб полок от усилий, возникающий в раскосах.
Происходит изменение пространственной формы сечения верхнего пояса (рис. 2).
Таким образом, расчетная схема трехгранной пространственной фермы будет представлять стержневую
систему с продольной (по направлению раскоса) податливостью в узлах, примыкающих к поясам раскосов
(рис. 3).
Для оценки влияния податливости узлов на пространственную жесткость конструкции решен комплекс
задач изгиба полки поясного уголка, загруженного локальной нагрузкой от усилия, возникающего в раскосе.
Полка равнополочного уголка 80х10 рассматривалась в виде полосы, находящейся в состоянии равновесия
под действием нагрузки. Полоса, длина которой принята в 10 раз больше ширины, разбивалась сеткой
конечных элементов оболочки, каждый из которых имеет 6 степеней свободы в узлах. После проведенных
расчетов проанализирована деформированная схема полосы. Нагрузка от примыкающих раскосов
вызывает в полосе локальные деформации полки уголка, которые быстро угасают.
171.
Рис. 2. Изменениепространственной
формы сечения
Рис. 3. Податливое
примыкание раскосов
к верхнему поясу
На рис. 4 представлены изолинии перемещений полосы поясного уголка для узла 5 (см. рис. 1) при общей
нагрузке на трехгранную ферму 8,4 тонн. Цифрами обозначены значения перемещений в мм. Значительные
перемещения происходят лишь на одной четверти пластины в области примыкания раскосной решетки (в
области действия нагрузки). На расстоянии 0,3 длины пластины от ее центра, они снижаются в три раза. К
концу пластины перемещения практически равны 0.
Рис. 4. Изолинии перемещений полки поясного уголка
При проведении эксперимента производилось наблюдение за изгибом полки поясных уголков в области
примыкающих раскосов. Были установлены индикаторы МИТ, регистрирующие максимальные прогибы
полок уголков. Полученные значения прогибов достаточно близки к расчетным данным. Так в
172.
контролируемой точке узла 16 (см. рис. 1) экспериментальные перемещения составили 8 × 10-2 мм, арасчетные - 11 × 10-2.
Канал спокойной музыки
В результате проведенных расчетов была количественно оценена податливость узлов. В табл. 1 приведены
расчетные значения абсолютной деформации раскосов при общем значении равномерно распределенной
нагрузке на трехгранную ферму 8,4 т и перемещения концов раскосов вызванные изгибом полки поясных
уголков в области примыкания раскосной решетки. Из табл. 1 видно, что перемещения от изгиба полки
поясного уголка соизмеримы с абсолютными деформациями раскосов от продольных сил и достигают от 22
до 89 % их значения.
Таблица 1
Перемещения концов раскосов от изгиба полки поясного уголка и абсолютные деформации раскосов
Тип
№
раскоса сечения
А,
N, DL,
см2
кН мм
Перемещения от
изгиба полки уголка,
мм
4,8
29,2 0,75
0,05
0,012
0,17
15,1
0,24
29,3
0,04
0,012
0,16
нижний верхний
сумма
пояс
1-10
3-10
пояс
Уг. 50 х
5
Уг. 80 х
10
173.
3-115-11
Уг. 50 х
5
Уг. 75 х
8
4,8
8,45 0,22
0,032
0,018
0,05
11,5
-8,4 0,09
0,036
0,044
0,08
Учет продольной (по направлению раскосов) податливости узлов в расчетной схеме пространственной
трехгранной фермы приводит к снижению общей жесткости раскосной решетки в 1,5 раз. При этом
возрастают вертикальные расчетные перемещения конструкции. В табл. 2 дается сравнение
экспериментальных вертикальных перемещений узлов верхнего пояса и расчетных перемещений при
действии равномерно распределенной нагрузки.
Таблица 2
Сравнение экспериментальных и расчетных перемещений верхнего пояса трехгранной фермы
Адрес
Узел 2
данных
S, мм
Эксперим.
данные
Расчет без
учета
Узел
3
Узел 4
Узел
5
отличие от
отличие от
отличие от
отличие от
S,
S,
S,
эксперимента
эксперимента
эксперимента,
эксперимента,
мм
мм
мм
%
%
%
%
8,3
-
5,1
-
8,2
-
7,1
-
7
16
3,5
30
6,1
27
5
30
174.
податливостиРасчет с
учетом
податливости
7,7
7
4,5
11
7,1
13
6,1
15
Анализ расчетных и экспериментальных данных при других схемах загружения привел к аналогичным
выводам. Расхождение между максимальными теоретическими и экспериментальными прогибами при
внеузловой на грузке сосредоточенной силой, приложенной в центре каждой панели верхнего пояса,
составляет 2,4%. Расхождение при узловом загружении трехгранной фермы сосредоточенной нагрузкой
составляет 9%. При дополнительной схеме загружения равномерно распределенной нагрузкой половины
фермы это расхождение 4,2%.
При сравнении экспериментальных и теоретических перемещений как при учете податливости узлов, так и
без учета податливости можно видеть, что чем дальше находятся точки приложения внешних сил от узлов,
тем больше разница в сравниваемых перемещениях. Максимальная разница наблюдается при узловом
загружении. Это вполне закономерно. При узловом загружении наиболее нагружен узел и деформации в
нем, а, следовательно, и его податливость будут максимальными в отличие от внеузлового загружения.
Студенческие работы
В отличие от вертикальных перемещений снижение пространственной жесткости конструкции практически
не влияет на внутренние усилия в поясах и раскосах. Произведенные расчеты трехгранной фермы при
варьировании податливостью узлов показывают, что перемещения узлов конструкции линейно зависят от
податливости и при её увеличении в два раза происходит возрастание перемещений на 90% по сравнению с
175.
жесткими узлами. А внутренний изгибающий момент и продольная сила изменяется не более чем на 4,8%.Это и подтверждается экспериментально.
Основные выводы
Учет податливости узлов в расчетной схеме привел к возрастанию теоретических вертикальных
перемещений и их отличие от экспериментальных данных при основной схеме загружения (равномерно –
распределенная нагрузка) составляет от 7 до 15 %. Представляется возможным дальнейшее уточнение
расчетной схемы путем анализа напряженно-деформированного состояния пространственных узлов и
оценки изменения их формы в процессе деформирования.
Податливость узлов в меньшей степени влияет на внутренние усилия элементов.
Произведенные расчеты и эксперимент позволил уточнить расчетную схему трехгранной фермы с
пентагональным замкнутым сечением верхнего пояса и приблизить теоретические значения перемещений
к экспериментальным.
Список литературы
1. Свидетельство на полезную модель № 000МПК6 Е04 С3/04. Складчатое покрытие из наклонных ферм /
(Россия) №, Заявлено 12.02.98; 16.12.98, Бюл. №12.
2. М, Матвеев складчатое покрытие. Информационный листок №44-98. Томский МТЦНТИ, 1998 г. – 4 с.
3. , , Косинцев покрытие из прокатных профилей. //Труды НГАСУ, т. 2, №2(4). Новосибирск 1999 С. 43-49.
Материал поступил в редакцию 28.02.2000
176.
A. V. MATVEEVFeatures of the designed circuit of a space trihedral farm with pentahedrals by section of a upper belt
The designed scheme of a trihedral girder - forming block of an easy steel coating with pentahedrals section of an
upper belt is considered. In such rod system under external load there is a change of the form of section of belts,
that results in the origin of a pliability in sites of interface of belts with a lattice and lowering reducing a space
rigidity of a construction. The estimation of a pliability of nodal connections allows to specify the designed scheme.
As a result of it the deformed schem of a trihedral girder is obtained which well is coordinated to experimental
data.
Структурные плиты конструкции цнииск
Выполнены в виде пространственных конструкций из стержней в виде блоков размерами 18*12 и
12*24 м. Сборка их осуществляется тем или иным методом непосредственно на строительной
площадке из отправочных заводских марок. Верхние пояса, по продольным осям выполняются
из прокатного профиля, а верхние поперечные, нижние пояса и раскосы – из прокатной
уголковой стали.
177.
Рисунок 5.1 Конструктивная схема структурной плиты ЦНИИСК: 1 –колонна; 2- нижний поясплиты; 3- верхний пояс плиты; 4- вертикальные связи; 5- «настил» плиты из трехслойных панелей
типа «сэндвич», 6 – «косынки» для крепления элементов решетки, 7 – электросварка косынок.
Соединение стержней в узлах – на болтах или, как вариант, с помощью электросварки. Верхние и
нижние пояса блоков стыкуются с помощью фланцев, а нижние поперечные – с помощью
накладок. Конструкция структуры беспрогонная и предусматривает установку «настила»
непосредственно по верхнему поясу конструкции. Высота структурной плиты h= 2,2 м. По
верхнему поясу плиты крепится профилированный настил H 79*66 *1,0 с самонарезающими
болтами М 6*20 с шагом, равным 300 мм. Листы между собой соединяются на заклепках с шагом
300 мм.
178.
5.1.2 Структурная плита «Кисловодск»Представляют собой структурную плиту из трубчатых профилей с ортогональной сеткой поясов
(пирамида на квадратной основе) размерами 3*3 высотой 1.8-2.4 м. Стержни выполнены из
цельнотянутых труб диаметром ≥ 100мм с приваренными по торцам шайбами. В отверстии шайб
закреплены стержни высокопрочных болтов, на противоположных концах которых установлены
муфты из «шестигранника». Последние обеспечивают соединение стержней в пространственную
конструкцию. Опирание структурной плиты на колонны – шарнирное, через опорные пирамиды
– капители. Сборка плиты в пространственный блок размером 30*30 и 36*36 с сеткой колонн
соответствен-
179.
Рисунок 5.2 Конструктивная схема структурной плиты «Кисловодск»: 1- колонна; 2- капитель(опорная секция плиты); 3- структурная плита; 3а – горизонтальные связи ячейки плиты; 3б –
вертикальные связи между поясами плиты; 4- узел соединительной решетки плиты в виде
многогранника; 5- прогон; 6- «настил».
180.
Рисунок 5.3 Структурная плита типа Кисловодск (схема узла В): 1- многогранник; 2- сверление срезьбой; 3- болт; 4- шайба с резьбой под болт; 5- стержень трубчатого профиля d≤100мм.
но 18*18 и 24*24 выполняется из отправочных элементов: стержни и узлы «решетки» в виде
многогранника.
Плита типа «Кисловодск» требует установки прогонов по трубчатым элементам верхнего пояса
для настила кровельных панелей.
Конструктивная схема структуры и узлов решетки, приведенная на рис. 5.2, 5.3, предназначена,
главным образом, для возведения зданий павильонного типа гражданского и производственного
181.
назначения с «разреженным» шагом колонн. Варианты сопряжения нескольких зданий междусобой (см. рис. 5.4) позволяет формировать многопролетное здание требуемой площади.
<<< Предыдущая
https://studfile.net/preview/2179938/page:19/
Особенности расчетной схемы пространственной комбинированных структурной
стальной трехгранной фермы SCAD с применением замкнутых гнутосварных
профилей прямоугольного сечения на болтовых соединениях с большими
перемещениями на предельное равновесие и приспособляемость
Features of the design scheme of the spatial combined structural steel triangular truss SCAD with the use of closed bent-welded rectangular cross-section profiles on bolted joints with
large displacements for extreme equilibrium and adaptability
SAP2000-Modeling, Analysis and Design of Space Truss(Triangular Arch
Truss) 01/02
https://www.youtube.com/watch?v=g76K3hvhAQg
РАСЧЁТ И КОНСТРУИРОВАНИЕ СТРОПИЛЬНОЙ ФЕРМЫ ИЗ ГНУТОСВАРНЫХ
ПРОФИЛЕЙ
Требуется рассчитать и сконструировать стропильную ферму покрытия со стержнями из гнутосварных профилей при заданных условиях. При расчёте фермы в примере 5
182.
используются СП 16.13330.2011 «Стальные конструкции. Актуализированная редакция СНиП 11-23—81*», СП 20.13330.2011 «Нагрузки и воздействия. Актуализированнаяредакция СНиП 2.01.07—85*».
1. Исходные данные
Район строительства, состав конструкции покрытия и кровли приняты по аналогии с примером 4.
Назначение проектируемого здания — механосборочный цех. Уровень ответственности здания - нормальный. Для примера 5 назначаем коэффициент надёжности по
ответственности уп = 1,0.
Условия эксплуатации здания: здание отапливаемое.
Здание однопролётное, одноэтажное. Габариты объекта (размеры даны по осям здания): длина 90,0 м; пролёт 18,0 м. Высота до низа стропильной конструкции 9,0 м; шаг
колонн 6,0 м.
Краткое описание покрытия: двускатное, бесфонарное, уклон кровли 2,5%. Фермы стальные с параллельными поясами высотой по наружным граням поясов 2,0 м, пролётом
18,0 м, располагаются с шагом Вф = 6,0 м. Устойчивость и геометрическая неизменяемость покрытия обеспечивается постановкой связей по поясам ферм и вертикальных связей
с развязкой их распорками в пролёте и по опорам стропильных конструкций (в соответствии с требованиями *29+). Опирание ферм осуществляется на стальные колонны, тип
узла сопряжения фермы с колоннами — шарнирный.
Кровля рулонная из наплавляемых материалов. В качестве основания под кровлю принята стяжка. Покрытие утеплённое, утеплитель - минераловатные плиты повышенной
жёсткости; толщина утеплителя определяется по теплотехническим строительным нормативам. Пароизоляция принята из наплавляемых материалов согласно нормативам.
Несущие ограждающие конструкции покрытия — стальные профилированные листы, монтируемые по прогонам. Конструкция кровли (состав кровельных слоев), а также
конструкция покрытия принимаются в соответствии с нормами проектирования.
Равномерно распределённая нагрузка от покрытия, в том числе от массы кровли (с учётом всех кровельных слоёв), стяжки, теплоизоляции, пароизоляции, а также от
собственного веса профнастила покрытия: нормативная q"p п = 10 гН/м2; расчётная <7крп = 12,4 гН/м2. Данная нагрузка рассчитана как сумма нагрузок от 1 м2 всех принятых в
проекте слоёв кровли и покрытия с учётом их конструктивных особенностей и в соответствии с укзаниями норм проектирования *31+.
Фермы не подвержены динамическим воздействиям и работают на статические нагрузки.
Согласно *29, табл. В.2+ принимаем материалы конструкций: верхний, нижний пояса и решётка из гнутосварных профилей по ТУ 36-2287-80 и ТУ 67-2287-80 - сталь С255; фасонки
- сталь С255 по ГОСТ 27772—88*; фланцы для стыка верхнего пояса — сталь С255 по ГОСТ 27772—88*; фланцы для стыка нижнего пояса — сталь С345-3 поГОСТ 27772-88*.
Сварка полуавтоматическая в среде углекислого газа (ГОСТ 8050—85*) сварочной проволокой марки СВ-08Г2С (ГОСТ 2246—70*) диаметром 2 мм.
Антикоррозионное покрытие проектируемых стальных конструкций назначается в соответствии с указаниями норм проектирования по защите строительных конструкций от
коррозии.
183.
2. Статический расчёт фермыЗаданный уклон кровли / = 2,5%. Требуемый уклон создаётся за счёт строительного подъёма фермы. При выполнении сбора нагрузок уклоном пренебрегаем ввиду его
незначительности.
Сбор нагрузок ведём в табличной форме (табл. 28).
Расчётные узловые силы на ферму (см. пример 4):
• от постоянной нагрузки Fg = qgd = 100,2 • 3 = 300,6 гН;
• от снеговой нагрузки Fs = psd = 108-3 = 324,0 гН.
Горизонтальную рамную нагрузку условно принимаем Fp = 500 гН. Обозначения стержней при расчёте стропильной фермы — см. на
рис. 64. Усилия в ферме определяем методом построения диаграммы Максвелла—Кремоны (рис. 65). Результаты расчёта заносим в табл. 33.
Рис. 64. Обозначение стержней и узлов фермы из ГСП (пример 5)
184.
185.
Посмотреть оригинал< Пред
СОДЕРЖАНИЕ
ОРИГИНАЛ
След >
ПРИМЕРЫ РАСЧЁТА И КОНСТРУИРОВАНИЯ СТРОПИЛЬНЫХ ФЕРМ
Расчѐт ферм покрытия в соответствии со СНиП II-23-81* широко представлен в технической литературе. Примеры расчѐта конструкций
покрытия по СП 16.13330.2011 в технической литературе встречаются редко. Опыт применения актуализированных СНиП практически
небольшой, так как новые нормативы были приняты совсем...
(Проектирование и расчѐт стальных ферм покрытий промышленных зданий)
РАСЧЁТ И КОНСТРУИРОВАНИЕ СТРОПИЛЬНОЙ ФЕРМЫ ИЗ ПАРНЫХ УГОЛКОВ
Требуется рассчитать и сконструировать стропильную ферму покрытия со стержнями из парных уголков при определѐнных заданных
условиях. При расчѐте фермы в этом примере используются СП 16.13330.2011 «Стальные конструкции. Актуализированная редакция
СНиП 11-23—81*», СП 20.13330.2011 «Нагрузки и воздействия....
(Проектирование и расчѐт стальных ферм покрытий промышленных зданий)
РАСЧЁТ И КОНСТРУИРОВАНИЕ СТРОПИЛЬНОЙ ФЕРМЫ С ПОЯСАМИ ИЗ ТАВРОВ И РЕШЁТКОЙ ИЗ ПАРНЫХ УГОЛКОВ
Требуется рассчитать и сконструировать стропильную ферму покрытия с поясами из широкополочных тавров и решѐткой из парных
уголков при заданных условиях. При расчѐте фермы в примере 2 применяются СП 16.13330.2011 «Стальные конструкции.
Актуализированная редакция СНиП 11-23-81*», СП 20.13330.2011 «Нагрузки...
(Проектирование и расчѐт стальных ферм покрытий промышленных зданий)
РАСЧЁТ И КОНСТРУИРОВАНИЕ СТРОПИЛЬНОЙ ФЕРМЫ С ВЕРХНИМ ПОЯСОМ ИЗ ШИРОКОПОЛОЧНОГО ДВУТАВРА
Требуется рассчитать и сконструировать стропильную ферму покрытия при заданных условиях. При расчѐте фермы в примере 3
используются СП 16.13330.2011 «Стальные конструкции. Актуализированная редакция СНиП 11-23-81*», СП 20.13330.2011 «Нагрузки и
воздействия. Актуализированная редакция СНиП 2.01.07—85*»....
186.
(Проектирование и расчѐт стальных ферм покрытий промышленных зданий)РАСЧЁТ И КОНСТРУИРОВАНИЕ СТРОПИЛЬНОЙ ФЕРМЫ ИЗ КРУГЛЫХ ТРУБ
Требуется рассчитать и сконструировать стропильную ферму покрытия со стержнями из круглых труб при заданных условиях. При
расчѐте фермы в примере 4 используются СП 16.13330.2011 «Стальные конструкции. Актуализированная редакция СНиП 11-23 — 81*»,
СП 20.13330.2011 «Нагрузки и воздействия. Актуализированная...
(Проектирование и расчѐт стальных ферм покрытий промышленных зданий)
РАСЧЁТ И КОНСТРУИРОВАНИЕ СТРОПИЛЬНОЙ ФЕРМЫ С ПОЯСАМИ ИЗ ТАВРОВ И РЕШЁТКОЙ ИЗ ОДИНОЧНЫХ УГОЛКОВ
Требуется рассчитать и сконструировать стропильную ферму покрытия с поясами из широкополочных тавров и решѐткой из одиночных
уголков при заданных условиях. При расчѐте фермы в примере 6 используются СП 16.13330.2011 «Стальные конструкции.
Актуализированная редакция СНиП Н-23—81», СП 20.13330.2011 «Нагрузки...
(Проектирование и расчѐт стальных ферм покрытий промышленных зданий)
ФЕРМЫ ИЗ ЗАМКНУТЫХ ГНУТОСВАРНЫХ ПРОФИЛЕЙ (ГСП)
Общие положения Типовые фермы из замкнутых гнутосварных профилей проектируются с узлами без фасонок и опиранием покрытия
непосредственно на верхний пояс. Геометрические схемы решѐтки ферм из ГСП показаны на рис. 11. Углы примыкания раскосов к поясу
должны быть не менее 30°, в этом случае обеспечивается...
(Проектирование и расчѐт стальных ферм покрытий промышленных зданий)
РАСЧЁТ И КОНСТРУИРОВАНИЕ СТРОПИЛЬНОЙ ПРУТКОВОЙ ФЕРМЫ
Требуется рассчитать и сконструировать стропильную прутковую ферму покрытия при заданных условиях. При расчѐте фермы в примере
7 используются СП 16.13330.2011 «Стальные конструкции. Актуализированная редакция СНиП 11-23—81», СП 20.13330.2011 «Нагрузки
и воздействия. Актуализированная редакция СНиП 2.01.07-85*»....
(Проектирование и расчѐт стальных ферм покрытий промышленных зданий)
187.
ПОКРЫТИЯ ЗДАНИЙ ПО СТРОПИЛЬНЫМ ФЕРМАМПокрытие здания состоит из кровли (ограждающих конструкций), несущих элементов (прогонов, стропильных ферм), на которые
опирается кровля, и связей по покрытию. Кроме того, для освещения помещений верхним светом и их естественной вентиляции в
системе покрытия многопролетных зданий устраивают фонари, опирающиеся...
(Инженерные конструкции. Металлические конструкции и конструкции из древесины и пластмасс)
© Studref - Студенческие реферативные статьи и
материалы (info,aт-studref.com) © 2017 - 2023
https://studref.com/542649/stroitelstvo/raschyot_konstruirovanie_stropilnoy_fermy_gnutosvarnyh_profiley
188.
189.
190.
191.
192.
193.
194.
195.
196.
197.
198.
199.
200.
201.
202.
203.
204.
205.
206.
207.
208.
209.
210.
211.
212.
213.
214.
215.
216.
217.
218.
219.
220.
221.
222.
223.
224.
225.
226.
227.
228.
229.
230.
231.
232.
233.
234.
235.
236.
237.
238.
239.
240.
241.
242.
Through co-action between auxiliary triangular structural frames, which are each constructed atopposite ends of a truss girder or arch girder, and a cable stretched between the auxiliary
triangular structural frames, an upwardly directed force is exerted to the truss girder or arch
girder, thereby effectively inducing a load resisting force.
Благодаря взаимодействию между вспомогательными треугольными конструктивными
рамами, каждая из которых выполнена на противоположных концах ферменной балки
или арочной балки, и тросом, натянутым между вспомогательными треугольными
конструктивными рамами, к ферменной балке или арочной балке прикладывается
направленное вверх усилие, тем самым эффективно создавая усилие сопротивления
нагрузке.
A reinforcement structure of a truss bridge or arch bridge is comprised of a truss girder or arch
girder, a first and a second end of which are each provided with a main triangular structural
frame. The main triangular structural frame is provided at an inner side thereof with an auxiliary
triangular structural frame.
Усилительная конструкция ферменного моста или арочного перемычки состоит из
ферменной балки или арочного прогона, первый и второй концы которых снабжены
основным треугольным конструктивным каркасом. Основной треугольный
конструктивный каркас снабжен с внутренней стороны вспомогательным треугольным
конструктивным каркасом
243.
The auxiliary triangular structural frame is joined at vertexes thereof with frame structuralelements at respective sides of the main triangular structural frame.
Вспомогательная треугольная конструктивная рама соединена в своих вершинах с
элементами каркасной конструкции на соответствующих сторонах основной треугольной
конструктивной рамы.
A cable extends in a longitudinal direction of the truss bridge, being stretched between a
nearby part of a joined part at one of the vertexes of the auxiliary triangular structural frame on
a side of the first end of the truss girder
Трос проходит в продольном направлении ферменного моста, будучи натянутым между
близлежащей частью соединяемой детали на одной из вершин вспомогательной
треугольной конструктивной рамы со стороны первого конца ферменной балки
or arch girder and a nearby part of a joined part at a corresponding one of the vertexes of the
auxiliary triangular structural frame on a side of the second end of the truss girder or arch
girder.
244.
или арочной балки и близлежащую часть соединяемой детали на соответствующейодной из вершин вспомогательной треугольной конструктивной рамы со стороны второго
конца стропильной балки или арочной балки.
Deflecting structure, adapted to exert a downwardly directed force to the cable, is inserted
between the cable and a lower chord of the truss girder or arch girder so as to tension the
cable, and an upwardly directed force is exerted to the lower chord by a reaction force
attributable to tension of the cable via the deflecting structure.
Отклоняющая конструкция, приспособленная для приложения направленного
вниз усилия к тросу, вставляется между тросом и нижним поясом ферменной
балки или арочной балки для натяжения троса, и направленное вверх усилие
прикладывается к нижнему поясу за счет силы реакции, относящейся к
натяжению троса через отклоняющая конструкция.
Reinforcement structure of truss bridge or arch bridge
Abstract
Through co-action between auxiliary triangular structural frames which are each
constructed at opposite ends of a truss girder or arch girder and a cable stretched
between the auxiliary triangular structural frames, an upward directing force is exerted
245.
to the truss girder or arch girder, thereby effectively inducing a load resisting force. Areinforcement structure of a truss bridge or arch bridge is comprised of a truss girder
(2) or arch girder a first and a second end of which are each provided with a main
triangular structural frame (6) which is further provided at an inner side thereof with an
auxiliary triangular structural frame (9), the auxiliary triangular structural frame (9)
being joined at vertexes thereof with frame structural elements at the respective sides
of the main triangular structural frame (6), a cable (10) extending in a longitudinal
direction of the truss bridge being stretched between a nearby part of the joined part at
the vertex of the auxiliary triangular structural frame (9) on the side of the first end of
the truss girder (2) or arch girder and a nearby part of the joined part at the
corresponding vertex of the auxiliary triangular structural frame (9) on the side of the
second end of the truss girder (2) or arch girder, deflecting means (11) adapted to exert
a downward directing force to the cable (10) being inserted between the cable (10) and
a lower chord (3) of the truss girder (2) or arch girder so as to tension the cable (10), an
upward directing force being exerted to the lower chord (3) by a reacting force
attributable to tension of the cable (10) through the deflecting means (11).
246.
Благодаря взаимодействию между вспомогательными треугольными конструктивными рамами,каждая из которых выполнена на противоположных концах ферменной балки или арочной балки,
и тросом, натянутым между вспомогательными треугольными конструктивными рамами, к
ферменной балке или арочной балке прикладывается направленное вверх усилие, тем самым
эффективно создавая усилие сопротивления нагрузке.
Усилительная конструкция ферменного моста или арочного перемычки состоит из ферменной
балки или арочного прогона, первый и второй концы которых снабжены основным треугольным
конструктивным каркасом. Основной треугольный конструктивный каркас снабжен с внутренней
стороны вспомогательным треугольным конструктивным каркасом
Трос проходит в продольном направлении ферменного моста, будучи натянутым между
близлежащей частью соединяемой детали на одной из вершин вспомогательной треугольной
конструктивной рамы со стороны первого конца ферменной балки
или арочной балки и близлежащую часть соединяемой детали на соответствующей одной из
вершин вспомогательной треугольной конструктивной рамы со стороны второго конца
стропильной балки или арочной балки.
Отклоняющая конструкция, приспособленная для приложения направленного вниз усилия к
тросу, вставляется между тросом и нижним поясом ферменной балки или арочной балки для
натяжения троса, и направленное вверх усилие прикладывается к нижнему поясу за счет силы
реакции, относящейся к натяжению троса через отклоняющая конструкция.
247.
248.
Through co-action between auxiliary triangular structural frames, which are eachconstructed at opposite ends of a truss girder or arch girder, and a cable stretched
between the auxiliary triangular structural frames, an upwardly directed force is
exerted to the truss girder or arch girder, thereby effectively inducing a load resisting
force. A reinforcement structure of a truss bridge or arch bridge is comprised of a truss
girder or arch girder, a first and a second end of which are each provided with a main
triangular structural frame. The main triangular structural frame is provided at an inner
side thereof with an auxiliary triangular structural frame. The auxiliary triangular
structural frame is joined at vertexes thereof with frame structural elements at
respective sides of the main triangular structural frame. A cable extends in a
longitudinal direction of the truss bridge, being stretched between a nearby part of a
joined part at one of the vertexes of the auxiliary triangular structural frame on a side
of the first end of the truss girder or arch girder and a nearby part of a joined part at a
corresponding one of the vertexes of the auxiliary triangular structural frame on a side
of the second end of the truss girder or arch girder. Deflecting structure, adapted to
exert a downwardly directed force to the cable, is inserted between the cable and a
lower chord of the truss girder or arch girder so as to tension the cable, and an
upwardly directed force is exerted to the lower chord by a reaction force attributable to
tension of the cable via the deflecting structure.
249.
Reinforcement structure of truss bridge or arch bridgeAbstract
Through co-action between auxiliary triangular structural frames which are each constructed at opposite ends of a truss girder or arch girder and a cable stretched between the
auxiliary triangular structural frames, an upward directing force is exerted to the truss girder or arch girder, thereby effectively inducing a load resisting force. A reinforcement
structure of a truss bridge or arch bridge is comprised of a truss girder 2 or arch girder a first and a second end of which are each provided with a main triangular structural
frame 6 which is further provided at an inner side thereof with an auxiliary triangular structural frame 9, the auxiliary triangular structural frame 9 being joined at vertexes
thereof with frame structural elements at the respective sides of the main triangular structural frame 6, a cable 10 extending in a longitudinal direction of the truss bridge being
stretched between a nearby part of the joined part at the vertex of the auxiliary triangular structural frame 9 on the side of the first end of the truss girder 2 or arch girder and a
nearby part of the joined part at the corresponding vertex of the auxiliary triangular structural frame 9 on the side of the second end of the truss girder 2 or arch girder,
deflecting means 11 adapted to exert a downward directing force to the cable 10 being inserted between the cable 10 and a lower chord 3 of the truss girder 2 or arch girder so
as to tension the cable 10, an upward directing force being exerted to the lower chord 3 by a reacting force attributable to tension of the cable 10 through the deflecting means
11.
Images (14)
Classifications
E01D1/005 Bowstring bridges
View 2 more classifications
US20040040100A1
United States
250.
251.
252.
253.
254.
255.
256.
257.
258.
https://t.me/resistance_test т/ф (812) 694-78-10, (921) 962-67-78,(911) 175-84-65, [email protected]
[email protected] [email protected]
[email protected] (921) 944-67-10 , (921) 357-71-04
259.
"СПОСОБ имени Уздина А М ШПРЕНГЕЛЬНОГОУСИЛЕНИЯ ПРОЛЕТНОГО СТРОЕНИЯ мостового
сооружения с использованием треугольных балочных ферм
для сейсмоопасных районов" RU 2024106532 E01D22/00
"СПОСОБ усиления основания пролетного
строения мостовго сооружения с
использованием подвижных треугольных
балочных ферм для сейсмоопасных районв
имени В.В.Путина" RU 2024106154 МПК
E
01 D 21 /06 https://t.me/resistance_test
Фонд поддержки и развития сейсмостойкого
строительства «Защита и безопасность
городов» «Сейсмофонд» при СПб ГАСУ ИНН
260.
: 2014000780 ОГРН : 1022000000824[email protected] Счет получателя СБЕР
№ 40817 810 5 5503 1236845 СБЕР 2202 2056 3053
9333 тел привязан (911) 175-84-65 (812) 694-78-10
Авторы изобртения скрипучего моста, повышенной грузоподьемностью за счеьт шпренгельного
усиленияс, с повышением грузоподъемности в двар раза, пролетного железнодорожного строение
существующего мостовых сооружений, с использованием демпфирующих амортизаторо. Расчеты и
проект выполнен, учеными Сейсмофонд СПбГАСУ (ИНН 2014000780 ОГРН 1022000000824 ) для
реконструкции старых мостов с использованием шпренгельного усиления, пролетного
железнодорожного реконструируемого существующего мостового строения, с повышением в два
раза грузоподьемности моста, без остновки дижения поездов и автотранспорта, благодаря
большим перемещениеи, за счет использования фланцевызх фрикциооно-подвижных соединений проф
дтн А.М.Уздина,Богданова И.А , Коваленко А.И. Егорова О А, Е.И.Коваленко:выполненную по
изобретению" «Антисейсмическое фланцевое фрикционно -подвижное соединение с
овальными отверстиями, для мостовых сооружений ( RU № 2018105803/20 (008844)
15.02.2018 ) для сейсмоопасных районов" : ДНР, ЛНР, Херсона, Мариуполя, Бахмута, Донецской,
Луганской, Херсонской обл Приобрести альбом " ШИФР 2948358 для обектов инфпростуктуры
железнодорожного транспортс для проельных строений металлических железнодорожных мостов с
ездой по низу на безбалстнызъ\х плитах мостовго полотна пролетами 33-110 для пролетного
строения пролеитом 33-55метров шпренгельным способо м ипользванием АМ-1, АМ-2 выполенных
изобретателями: Коваленко А. И, Егоровой О.А,Уздиным, А. М, Богдановой И.А, тел/факс (812)69478-10, (921) 962-67-78, (911) 175-84-65
[email protected] МИР социальная СБЕР 2202 2056 3053 9333
тел привязан (911) -175-84-65 https;//t.me/resistance_test Карта СБЕР: 2202 2006 4085 5233 Aleksandr
kovalenko Счет получателя 40817 810 5 5503 1236845 Вся стоимость альбома и проектной документации
10 тыс руб [email protected] [email protected] [email protected]
[email protected] (981) 276-49-92 ( 981) 886-5742 https://t.me/resistance_test СПб ГАСУ (921)
44223-36
261.
https://t.me/resistance_test т/ф (812) 694-78-10, (921) 962-67-78,(911) 175-84-65, [email protected]
[email protected] [email protected]
[email protected] (921) 944-67-10 , (921) 357-71-04
Организация Сейсмофонд СПб ГАСУ выполнит проектные работы обследование, экспертиза заключение
по повышению грузоподъемности скрипучего с большими перемещениями металлического
железнодорожного моста со шпренгельным усилением мостового сооружения имени проф Уздина А М
, с ездой понизу на безбаластных плитах мостового полотна, пролетом 33-110 м. ШИФР 2948358
Шпренгельное усиление пролетного строения металлических железнодорожных мостов с ездой по низу
на безбалластных плитах мостового полотна пролетами 33 -110 метров (Пролетное строение пролетами
33 -55 метра) ШИФП 2948358 ОАО "РЖД" 190005, СПб, 2-я Красноармейская ул.д 4 СПб ГАСУ
"Сейсмофонд" ОГРН: 1022000000824 ИНН 2014000780 (911) 175-84-65, (921) 962-67-78
262.
(812) 694-7810 [email protected] [email protected] https://t.me/resistance_test(921) 944-67-10, (996)785-6276 (911) 175-8465 [email protected]
Шпренгельное усиление пролетного строения металлических железнодорожных
мостов с ездой по низу на безбалластных плитах мостового полотна пролетами 33 -110
метров (Пролетное строение пролетами 33 -55 метра) ШИФП 2948358 ОАО "РЖД"
190005, СПб, 2-я Красноармейская ул.д 4 СПбГАСУ "Сейсмофонд" ОГРН:
1022000000824 ИНН 2014000780
263.
Наименование научноНаличие Документпо Состав
исследовательской и эксперимента стандартизации
работ
опытноль ных
(свод
правил, (этапы)
конструкторской работы исследований стандарт и др.)
(да/нет)
при
разработке
которого
предполагается
использование
результатов НИР и
НИОКР
1
2
3
4
Сроки
разработки
Контакты
заявителя
(организация,
контактное
лицо- ФИО,
тел.)
5
264.
Шпренгельное усиление пролетного строения металлических железнодорожныхмостов с ездой по низу на безбалластных плитах мостового полотна пролетами 33 -110
метров (Пролетное строение пролетами 33 -55 метра) ШИФП 2948358 ОАО "РЖД"
190005, СПб, 2-я Красноармейская ул.д 4 СПб ГАСУ "Сейсмофонд" ОГРН:
1022000000824 ИНН 2014000780
В результате выполненных исследований и по данным расчетов вырабатывается
замысел и принимается оптимальное решение на повышение грузоподъемности
мостового сооружения с использованием изобретения "Способ имени А М Уздина
шпренгельного усиления пролетного строения мостового сооружения с треугольных
балочных ферм для сейсмоопасных районов " МПК 01 02 D 22/00 Регистрационный
265.
2024106532 входящий 014405 Дата поступления 07 .03.2024 и "Способ усиленияоснования пролетного строения мостового сооружения с использованием
подвижных балочных ферм для сейсмоопасных районов имени В ,В.Путина " МПК E
01 D 21 /06 Регистрационный 2024106154 Входящий 013574 Дата поступления
05.03.2024
Коваленко Александр Иванович : аспирант ПГУПС, заместитель Президента
организации "Сейсмофонд" СПб ГАСУ https://t.me/resistance_test (911) 175-84-65
Егорова Ольга Александровна заместитель Президента организации "Сейсмофонд"
СПб ГАСУ (965) 753-22-02 [email protected] [email protected]
Уздин Александр Михайлович ПГУПС проф. дтн: заместитель президента организации
Сейсмофонд СПб ГАСУ [email protected] [email protected] 99810 276-49-92
Богданова Ирина Александровна: заместитель Президента организации "Сейсмофод"
при СПб ГАСУ [email protected] (996)785-62-76
Андреева Елена Ивановна Заместитель президента организации "Сейсмофонд" при
СПб ГАСУ (812) 694-78-10 [email protected]
Начальники строительной лаборатории организации "Сейсмофонд" СПБГАСУ Елисеева
Яна Кирилловна [email protected] (921) 962-67-78
266.
Главные инженер проекта организации "Сейсмофод" СПб ГАСУ Елисеева ВладиславКириллович [email protected] (921) 962-67-78
Предложение организации Сейсмофонд СПб ГАСУ, изобретения ученых ПГУПС А.М.Уздина , доц
О.А.Егоровой , аспиранта ПГУПС связанное с поглощением пиковых нагрузок для повышения
грузоподъемности мостовых сооружений , внедренных в Японии США, Канаде, Израиле, Турции, Италии,
Новой Зеландии US 6,892,410 B2 Для конференции ICSBE 2024: Устойчивое развитие в строительстве
мостов, Лондон (09-10 декабря 2024 г)
ICSBE 2024: Sustainability in Bridge Engineering Conference, London (Dec 09-10, 2024)
https://dzen.ru/a/Zgke-51HyTFUof2A
267.
268.
269.
270.
271.
Аннотация. Статья содержит описание технических решений и технологическихопераций по выбору и обоснованию вариантов восстановления разрушенных
железнодорожных мостов частями и подразделениями Железнодорожных войск.
Выполнен сравнительный анализ вариантов восстановления разрушенных
272.
железнодорожных мостов через водные преграды в результате применениявысокоточного оружия вероятного противника.
Ключевые слова: железнодорожный мост; мостовой переход; пролетные строения;
опора; обход; восстановление; ось моста.
The technology of choosing options for the restoration of railway bridges over water barriers
at the present stage
Annotation. The article contains a description of technical solutions and tech≦nological
operations for the selection and justification of options for the restoration of destroyed
railway bridges by units and divisions of the Railway Troops. A compara≦tive analysis of the
options for restoring destroyed railway bridges over water barriers as a result of the use of
high-precision weapons of a potential enemy is carried out.
273.
Key words: railway bridge; bridge passage; spans; support; bypass; restora≦tion; bridge axis.(Заявка заполняется в электронном виде) Фонд поддержки и развития сейсмостойкого строительства
«Защита и безопасность городов» «Сейсмофонд» при СПб ГАСУ
азвание
рганизационноравоваяформа)
онтактное лицо
зыке
ФИО)
олжность
Название Организация «Сейсмофонд» при СПб ГАСУ Фонд поддержки и
развития сейсмостойкого строительства «Защита и безопасность городов»
«Сейсмофонд» при СПб ГАСУ
https://t.me/resistance_test
ам
елефон
(921) 944-67-10, ( 996) 785-62-76, (911) 175-84-65 [email protected]
? Мобильный
елефон
(912) 962-67-78, (996) 798-26-54
Уздин Александр Михайлович sber22022056305393332gmail.com
Зам Президента организации «Сейсмофонд» СПб ГАСУ (981) 276-49-92
Зам Президента организации "Сейсмофнд" СПбГАСУ Коваленко Елена
Ивановна [email protected] [email protected] (812) 694-78-10
Для выставления заключение договора на НИОКР ДОРНИИ Минтранса Федеральным Центром Стандартихации Минстроем на 500 руб реквизиты
организации Сейсмофон" СПб ГАСУ
Полное наименование компании
(с указанием организационно-правовой
Фонд поддержки и развития сейсмостойкого строительства «Защита и безопасность
городов» «Сейсмофонд» СПб ГАСУ ИНН 2014000780 ОГРН 1022000000824 КПП
201401001
274.
формы)Юридический адрес
364024, Республика Чеченская .Грозный, ул.им.С.Ш.Лорсанова, д.6
Фактический адрес
190005, СПб, 2-я Красноармейская ул. д 4 т/ф (812) 694-78-10
ИНН
2014000780
КПП
201401001
Расчетный счет получателя
Карта 2202 2056 3053 9333 Aleksandr Kovalenko
Счет получателя 40817 810 5 5503 1236845
Корреспондентский счет
30101 810 5 0000 0000653
Банк
Северо-Западный Банк ПАО « СБЕР»
БИК
044030653
[email protected]
[email protected]
Телефон, факс, e-mail
[email protected] [email protected]
[email protected]
Зам Президента организации Сейсмофонд
СПб ГАСУ (Ф.И.О. полностью)
Уздин Александр Михайлович [email protected] тел факс (812) 694-78-10
На основании, какого документа действует
На основании протокола общего собрания Фонд поддержки и развития сейсмостойкого
строительства «Защита и безопасность городов» «Сейсмофонд» СПб ГАСУ от
275.
(в случае действия по доверенности указать 06.04.2024 № 12номер/дату и приложить копию)
276.
277.
278.
Техническая литература, раскрывающая вопросы технологии восстановленияжелезнодорожных мостов, разрабатывалась в 1960-90 гг. В последующий период
появились современные технические решения, что потребовало внесения изменений в
некоторые технологические процессы.
279.
280.
281.
282.
283.
284.
285.
286.
287.
288.
289.
290.
291.
292.
293.
294.
295.
296.
297.
298.
299.
300.
301.
302.
303.
304.
305.
306.
307.
308.
309.
310.
311.
312.
313.
314.
315.
316.
317.
318.
319.
320.
321.
322.
323.
324.
325.
326.
327.
328.
329.
330.
331.
332.
333.
334.
335.
336.
337.
338.
339.
340.
341.
342.
343.
344.
345.
346.
347.
348.
349.
350.
351.
352.
353.
354.
355.
356.
357.
358.
359.
360.
361.
362.
363.
364.
365.
366.
367.
368.
369.
370.
371.
372.
373.
ЭЛЕМЕНТЫ ТЕОРИИ ТРЕНИЯ,РАСЧЕТ И ТЕХНОЛОГИЯ ПРИМЕНЕНИЯ
ФРИКЦИОННО-ПОДВИЖНЫХ СОЕДИНЕНИЙ
УЗДИН А.М., ЕЛИСЕЕВ О.Н., , НИКИТИН А.А., ПАВЛОВ В.Е., СИМКИН А.Ю., КУЗНЕЦОВА И.О.
ЭЛЕМЕНТЫ ТЕОРИИ ТРЕНИЯ,
РАСЧЕТ И ТЕХНОЛОГИЯ ПРИМЕНЕНИЯ
ФРИКЦИОННО-ПОДВИЖНЫХ СОЕДИНЕНИЙ
374.
СОДЕРЖАНИЕ1
Введение
3
2
Элементы теории трения и износа
6
3
Методика расчета одноболтовых ФПС
18
3.1
Исходные посылки для разработки методики расчета ФПС
18
3.2
Общее уравнение для определения несущей способности ФПС.
20
3.3
Решение общего уравнения для стыковых ФПС
21
3.4
Решение общего уравнения для нахлесточных ФПС
22
4
Анализ экспериментальных исследований работы ФПС
26
5
Оценка
параметров
диаграммы
деформирования
многоболтовых
фрикционно-подвижных соединений (ФПС)
31
5.1
Общие положения методики расчета многоболтовых ФПС
31
5.2
Построение уравнений деформирования стыковых многоболтовых ФПС
32
5.3
Построение уравнений деформирования нахлесточных многоболтовых 38
ФПС
6
Рекомендации по технологии изготовления ФПС и сооружений с такими
соединениями
6.1
42
Материалы болтов, гаек, шайб и покрытий контактных поверхностей
стальных деталей ФПС и опорных поверхностей шайб
42
6.2
Конструктивные требования к соединениям
43
6.3
Подготовка
контактных
поверхностей
элементов
и
методы
контроля
6.4
45
Приготовление и нанесение протекторной грунтовки ВЖС 83-0287. Требования к загрунтованной поверхности. Методы контроля
6.4.1
Основные требования по технике безопасности при работе с
грунтовкой ВЖС 83-02-87
6.4.2
46
Транспортировка
и
47
хранение
элементов
законсервированных грунтовкой ВЖС 83-02-87
и
деталей,
49
375.
6.5Подготовка и нанесение антифрикционного покрытия на опорные 49
поверхности шайб
6.6
Сборка ФПС
49
7
Список литературы
51
376.
1. ВВЕДЕНИЕСовременный подход к проектированию сооружений, подверженных экстремальным, в частности, сейсмическим нагрузкам исходит из целенаправленного
проектирования предельных состояний конструкций. В литературе [1, 2, 11, 18] такой подход получил название проектирования сооружений с заданными
параметрами предельных состояний. Возможны различные технические реализации отмеченного подхода. Во всех случаях в конструкции создаются узлы, в
которых от экстремальных нагрузок могут возникать неупругие смещения элементов. Вследствие этих смещений нормальная эксплуатация сооружения, как
правило, нарушается, однако исключается его обрушение. Эксплуатационные качества сооружения должны легко восстанавливаться после экстремальных
воздействий. Для обеспечения указанного принципа проектирования и были предложены фрикционно-подвижные болтовые соединения.
Под фрикционно-подвижными соединениями (ФПС) понимаются соединения металлоконструкций высокопрочными болтами, отличающиеся тем, что
отверстия под болты в соединяемых деталях выполнены овальными вдоль направления действия экстремальных нагрузок. При экстремальных нагрузках
происходит взаимная сдвижка соединяемых деталей на величину до 3-4 диаметров используемых высокопрочных болтов. Работа таких соединений имеет целый
ряд особенностей и существенно влияет на поведение конструкции в целом. При этом во многих случаях оказывается возможным снизить затраты на усиление
сооружения, подверженного сейсмическим и другим интенсивным нагрузкам.
ФПС были предложены в НИИ мостов ЛИИЖТа в 1980 г. для реализации принципа проектирования мостовых конструкций с заданными параметрами
предельных состояний. В 1985-86 г.г. эти соединения были защищены авторскими свидетельствами [16-19]. Простейшее стыковое и нахлесточное соединения
приведены на рис.1.1. Как видно из рисунка, от обычных соединений на высокопрочных болтах предложенные в упомянутых работах отличаются тем, что болты
пропущены через овальные отверстия. По замыслу авторов при экстремальных нагрузках должна происходить взаимная подвижка соединяемых деталей вдоль
овала, и за счет этого уменьшаться пиковое значение усилий, передаваемое соединением. Соединение с овальными отверстиями применялись в строительных
конструкциях и ранее, например, можно указать предложения [8, 10 и др]. Однако в упомянутых работах овальные отверстия устраивались с целью упрощения
монтажных работ. Для реализации принципа проектирования конструкций с заданными параметрами предельных состояний необходимо фиксировать предельную
силу трения (несущую способность) соединения.
При использовании обычных болтов их натяжение N не превосходит 80-100 кН, а разброс натяжения N=20-50 кН, что не позволяет прогнозировать
несущую способность такого соединения по трению. При использовании же высокопрочных болтов при том же N натяжение N= 200 - 400 кН, что в принципе
может позволить задание и регулирование несущей способности соединения. Именно эту цель преследовали предложения [3,14-17].
377.
Рис.1.1. Принципиальная схема фрикционно-подвижногосоединения
а) встык , б) внахлестку
1- соединяемые листы; 2 – высокопрочные болты;
3- шайба;4 – овальные отверстия; 5 – накладки.
Однако проектирование и расчет таких соединений вызвал серьезные трудности. Первые испытания ФПС показали, что рассматриваемый класс соединений не
обеспечивает в общем случае стабильной работы конструкции. В процессе подвижки возможна заклинка соединения, оплавление контактных поверхностей
соединяемых деталей и т.п. В ряде случаев имели место обрывы головки болта. Отмеченные исследования позволили выявить способы обработки соединяемых
листов, обеспечивающих стабильную работу ФПС. В частности, установлена недопустимость использования для ФПС пескоструйной обработки листов пакета,
рекомендованы использование обжига листов, нанесение на них специальных мастик или напыление мягких металлов. Эти исследования показали, что расчету и
проектированию сооружений должны предшествовать детальные исследования самих соединений. Однако, до настоящего времени в литературе нет еще
378.
систематического изложения общей теории ФПС даже для одноболтового соединения, отсутствует теория работы многоболтовых ФПС. Сложившаяся ситуациясдерживает внедрение прогрессивных соединений в практику строительства.
В силу изложенного можно заключить, что ФПС весьма перспективны для использования в сейсмостойком строительстве, однако, для этого необходимо
детально изложить, а в отдельных случаях и развить теорию работы таких соединений, методику инженерного расчета самих ФПС и сооружений с такими
соединениями. Целью, предлагаемого пособия является систематическое изложение
теории работы ФПС и практических методов их расчета. В пособии
приводится также и технология монтажа ФПС.
2.ЭЛЕМЕНТЫ ТЕОРИИ ТРЕНИЯ И ИЗНОСА
Развитие науки и техники в последние десятилетия показало, что надежные и долговечные машины, оборудование и
приборы могут быть созданы только при удачном решении теоретических и прикладных задач сухого и вязкого трения, смазки
и износа, т.е. задач трибологии и триботехники.
Трибология – наука о трении и процессах, сопровождающих трение (трибос – трение, логос – наука). Трибология
охватывает экспериментально-теоретические результаты исследований физических (механических, электрических, магнитных,
тепловых), химических, биологических и других явлений, связанных с трением.
Триботехника – это система знаний о практическом применении трибологии при проектировании, изготовлении и
эксплуатации трибологических систем.
С трением связан износ соприкасающихся тел – разрушение поверхностных слоев деталей подвижных соединений, в т.ч.
при резьбовых соединениях. Качество соединения определяется внешним трением в витках резьбы и в торце гайки и головки
болта (винта) с соприкасающейся деталью или шайбой. Основная характеристика крепежного резьбового соединения – усилие
затяжки болта (гайки), - зависит от значения и стабильности моментов сил трения сцепления, возникающих при завинчивании.
Момент сил сопротивления затяжке содержит две составляющих: одна обусловлена молекулярным воздействием в зоне
фактического касания тел, вторая – деформированием тончайших поверхностей слоев контактирующими микронеровностями
взаимодействующих деталей.
379.
Расчет этих составляющих осуществляется по формулам, содержащим ряд коэффициентов, установленных в результатеэкспериментальных исследований. Сведения об этих формулах содержатся в Справочниках «Трение, изнашивание и смазка»
[22](в двух томах) и «Полимеры в узлах трения машин и приборах» [13], изданных в 1978-1980 г.г. издательством
«Машиностроение». Эти Справочники не потеряли своей актуальности и научной обоснованности и в настоящее время.
Полезный для практического использования материал содержится также в монографии Геккера Ф.Р. [5].
Сухое трение. Законы сухого трения
1. Основные понятия: сухое и вязкое трение; внешнее и внутреннее трение, пограничное трение; виды сухого трения.
Трение – физическое явление, возникающее при относительном движении соприкасающихся газообразных, жидких и
твердых тел и вызывающее сопротивление движению тел или переходу из состояния покоя в движение относительно
конкретной системы отсчета.
Существует два вида трения: сухое и вязкое.
Сухое трение возникает при соприкосновении твердых тел.
Вязкое трение возникает при движении в жидкой или газообразной среде, а также при наличии смазки в области
механического контакта твердых тел.
При учете трения (сухого или вязкого) различают внешнее трение и внутренне трение.
Внешнее трение возникает при относительном перемещении двух тел, находящихся в соприкосновении, при этом сила
сопротивления движению зависит от взаимодействия внешних поверхностей тел и не зависит от состояния внутренних частей
каждого тела. При внешнем трении переход части механической энергии во внутреннюю энергию тел происходит только вдоль
поверхности раздела взаимодействующих тел.
Внутреннее трение возникает при относительном перемещении частиц одного и того же тела (твердого, жидкого или
газообразного). Например, внутреннее трение возникает при изгибе металлической пластины или проволоки, при движении
жидкости в трубе (слой жидкости, соприкасающийся со стенкой трубы, неподвижен, другие слои движутся с разными
380.
скоростями и между ними возникает трение). При внутреннем трении часть механической энергии переходит во внутреннююэнергию тела.
Внешнее трение в чистом виде возникает только в случае соприкосновения твердых тел без смазочной прослойки между
ними (идеальный случай). Если толщина смазки 0,1 мм и более, механизм трения не отличается от механизма внутреннего
трения в жидкости. Если толщина смазки менее 0,1 мм, то трение называют пограничным (или граничным). В этом случае учет
трения ведется либо с позиций сухого трения, либо с точки зрения вязкого трения (это зависит от требуемой точности
результата).
В истории развития понятий о трении первоначально было получено представление о внешнем трении. Понятие о
внутреннем трении введено в науку в 1867 г. английским физиком, механиком и математиком Уильямом Томсоном (лордом
Кельвиным).1)
Законы сухого трения
Сухое трение впервые наиболее полно изучал Леонардо да Винчи (1452-1519). В 1519 г. он сформулировал закон трения:
сила трения, возникающая при контакте тела с поверхностью другого тела, пропорциональна нагрузке (силе прижатия тел),
при этом коэффициент пропорциональности – величина постоянная и равна 0,25:
F 0 ,25 N .
Через 180 лет модель Леонарда да Винчи была переоткрыта французским механиком и физиком Гийомом Амонтоном 2),
который ввел в науку понятие коэффициента трения как французской константы и предложил формулу силы трения
скольжения:
1)
*Томсон (1824-1907) в 10-летнем возрасте был принят в университет в Глазго, после обучения в котором перешел в Кембриджский университет и закончил его в 21 год; в
22 года он стал профессором математики. В 1896 г. Томсон был избран почетным членом Петербургской академии наук, а в 1851 г. (в 27 лет) он стал членом Лондонского
королевского общества и 5 лет был его президентом+.
381.
F f N.Кроме того, Амонтон (он изучал равномерное движение тела по наклонной плоскости) впервые предложил формулу:
f tg ,
где f – коэффициент трения; - угол наклона плоскости к горизонту;
В 1750 г. Леонард Эйлер (1707-1783), придерживаясь закона трения Леонарда да Винчи – Амонтона:
F f N,
впервые получил формулу для случая прямолинейного равноускоренного движения тела по наклонной плоскости:
f tg
2S
g t cos 2
2
,
где t – промежуток времени движения тела по плоскости на участке длиной S;
g – ускорение свободно падающего тела.
Окончательную формулировку законов сухого трения дал в 1781 г. Шарль Кулон3)
Эти законы используются до сих пор, хотя и были дополнены результатами работ ученых XIX и XX веков, которые более
полно раскрыли понятия силы трения покоя (силы сцепления) и силы трения скольжения, а также понятия о трении качения и
трении верчения.
Многие десятилетия XX века ученые пытались модернизировать законы Кулона, учитывая все новые и новые результаты
физико-химических исследований явления трения. Из этих исследований наиболее важными являются исследования природы
трения.
Кратко
о
природе
сухого
трения
можно
сказать
следующее.
Поверхность
любого
твердого
тела
обладает
микронеровностями, шероховатостью [шероховатость поверхности оценивается «классом шероховатости» (14 классов) –
2)
Г.Амонтон (1663-1705) – член Французской академии наук с 1699 г.
3) Ш.Кулон (1736-1806) – французский инженер, физик и механик, член Французской академии наук
382.
характеристикой качества обработки поверхности: среднеарифметическим отклонением профиля микронеровностей от среднейлинии и высотой неровностей].
Сопротивление сдвигу вершин микронеровностей в зоне контакта тел – источник трения. К этому добавляются силы
молекулярного сцепления между частицами, принадлежащими разным телам, вызывающим прилипание поверхностей
(адгезию) тел.
Работа
внешней
силы,
приложенной
к
телу,
преодолевающей
молекулярное
сцепление
и
деформирующей
микронеровности, определяет механическую энергию тела, которая затрачивается частично на деформацию (или даже
разрушение) микронеровностей, частично на нагревание трущихся тел (превращается в тепловую энергию), частично на
звуковые эффекты – скрип, шум, потрескивание и т.п. (превращается в акустическую энергию).
В последние годы обнаружено влияние трения на электрическое и электромагнитное поля молекул и атомов
соприкасающихся тел.
Для решения большинства задач классической механики, в которых надо учесть сухое трение, достаточно использовать те
законы сухого трения, которые открыты Кулоном.
В современной формулировке законы сухого трения (законы Кулона) даются в следующем виде:
В случае изотропного трения сила трения скольжения тела А по поверхности тела В всегда направлена в сторону,
противоположную скорости тела А относительно тела В, а сила сцепления (трения покоя) направлена в сторону,
противоположную возможной скорости (рис.2.1, а и б).
Примечание. В случае анизотропного трения линия действия силы трения скольжения не совпадает с линией действия
вектора скорости. (Изотропным называется сухое трение, характеризующееся одинаковым сопротивлением движению тела по
поверхности другого тела в любом направлении, в противном случае сухое трение считается анизотропным).
Сила трения скольжения пропорциональна силе давления на опорную поверхность (или нормальной реакции этой
поверхности), при этом коэффициент трения скольжения принимается постоянным и определяется опытным путем для каждой
383.
пары соприкасающихся тел. Коэффициент трения скольжения зависит от рода материала и его физических свойств, а также отстепени обработки поверхностей соприкасающихся тел:
FСК fСК N
(рис. 2.1 в).
Y
Y
Fск
tg =fск
N
N
V
Fск
X
G
X
G
а)
N
Fсц
б)
в)
Рис.2.1
Сила сцепления (сила трения покоя) пропорциональна силе давления на опорную поверхность (или нормальной реакции
этой поверхности) и не может быть больше максимального значения, определяемого произведением коэффициента сцепления
на силу давления (или на нормальную реакцию опорной поверхности):
FСЦ f СЦ N .
Коэффициент сцепления (трения покоя), определяемый опытным путем в момент перехода тела из состояния покоя в
движение, всегда больше коэффициента трения скольжения для одной и той же пары соприкасающихся тел:
f СЦ f СК .
Отсюда следует, что:
max
FСЦ
FСК ,
поэтому график изменения силы трения скольжения от времени движения тела, к которому приложена эта сила, имеет вид
(рис.2.2).
384.
При переходе тела из состояния покоя в движение сила трения скольжения за очень короткий промежуток времениmax до F
изменяется от FСЦ
СК (рис.2.2). Этим промежутком времени часто пренебрегают.
В последние десятилетия экспериментально показано, что коэффициент трения скольжения зависит от скорости (законы
Кулона установлены при равномерном движении тел в диапазоне невысоких скоростей – до 10 м/с).
fсц
max
Fсц
Fск
fск
V
t
V0
Рис. 2.2
v0
Vкр
Рис. 2. 3
Эту зависимость качественно можно проиллюстрировать графиком f СК ( v ) (рис.2.3).
- значение скорости, соответствующее тому моменту времени, когда сила FСК достигнет своего нормального
значения FСК fСК N ,
v КР
- критическое значение скорости, после которого происходит незначительный рост (на 5-7 %) коэффициента трения
скольжения.
Впервые этот эффект установил в 1902 г. немецкий ученый Штрибек (этот эффект впоследствии был подтвержден
исследованиями других ученых).
Российский ученый Б.В.Дерягин, доказывая, что законы Кулона, в основном, справедливы, на основе адгезионной теории
трения предложил новую формулу для определения силы трения скольжения (модернизировав предложенную Кулоном
формулу):
FСК fСК N S p0 .
385.
[У Кулона: FСК fСК N А , где величина А не раскрыта].В формуле Дерягина: S – истинная площадь соприкосновения тел (контактная площадь), р0 - удельная (на единицу
площади) сила прилипания или сцепления, которое надо преодолеть для отрыва одной поверхности от другой.
Дерягин также показал, что коэффициент трения скольжения зависит от нагрузки N (при соизмеримости сил N и S p0 ) -
fСК ( N ) , причем при увеличении N он уменьшается (бугорки микронеровностей деформируются и сглаживаются,
поверхности тел становятся менее шероховатыми). Однако, эта зависимость учитывается только в очень тонких экспериментах
при решении задач особого рода.
Во многих случаях S p0 N , поэтому в задачах классической механики, в которых следует учесть силу сухого трения,
пользуются, в основном, законом Кулона, а значения коэффициента трения скольжения и коэффициента сцепления
определяют по таблице из справочников физики (эта таблица содержит значения коэффициентов, установленных еще в 1830-х
годах французским ученым А.Мореном (для наиболее распространенных материалов) и дополненных более поздними
экспериментальными данными. [Артур Морен (1795-1880) – французский математик и механик, член Парижской академии наук,
автор курса прикладной механики в 3-х частях (1850 г.)].
В случае анизотропного сухого трения линия действия силы трения скольжения составляет с прямой, по которой
направлена скорость материальной точки угол:
arctg
Fn
,
Fτ
где Fn и Fτ - проекции силы трения скольжения FCK на главную нормаль и касательную к траектории материальной точки,
при этом модуль вектора FCK определяется формулой: FCK Fn2 Fτ2 . (Значения Fn и Fτ определяются по методике МинкинаДоронина).
Трение качения
386.
При качении одного тела по другому участки поверхности одного тела кратковременно соприкасаются с различнымиучастками поверхности другого тела, в результате такого контакта тел возникает сопротивление качению.
В конце XIX и в первой половине XX века в разных странах мира были проведены эксперименты по определению
сопротивления качению колеса вагона или локомотива по рельсу, а также сопротивления качению роликов или шариков в
подшипниках.
В результате экспериментального изучения этого явления установлено, что сопротивление качению (на примере колеса и
рельса) является следствием трех факторов:
1) вдавливание колеса в рельс вызывает деформацию наружного слоя соприкасающихся тел (деформация требует затрат
энергии);
2) зацепление бугорков неровностей и молекулярное сцепление (являющиеся в то же время причиной возникновения
качения колеса по рельсу);
3) трение скольжения при неравномерном движении колеса (при ускоренном или замедленном движении).
(Чистое качение без скольжения – идеализированная модель движения).
Суммарное влияние всех трех факторов учитывается общим коэффициентом трения качения.
Изучая трение качения, как это впервые сделал Кулон, гипотезу абсолютно твердого тела надо отбросить и рассматривать
деформацию соприкасающихся тел в области контактной площадки.
387.
Так как равнодействующая N реакций опорной поверхности в точках зоны контакта смещена в сторону скорости центраколеса, непрерывно набегающего на впереди лежащее микропрепятствие (распределение реакций в точках контакта
несимметричное – рис.2.4), то возникающая при этом пара сил N и G ( G - сила тяжести) оказывает сопротивление качению
(возникновение качения обязано силе сцепления FСЦ , которая образует вторую составляющую полной реакции опорной
поверхности).
Vc
C
N
G
Fск
K
N
K
Рис. 2.4
Момент пары сил N , G называется моментом сопротивления качению. Плечо пары сил
Fсопр
Vс
C
«к» называется коэффициентом трения качения. Он имеет размерность длины.
Момент сопротивления качению определяется формулой:
MC N k ,
где N - реакция поверхности рельса, равная вертикальной нагрузке на колесо с учетом его
Fсц
N
Рис. 2.5
веса.
388.
Колесо, катящееся по рельсу, испытывает сопротивление движению, которое можно отразить силой сопротивления Fсопр ,приложенной к центру колеса (рис.2.5), при этом: Fсопр R N k , где R – радиус колеса,
откуда
Fсопр N
k
N h,
R
где h – коэффициент сопротивления, безразмерная величина.
Эту формулу предложил Кулон. Так как множитель h
k
во много раз меньше коэффициента трения скольжения для тех
R
же соприкасающихся тел, то сила Fсопр на один-два порядка меньше силы трения скольжения. (Это было известно еще в
древности).
Впервые в технике машин это использовал Леонардо да Винчи. Он изобрел роликовый и шариковый подшипники.
Если на рисунке дается картина сил с обозначением силы Fсопр , то силу N показывают без смещения в сторону скорости
(колесо и рельс рассматриваются условно как абсолютно твердые тела).
Повышение угловой скорости качения вызывает рост сопротивления качению. Для колеса железнодорожного экипажа и
рельса рост сопротивления качению заметен после скорости колесной пары 100 км/час и происходит по параболическому
закону. Это объясняется деформациями колес и гистерезисными потерями, что влияет на
коэффициент трения качения.
Fск
Fск
Трение верчения
r
О
Трение верчения возникает при вращении тела, опирающегося на некоторую поверхность. В
Fск
Рис. 2.6.
этом случае следует рассматривать зону контакта тел, в точках которой возникают силы трения
389.
скольжения FСК (если контакт происходит в одной точке, то трение верчения отсутствует – идеальный случай) (рис.2.6).А – зона контакта вращающегося тела, ось вращения которого перпендикулярна к плоскости этой зоны. Силы трения
скольжения, если их привести к центру круга (при изотропном трении), приводятся к паре сил сопротивления верчению,
момент которой:
М сопр N f ск r ,
где r – средний радиус точек контакта тел;
f ск
- коэффициент трения скольжения (принятый одинаковым для всех точек и во всех направлениях);
N – реакция опорной поверхности, равная силе давления на эту поверхность.
Трение верчения наблюдается при вращении оси гироскопа (волчка) или оси стрелки компаса острием и опорной
плоскостью. Момент сопротивления верчению стремятся уменьшить, используя для острия и опоры агат, рубин, алмаз и другие
хорошо отполированные очень прочные материалы, для которых коэффициент трения скольжения менее 0,05, при этом радиус
круга опорной площадки достигает долей мм. (В наручных часах, например, М сопр менее 5 10 5 мм).
Таблица коэффициентов трения скольжения и качения.
f ск
к (мм)
Сталь по стали……0,15
Шарик из закаленной стали по стали……0,01
Сталь по бронзе…..0,11
Мягкая сталь по мягкой стали……………0,05
Железо по чугуну…0,19
Дерево по стали……………………………0,3-0,4
Сталь по льду……..0,027
Резиновая шина по грунтовой дороге……10
Процессы износа контактных поверхностей при трении
390.
Молекулярное сцепление приводит к образованию связей между трущимися парами. При сдвиге они разрушаются. Из-зашероховатости поверхностей трения контактирование пар происходит площадками. На площадках с небольшим давлением
имеет место упругая, а с большим давлением - пластическая деформация. Фактическая площадь соприкасания пар
представляется суммой малых площадок. Размеры площадок контакта достигают 30-50 мкм. При повышении нагрузки они
растут и объединяются. В процессе разрушения контактных площадок выделяется тепло, и могут происходить химические
реакции.
Различают три группы износа: механический - в форме абразивного износа, молекулярно-механический - в форме
пластической деформации или хрупкого разрушения и коррозийно-механический - в форме коррозийного и окислительного
износа. Активным фактором износа служит газовая среда, порождающая окислительный износ. Образование окисной пленки
предохраняет пары трения от прямого контакта и схватывания.
Важным фактором является температурный режим пары трения. Теплота обусловливает физико-химические процессы в
слое трения, переводящие связующие в жидкие фракции, действующие как смазка. Металлокерамические материалы на
железной основе способствуют повышению коэффициента трения и износостойкости.
Важна быстрая приработка трущихся пар. Это приводит к быстрому локальному износу и увеличению контурной площади
соприкосновения тел. При медленной приработке локальные температуры приводят к нежелательным местным изменениям
фрикционного материала. Попадание пыли, песка и других инородных частиц из окружающей среды приводит к абразивному
разрушению не только контактируемого слоя, но и более глубоких слоев. Чрезмерное давление, превышающее порог
схватывания, приводит к разрушению окисной пленки, местным вырывам материала с последующим, абразивным разрушением
поверхности трения.
Под нагруженностью фрикционной пары понимается совокупность условий эксплуатации: давление поверхностей трения,
скорость относительного скольжения пар, длительность одного цикла нагружения, среднечасовое число нагружений,
температура контактного слоя трения.
391.
Главные требования, предъявляемые к трущимся парам, включают стабильность коэффициента трения, высокуюизносостойкость пары трения, малые модуль упругости и твердость материала, низкий коэффициент теплового расширения,
стабильность физико-химического состава и свойств поверхностного слоя, хорошая прирабатываемость фрикционного
материала,
достаточная
механическая
прочность,
антикоррозийность,
несхватываемость,
теплостойкость
и
другие
фрикционные свойства.
Основные факторы нестабильности трения - нарушение технологии изготовления фрикционных элементов; отклонения
размеров отдельных деталей, даже в пределах установленных допусков; несовершенство конструктивного исполнения с
большой чувствительностью к изменению коэффициента трения.
Абразивный износ фрикционных пар подчиняется следующим закономерностям. Износ пропорционален пути трения s,
=ks s,
(2.1)
а интенсивность износа— скорости трения
k s v
(2.2)
Износ не зависит от скорости трения, а интенсивность износа на единицу пути трения пропорциональна удельной нагрузке
р,
kp p
s
(2.3)
Мера интенсивности износа рv не должна превосходить нормы, определенной на практике (pv<С).
Энергетическая концепция износа состоит в следующем.
Для имеющихся закономерностей износа его величина представляется интегральной функцией времени или пути трения
t
s
k p pvdt k p pds .
0
(2.4)
0
В условиях кулонова трения, и в случае kр = const, износ пропорционален работе сил трения W
392.
k w Wkp
f
s
W ; W Fds .
(2.5)
0
Здесь сила трения F=f N = f p ; где f – коэффициент трения, N – сила нормального давления; - контурная площадь
касания пар.
Работа сил трения W переходит в тепловую энергию трущихся пар E и окружающей среды Q
W=Q+ E.
Работа сил кулонова трения при гармонических колебаниях s == а sin t за период колебаний Т == 2л/ определяется
силой трения F и амплитудой колебаний а
W= 4F а.
(2.6)
3. МЕТОДИКА РАСЧЕТА ОДНОБОЛТОВЫХ ФПС
3.1. Исходные посылки для разработки методики расчета ФПС
Исходными посылками для разработки методики расчета ФПС являются экспериментальные исследования
одноболтовых нахлесточных соединений [13], позволяющие вскрыть основные особенности работы ФПС.
Для выявления этих особенностей в НИИ мостов в 1990-1991 гг. были выполнены экспериментальные
исследования
деформирования
нахлесточных
соединений
такого
типа.
Анализ
полученных
диаграмм
деформирования позволил выделить для них 3 характерных стадии работы, показанных на рис. 3.1.
На первой стадии нагрузка Т не превышает несущей способности соединения [Т], рассчитанной как для
обычного соединения на фрикционных высокопрочных болтах.
393.
На второй стадии Т > [Т] и происходит преодоление сил трения по контактным плоскостям соединяемыхэлементов при сохраняющих неподвижность шайбах высокопрочных болтов. При этом за счет деформации
болтов в них растет сила натяжения, и как следствие растут силы трения по всем плоскостям контактов.
На третьей стадии происходит срыв с места одной из шайб и дальнейшее
взаимное смещение соединяемых элементов. В процессе подвижки
наблюдается
интенсивный
сопровождающийся
падением
износ
во
натяжения
всех
болтов
контактных
и,
как
парах,
следствие,
снижение несущей способности соединения.
В процессе испытаний наблюдались следующие случаи выхода из
строя ФПС:
• значительные взаимные перемещения соединяемых деталей, в
Рис.3.1. Характерная диаграмма деформирования
ФПС
1 – упругая работа ФПС;
2 – стадия проскальзывания листов ФПС при
заклиненных шайбах, характеризующаяся ростом
натяжения болта вследствие его изгибной деформации;
3 – стадия скольжения шайбы болта,
характеризующаяся интенсивным износом контактных
поверхностей.
результате которых болт упирается в край овального отверстия и в
конечном итоге срезается;
• отрыв головки болта вследствие малоцикловой усталости;
• значительные пластические деформации болта, приводящие к его
необратимому удлинению и исключению из работы при “обратном ходе"
элементов соединения;
• значительный износ контактных поверхностей, приводящий к ослаблению болта и падению несущей
способности ФПС.
Отмеченные результаты экспериментальных исследований представляют двоякий интерес для описания
работы ФПС. С одной стороны для расчета усилий и перемещений в элементах сооружений с ФПС важно задать
диаграмму деформирования соединения. С другой стороны необходимо определить возможность перехода ФПС
в предельное состояние.
394.
Для описания диаграммы деформирования наиболее существенным представляется факт интенсивногоизноса трущихся элементов соединения, приводящий к падению сил натяжения болта и несущей способности
соединения. Этот эффект должен определять работу как стыковых, так и нахлесточных ФПС. Для нахлесточных
ФПС важным является и дополнительный рост сил натяжения вследствие деформации болта.
Для оценки возможности перехода соединения в предельное состояние необходимы следующие проверки:
а) по предельному износу контактных поверхностей;
б) по прочности болта и соединяемых листов на смятие в случае исчерпания зазора ФПС u0;
в) по несущей способности конструкции в случае удара в момент закрытия зазора ФПС;
г) по прочности тела болта на разрыв в момент подвижки.
Если учесть известные результаты [11,20,21,26], показывающие, что закрытие зазора приводит к
недопустимому росту ускорений в конструкции, то проверки (б) и (в) заменяются проверкой, ограничивающей
перемещения ФПС и величиной фактического зазора в соединении u0.
Решение вопроса об износе контактных поверхностей ФПС и подвижке в соединении должно базироваться
на задании диаграммы деформирования соединения, представляющей зависимость его несущей способности Т
от подвижки в соединении s. Поэтому получение зависимости Т(s) является основным для разработки методов
расчета ФПС и сооружений с такими соединениями. Отмеченные особенности учитываются далее при
изложении теории работы ФПС.
3.2. Общее уравнение для определения несущей способности ФПС
Для
построения
общего
уравнения
деформирования
ФПС
обратимся
к
более
сложному
случаю
нахлесточного соединения, характеризующегося трехстадийной диаграммой деформирования. В случае
стыкового соединения второй участок на диаграмме Т(s) будет отсутствовать.
395.
Первая стадия работы ФПС не отличается от работы обычных фрикционных соединений. На второй итретьей стадиях работы несущая способность соединения поменяется вследствие изменения натяжения болта. В
свою
очередь
натяжение
болта
определяется
его
деформацией
(на второй стадии деформирования
нахлесточных соединений) и износом трущихся поверхностей листов пакета при их взаимном смещении. При
этом для теоретического описания диаграммы деформирования воспользуемся классической теорией износа [5,
14, 23], согласно которой скорость износа V пропорциональна силе нормального давления (натяжения болта) N:
V K N,
(3.1)
где К— коэффициент износа.
В свою очередь силу натяжения болта N можно представить в виде:
N N0 a N1 N2
(3.2)
здесь N 0 - начальное -натяжение болта, а - жесткость болта;
a
EF , где l - длина болта, ЕF - его погонная жесткость,
l
N1 k f ( s ) - увеличение натяжения болта вследствие его деформации;
N2 ( s ) - падение натяжения болта вследствие его пластических деформаций;
s - величина подвижки в соединении, - износ в соединении.
Для стыковых соединений обе добавки N1 N 2 0 .
Если пренебречь изменением скорости подвижки, то скорость V можно представить в виде:
V
d d ds
V ср ,
dt
ds dt
(3.3)
где V ср — средняя скорость подвижки.
После подстановки (3.2) в (3.1) с учетом (3.3) получим уравнение:
k a k N0 к f ( s ) ( s ) ,
(3.4)
396.
где k K / Vср .Решение уравнения (3.4) можно представить в виде:
k N0 a
1
1 e
kas
k e ka( s z ) k f ( z ) ( z ) dz ,
s
0
или
k N0 a
1
e
kas
s
k k f ( z ) ( z ) e kazdz N0 a 1 .
0
(3.5)
3.3. Решение общего уравнения для стыковых ФПС
Для стыковых соединений общий интеграл (3.5) существенно упрощается, так как в этом случае N 1 N 2 0 ,
и обращаются в 0 функции
f(z)
и ( z ) , входящие в (3.5). С учетом сказанного использование интеграла. (3.5)
позволяет получить следующую формулу для определения величины износа :
1 e kas k N0 a 1
(3.6)
Падение натяжения N при этом составит:
N 1 e kas k N0 ,
(3.7)
а несущая способность соединений определяется по формуле:
T T0 f N T0 f 1 e kas k N 0 a 1
(3.8)
T0 1 1 e kas k a 1 .
Как видно из полученной формулы относительная несущая способность
Рис.3.2.Падение несущей способности ФПС в
зависимости от величины подвижки для болта 24
мм при коэффициенте износа k=5 10-8Н-1 для
различной толщины листов пакета l
- l=20 мм; - l=30 мм; - l=40 мм; - l=50 мм;
- l=60 мм; - l=70 мм; - l=40 мм
соединения
КТ
=Т/Т0
определяется
всего
двумя
параметрами
-
коэффициентом износа k и жесткостью болта на растяжение а. Эти
397.
параметры могут быть заданы с достаточной точностью и необходимые для этого данные имеются в справочнойлитературе.
На рис. 3.2 приведены зависимости КТ(s) для болта диаметром 24 мм и коэффициента износа k~5×10-8 H-1
при различных значениях толщины пакета l, определяющей жесткость болта а. При этом для наглядности
несущая способность соединения Т отнесена к своему начальному значению T0, т.е. графические зависимости
представлены в безразмерной форме. Как видно из рисунка, с ростом толщины пакета падает влияние износа
листов на несущую способность соединений. В целом падение несущей способности соединений весьма
существенно и при реальных величинах подвижки s 2 3см составляет для стыковых соединений 80-94%.
Весьма существенно на характер падений несущей способности соединения сказывается коэффициент износа k.
На рис.3.3 приведены зависимости несущей способности соединения от величины подвижки s при k~3×10-8 H-1.
Исследования показывают, что при k > 2 10-7 Н-1 падение несущей
способности соединения превосходит 50%. Такое падение натяжения должно
приводить к существенному росту взаимных смещений соединяемых деталей и
это обстоятельство должно учитываться в инженерных расчетах. Вместе с тем
рассматриваемый
эффект
будет
приводить
к
снижению
нагрузки,
передаваемой соединением. Это позволяет при использовании ФПС в качестве
Рис.3.3. Падение несущей способности ФПС в
зависимости от величины подвижки для болта
24 мм при коэффициенте износа k=3 10-8Н-1 для
различной толщины листов пакета l
- l=20 мм; - l=30 мм; - l=40 мм;
- l=50 мм; - l=60 мм; - l=70 мм; - l=80 мм
сейсмоизолирующего элемента конструкции рассчитывать усилия в ней,
моделируя ФПС демпфером сухого трения.
3.4. Решение общего уравнения для нахлесточных ФПС
Для нахлесточных ФПС общее решение (3.5) определяется видом функций f(s) и >(s).Функция f(s) зависит
от удлинения болта вследствие искривления его оси. Если принять для искривленной оси аппроксимацию в
виде:
398.
u( x ) s sinx
2l
(3.9)
,
где x — расстояние от середины болта до рассматриваемой точки (рис. 3.3), то длина искривленной оси
стержня составит:
1
L
2
1
1
2
1
2
2
du
1 dx
dx
1
s 2 2
1
2
x
8l 2 1
2
2l
2
cos
1 s
2
4l
cos
2
dx 1
2l
1
dx
2
2 2
1 s cos x dx
8l 2
2l
1
2
s 2 2
.
8l
Удлинение болта при этом определится по формуле:
l L l
s 2 2
.
8l
(3.10)
Учитывая, что приближенность представления (3.9) компенсируется коэффициентом k, который может быть
определен из экспериментальных данных, получим следующее представление для f(s):
f(s) s
2
l
.
Для дальнейшего необходимо учесть, что деформирование тела болта будет иметь место лишь до момента
срыва его головки, т.е. при s < s0. Для записи этого факта воспользуемся единичной функцией Хевисайда :
s2
f ( s ) ( s s0 ).
l
(3.11)
Перейдем теперь к заданию функции (s). При этом необходимо учесть следующие ее свойства:
1. пластика проявляется лишь при превышении подвижкой s некоторой величины Sпл, т.е. при Sпл<s<S0.
2. предельное натяжение стержня не превосходит усилия Nт, при котором напряжения в стержне достигнут
предела текучести, т.е.:
lim ( N0 кf ( s ) ( s )) 0 .
s
(3.12)
399.
Указанным условиям удовлетворяет функция (s) следующего вида:( s ) N пл ( NТ N пл ) ( 1 e q( s S пл ) ) 1 ( s s0 ) ( s S пл ).
(3.13)
Подстановка выражений (3.11, 3.12) в интеграл (3.5) приводит к следующим зависимостям износа листов
пакета от перемещения s:
при s<Sпл
s
N0
k
2
2
( 1 e k1as ) s 2
s
1 e k1as ,
a
al
k1a
k1a 2
(3.14)
при Sпл< s<S0
( s ) I ( Sпл ) k1(
( S пл s )
e
e
),
NT
N N пл
1 ek1a( S пл s ) T
k1a
k1 a
(3.15)
k1a( S пл s )
при s<S0
( s ) II ( S0 )
N ( S0 )
( 1 e k 2 a( s S0 ) ).
a
(3.16)
Несущая способность соединения определяется при этом выражением:
T T0 fv a .
(3.17)
Здесь fv— коэффициент трения, зависящий в общем случае от скорости подвижки v. Ниже мы используем
наиболее распространенную зависимость коэффициента трения от скорости, записываемую в виде:
f
f0
,
1 kvV
(3.18)
где kv — постоянный коэффициент.
Предложенная зависимость содержит 9 неопределенных параметров:
k1, k2, kv, S0, Sпл, q, f0, N0, и k0. Эти параметры должны определяться из данных эксперимента.
400.
В отличие от стыковых соединений в формуле (3.17) введено два коэффициента износа - на втором участкедиаграммы
деформирования
износ
определяется
трением
между
листами
пакета
и
характеризуется
коэффициентом износа k1, на третьем участке износ определяется трением между шайбой болта и наружным
листом пакета; для его описания введен коэффициент износа k2.
На рис. 3.4 приведен пример теоретической диаграммы деформирования при реальных значениях
параметров k1 = 0.00001; k2 =0.000016; kv = 0.15; S0 = 10 мм; Sпл = 4 мм; f0 = 0.3; N0 = 300 кН. Как видно из
рисунка, теоретическая диаграмма деформирования соответствует описанным выше экспериментальным
диаграммам.
Рис. 3.4 Теоретическая диаграмма деформирования ФПС
401.
4. АНАЛИЗ ЭКСПЕРИМЕНТАЛЬНЫХИССЛЕДОВАНИЙ РАБОТЫ ФПС
Для анализа работы ФПС и сооружений с такими соединениями необходимы
фактические
данные
о
параметрах
исследуемых
соединений.
Экспериментальные
исследования работы ФПС достаточно трудоемки, однако в 1980-85 гг. такие исследования
были начаты в НИИ мостов А.Ю.Симкиным [3,11]. В частности, были получены записи Т(s)
для нескольких одноболтовых и четырехболтовых соединений.
Для анализа поведения ФПС были испытаны соединения с болтами диаметром 22, 24,
27 и 48 мм. Принятые размеры образцов обусловлены тем, что диаметры 22, 24 и 27 мм
являются наиболее распространенными. Однако при этом в соединении необходимо
размещение слишком большого количества болтов, и соединение становится громоздким.
Для уменьшения числа болтов необходимо увеличение их диаметра. Поэтому было
рассмотрено ФПС с болтами наибольшего диаметра 48 мм. Общий вид образцов показан на
рис. 4.1.
Рис. 4.1 Общий вид образцов ПС с болтами 48 мм
402.
ИССЛЕДОВАНИЙ РАБОТЫ ФПСДля анализа работы ФПС и сооружений с такими соединениями необходимы фактические данные о
параметрах исследуемых соединений. Экспериментальные исследования работы ФПС достаточно трудоемки,
однако в 1980-85 гг. такие исследования были начаты в НИИ мостов А.Ю.Симкиным [3,11]. В частности, были
получены записи Т(s) для нескольких одноболтовых и четырехболтовых соединений.
Для анализа поведения ФПС были испытаны соединения с болтами диаметром 22, 24, 27 и 48 мм. Принятые
размеры образцов обусловлены тем, что диаметры 22, 24 и 27 мм являются наиболее распространенными.
Однако при этом в соединении необходимо размещение слишком большого количества болтов, и соединение
становится громоздким. Для уменьшения числа болтов необходимо увеличение их диаметра. Поэтому было
рассмотрено ФПС с болтами наибольшего диаметра 48 мм. Общий вид образцов показан на рис. 4.1.
Пластины ФПС были выполнены из толстолистовой стали марки 10ХСНД. Высокопрочные болты были
Рис. 4.1 Общий вид образцов
403.
изготовлены тензометрическими из стали 40Х "селект" в соответствии с требованиями [6]. Контактныеповерхности
пластин
были
обработаны
протекторной
цинкосодержащей
грунтовкой
ВЖС-41
после
дробеструйной очистки. Болты были предварительно протарированы с помощью электронного пульта АИ-1 и
при сборке соединений натягивались по этому же пульту в соответствии с тарировочными зависимостями
ручным ключом на заданное усилие натяжения N0.
Испытания проводились на пульсаторах в НИИ мостов и на универсальном динамическом стенде УДС-100
экспериментальной базы ЛВВИСКУ. В испытаниях на стенде импульсная нагрузка на ФПС обеспечивалась путем
удара движущейся массы М через резиновую прокладку в рабочую тележку, связанную с ФПС жесткой тягой.
Масса и скорость тележки, а также жесткость прокладки подбирались таким образом, чтобы при неподвижной
рабочей тележке получился импульс силы с участком, на котором сила сохраняет постоянное значение,
длительностью около 150 мс. Амплитудное значение импульса силы подбиралось из условия некоторого
превышения несущей способности ФПС. Каждый образец доводился до реализации полного смещения по
овальному отверстию.
Во время испытаний на стенде и пресс-пульсаторах контролировались следующие параметры:
• величина динамической продольной силы в пакете ФПС;
• взаимное смещение пластин ФПС;
• абсолютные скорости сдвига пластин ФПС;
• ускорение движения пластин ФПС и ударные массы (для испытаний на стенде).
После каждого нагружения проводился замер напряжения высокопрочного болта.
Из полученных в результате замеров данных наибольший интерес представляют для нас зависимости
продольной силы, передаваемой на соединение (несущей способности ФПС), от величины подвижки S. Эти
зависимости могут быть получены теоретически по формулам, приведенным выше в разделе 3. На рисунках 4.2
- 4.3 приведено графическое
404.
Рис. 4.2, 4.3 Экспериментальные диаграммы деформированияФПС для болтов 22 мм и 24 мм.
представление полученных диаграмм деформирования ФПС. Из рисунков видно, что характер зависимостей Т(s)
соответствует в целом принятым гипотезам и результатам теоретических построений предыдущего раздела. В
частности, четко проявляются три участка деформирования соединения: до проскальзывания элементов
соединения, после проскальзывания листов пакета и после проскальзывания шайбы относительно наружного
листа пакета. Вместе с тем, необходимо отметить существенный разброс полученных диаграмм. Это связано, повидимому, с тем, что в проведенных испытаниях принят наиболее простой приемлемый способ обработки
листов пакета. Несмотря на наличие существенного разброса, полученные диаграммы оказались пригодными
для дальнейшей обработки.
В
результате
предварительной
обработки
экспериментальных
данных
построены
диаграммы
деформирования нахлесточных ФПС. В соответствии с ранее изложенными теоретическими разработками эти
диаграммы должны описываться уравнениями вида (3.14). В указанные уравнения входят 9 параметров:
N0— начальное натяжение; f0 — коэффициент трения покоя;
k0 — коэффициент, определяющий влияние скорости на коэффициент трения скольжения;
k1— коэффициент износа по контакту трущихся листов пакета;
405.
k2— коэффициент износа по контакту листа и шайбы;Sпл — предельное смещение, при котором возникают пластические деформации в теле болта;
S0— предельное смещение, при котором возникает срыв шайбы болта относительно листа пакета;
к
—
коэффициент,
характеризующий
увеличение
натяжения
болта
вследствие
геометрической
нелинейности его работы;
q — коэффициент, характеризующий уменьшение натяжения болта вследствие его пластической работы.
Обработка экспериментальных данных заключалась в определении этих 9 параметров. При этом параметры
варьировались на сетке их возможных значений. Для каждой девятки значений параметров по методу
наименьших квадратов вычислялась величина невязки между расчетной и экспериментальной диаграммами
деформирования, причем невязка суммировалась по точкам цифровки экспериментальной диаграммы.
Для поиска искомых значений параметров для болтов диаметром 24 мм последние варьировались в
следующих пределах:
k1, k2— от 0.000001 до 0.00001 с шагом 0.000001 Н; kv— от 0 до 1 с шагом 0.1 с/мм;
S0 — от величины Sпл до 25 с шагом 1 мм; Sпл — от 1 до 10 с шагом 1 мм;
q— от 0.1 до 1 с шагом 0.1 мм~1; f0— от 0.1 до 0.5 с шагом 0.05;
N0— от 30 до 60 с шагом 5 кН; к — от 0.1 до 1 с шагом 0.1;
406.
На рис. 4.4 и 4.5 приведены характерныедиаграммы деформирования ФПС, полученные
экспериментально
теоретические
и
соответствующие
диаграммы.
им
Сопоставление
расчетных и натурных данных указывают на то,
что подбором параметров ФПС удается добиться
хорошего совпадения натурных и расчетных
диаграмм деформирования ФПС. Расхождение
Рис. 4.5
Рис.4.4
диаграмм на конечном их участке обусловлено
резким падением скорости подвижки перед остановкой, не учитываемым в рамках предложенной теории
расчета ФПС. Для болтов диаметром 24 мм было обработано 8 экспериментальных диаграмм деформирования.
Результаты определения параметров соединения для каждой из подвижек приведены в таблице 4.1.
Таблица 4.1
Результаты определения параметров ФПС
параметры k1106, k2
k ,
S0, SПЛ
q,
f0 N0, к
1
6
-1
N подвижки кН10 , с/мм мм мм мм
кН
1
кН1
11
32
0.25 11
9 0.0000 0.34 105 260
2
8
15
0,24 8
7 0.0004
0.36 152 90
1
3
12
27
0.44 13.5 11.2 0.0001
0.39 125 230
4
4
7
14
0.42 14.6 12 0.0001
0.29 193 130
2
5
14
35
0.1
8 4.2 0.0006
0.3 370 310
1
6
6
11
0.2 12
9 0.0000 0.3 120 100
7
8
20
0.2 19 16 0.0000
0.3 106 130
2
8
8
15
0.3
9 2.5 0.0002
0.35
154 75
1
8
Приведенные
в
таблице
4.1
результаты
вычислений
параметров
соединения
были
статистически
обработаны и получены математические ожидания и среднеквадратичные отклонения для каждого из
407.
параметров. Их значения приведены в таблице 4.2. Как видно из приведенной таблицы, значения параметровхарактеризуются
значительным
разбросом.
Этот
факт
затрудняет
рассмотренной обработкой поверхности (обжиг листов пакета).
применение
одноболтовых
ФПС
с
Вместе с тем, переход от одноболтовых к
многоболтовым соединениям должен снижать разброс в параметрах диаграммы деформирования.
Таблица. 4.2.
Результаты статистической обработки значений параметров ФПС
Значения параметров
Параметры
математическо среднеквадратичн
соединени
е
ое
6я
1
ожидание
отклонение
k1 10 , КН9.25
2.76
6
1
k2 10 , кН21.13
9.06
kv с/мм
0.269
0.115
S0, мм
11.89
3.78
Sпл , мм
8.86
4.32
-1
q, мм
0.00019
0.00022
f0
0.329
0.036
Nо,кН
165.6
87.7
165.6
88.38
5. ОЦЕНКА ПАРАМЕТРОВ ДИАГРАММЫ
ДЕФОРМИРОВАНИЯ МНОГОБОЛТОВЫХ
ФРИКЦИОННО-ПОДВИЖНЫХ СОЕДИНЕНИЙ (ФПС)
5.1. Общие положения методики расчета
408.
многоболтовых ФПСИмеющиеся теоретические и экспериментальные исследования одноболтовых ФПС позволяют перейти к
анализу многоболтовых соединений. Для упрощения задачи примем широко используемое в исследованиях
фрикционных болтовых соединений предположение о том, что болты в соединении работают независимо. В
этом случае математическое ожидание несущей способности T и дисперсию DT (или среднеквадратическое
отклонение T ) можно записать в виде:
T( s )
DT
T ( s , 1 , 2 ,... k ) p1( 1 ) p2 ( 2 )...pk ( k )d 1d 2 ...d k
2
( T T ) p1 p2 ... pk d 1d 2 ...d k
(5.1)
2
... T 2 p1 p2 ... pk d 1d 2 ...d k T
(5.2)
T DT
(5.3)
В приведенных формулах:
T ( s , 1 , 2 ,... k ) - найденная выше зависимость несущей способности T от подвижки s и параметров соединения
i; в нашем случае в качестве параметров выступают коэффициент износа k, смещение при срыве соединения
S0 и др.
pi(ai) — функция плотности распределения i-го параметра; по имеющимся данным нам известны лишь
среднее значение i и их стандарт (дисперсия).
Для
дальнейших
исследований
приняты
два
возможных
закона
распределения
параметров
ФПС:
равномерное в некотором возможном диапазоне изменения параметров min i max и нормальное. Если учесть,
409.
что в предыдущих исследованиях получены величины математических ожиданий i и стандарта i , тосоответствующие функции плотности распределения записываются в виде:
а) для равномерного распределения
pi
1
при 3 3
2 i 3
(5.4)
и pi = 0 в остальных случаях;
б) для нормального распределения
pi
1
i 2
e
a
i i
2 i 2
Результаты
2
(5.5)
.
расчетного
определения
зависимостей
T(s)
и
(s)
при
двух
законах
распределения
сопоставляются между собой, а также с данными натурных испытаний двух, четырех, и восьми болтовых ФПС.
5.2. Построение уравнений деформирования стыковых многоболтовых ФПС
Для вычисления несущей способности соединения сначала рассматривается более простое соединение
встык. Такое соединение характеризуется всего двумя параметрами - начальной несущей способностью Т0 и
коэффициентом износа k. При этом несущая способность одноболтового соединения описывается уравнением:
T=Toe-kas .
(5.6)
В случае равномерного распределения математическое ожидание несущей способности соединения из п
болтов составит:
410.
k T 3dk
dT
kas
T
e
2
3
2
3
k
T
3
k T 3
T0 T 3
T n
T0 T
nT0 e kas
sh( sa k 3 )
sa k
(5.7)
.
При нормальном законе распределения математическое ожидание несущей способности соединения из п
болтов определится следующим образом:
T n
Te
1
kas
T 2
e
( T T ) 2
2 T 2
1
k 2
e
( k k )2
2 k 2
dkdT
( k k )2
( T T ) 2
1
1
2 k 2
2 T 2
kas
n
Te
dT
e
e
dk
.
2
2
T
k
Если учесть, что для любой случайной величины
x
с математическим ожиданием
x
функцией
распределения р(х} выполняется соотношение:
x x p( x ) dx ,
то первая скобка. в описанном выражении для вычисления несущей способности соединения Т равна
математическому ожиданию начальной несущей способности Т0. При этом:
T nT0
1
kas
e
k 2
( k k )2
2 k 2
dk .
Выделяя в показателе степени полученного выражения полный квадрат, получим:
411.
T nT0nT0
1
k 2
1
k 2
k k as k2 2 as k as k2
2 k2
e
2
dk
2
as 2
k k as k2
k
as k
2
2 k2
e
e
dk .
Подынтегральный член в полученном выражении с учетом множителя
1
k 2
представляет не что иное, как
функцию плотности нормального распределения с математическим ожиданием k as k2 и среднеквадратичным
отклонением k . По этой причине интеграл в полученном выражении тождественно равен 1 и выражение для
несущей способности соединения принимает окончательный вид:
T nT0 e
ask
a 2 s 2 k2
2
.
(5.8)
Соответствующие принятым законам распределения дисперсии составляют:
для равномерного закона распределения
2
2
D nT0 e 2 ask 1 T F ( 2 x ) F ( x )2 ,
2
T0
где F ( x )
(5.9)
shx
; x sa k 3
x
для нормального закона распределения
2
2
2 1
D n T0 T2 1 ( A1 ) e A1 T0 e A 1 ( A ) ,
2
где A1 2 as( k2 as k ).
(5.10)
412.
Представляет интерес сопоставить полученные зависимости с аналогичными зависимостями, выведеннымивыше для одноболтовых соединений.
Рассмотрим, прежде всего, характер изменения несущей способности ФПС по мере увеличения подвижки s и
коэффициента износа k для случая использования равномерного закона распределения в соответствии с
формулой (5.4). Для этого введем по аналогии с (5.4) безразмерные характеристики изменения несущей
способности:
относительное падение несущей способности
sh( x )
kas
T
x
1
e
nT0
(5.11)
.
коэффициент перехода от одноболтового к многоболтовому соединению
T
1
nT0 e
kas
sh( x )
.
x
(5.12)
Наконец для относительной величины среднеквадратичного отклонения с с использованием формулы (5.9)
нетрудно получить
1
nT0 e kas
2
1
T2 sh2 x shx
1
.
2 2 x
n
x
T0
(5.13)
Аналогичные зависимости получаются и для случая нормального распределения:
2
1 A
e 1 ( A ) ,
2
(5.14)
2 2
2
k s
1 2 kas
e
1 ( A ) ,
2
2
2
T2
1
1 A
A
1 2 1 ( A1 ) e 1 e 1 ( A ) ,
n
2
T0
(5.15)
(5.16)
413.
где2s2
A k 2 s ka ,
2
A1 2 As ( k2 sa k ) ,
( A )
2
A
2
z
e dz .
0
На рис. 5.1 - 5.2 приведены зависимости i и i от величины подвижки s. Кривые построены при тех же
значениях переменных, что использовались нами ранее при построении зависимости T/T0 для одноболтового
соединения.
Как
видно
из
рисунков,
зависимости
i ( k , s ) аналогичны
зависимостям,
полученным
для
одноболтовых соединений, но характеризуются большей плавностью, что должно благоприятно сказываться на
работе соединения и конструкции в целом.
Особый интерес представляет с нашей точки зрения зависимость коэффициента перехода i ( k , a , s ) . По своему смыслу математическое ожидание несущей способности
многоболтового соединения T получается из несущей способности одноболтового соединения Т1 умножением на , т.е.:
T T1
(5.17)
Согласно (5.12) lim x 1 . В частности, 1 при неограниченном увеличении математического ожидания коэффициента износа k или смещения s. Более того,
при выполнении условия
k k 3
(5.18)
будет иметь место неограниченный рост несущей способности ФПС с увеличением подвижки s, что противоречит смыслу задачи.
Полученный результат ограничивает возможность применения равномерного распределения условием (5.18).
Что касается нормального распределения, то возможность его применения определяется пределом:
lim 2
s
1
lim e ( kas A ) 1 ( A ) .
2 s
Для анализа этого предела учтем известное в теории вероятности соотношение:
414.
x21
1
lim 1 x lim
e 2 .
x
x
x
2
415.
1=а)
S, мм
416.
2=Т/nT0Подвижка S, мм
Рис.5.1. Графики зависимости расчетного снижения несущей способности ФПС от величины подвижки в соединении при различной толщине пакета листов l
а) при использовании равномерного закона распределения параметров ФПС
б) при использовании нормального закона распределения параметров ФПС
● - l=20мм; ▼- l=30мм; □ - l=40мм; - l=50мм; - l=60мм; ○ - l=70мм; - l=80мм;
417.
1а)
S, мм
418.
Коэффициент перехода 2б)
Подвижка S, мм
Рис.5.2. Графики зависимости коэффициента перехода от одноболтового к многоболтовому ФПС от величины подвижки в соединении при различной толщине пакета
листов l
а) при использовании равномерного закона распределения параметров ФПС
б) при использовании нормального закона распределения параметров ФПС
● - l=20мм; - l=30мм; □ - l=40мм; - l=50мм; - l=60мм; ○ - l=70мм; - l=80мм
С учетом сказанного получим:
A2
1
1 2 1
0.
lim 2 lim e kas A
e
s
s 2
A
2
(5.19)
Предел (5.19) указывает на возможность применения нормального закона распределения при любых соотношениях k и k.
Результаты обработки экспериментальных исследований, выполненные ранее, показывают, что разброс значений несущей способности ФПС для случая обработки
поверхностей соединяемых листов путем нанесения грунтовки ВЖС достаточно велик и достигает 50%. Однако даже в этом случае применение ФПС вполне приемлемо, если
419.
перейти от одноболтовых к многоболтовым соединениям. Как следует из полученных формул (5.13, 5.16), для среднеквадратичного отклонения 1 последнее убываетпропорционально корню из числа болтов. На рисунке 5.3 приведена зависимость относительной величины среднеквадратичного отклонения 1 от безразмерного параметра х
для безразмерной подвижки 2-х, 4-х, 9-ти и 16-ти болтового соединений. Значения T и T0 приняты в соответствии с данными выполненных экспериментальных исследований.
Как видно из графика, уже для 9-ти болтового соединения разброс значений несущей способности Т не превосходит 25%, что следует считать вполне приемлемым.
Рис.5.3. Зависимость относительного разброса несущей
способности ФПС от величины подвижки при различном
числе болтов n
5.3. Построение уравнений деформирования нахлесточных многоболтовых соединений
Распространение использованного выше подхода на расчет нахлесточных соединений достаточно громоздко из-за большого количества случайных параметров,
определяющих работу соединения. Однако с практической точки зрения представляется важным учесть лишь максимальную силу трения Тmax, смещение при срыве соединения
S0 и коэффициент износа k. При этом диаграмма деформирования соединения между точками (0,Т0) и (S0, Tmax) аппроксимируется линейной зависимостью. Для учета излома
графика T(S) в точке S0 введена функция :
420.
1 при 0 S S 00 при S S 0
S , S 0
(5.20)
При этом диаграмма нагружения ФПС описывается уравнением:
T ( S ) T1( S , S0 ,T0 ,Tmax ) ( S , S0 ) T2 ( S ,Tmax ,k , S0 ) 1 ( S , S0 ) ,
где T1( S ) T0 ( Tmax T0 )
S
,
S0
(5.21)
T2 ( S ) Tmax e ka( S S0 ) .
Математическое ожидание несущей способности нахлесточного соединения из n болтов определяется следующим интегралом:
T n
T ( S ) p( k ) p( S0 ) p( Tmax ) dk dS0 dT0 dTmax n I1 I 2
(5.22)
k S0 T0 Tmax
Обратимся сначала к вычислению первого интеграла. После подстановки в (5.22) представления для Т1 согласно (5.20) интеграл I1 может быть представлен в виде суммы
трех интегралов:
s
I 1 T0 ( Tmax T0 ) s , S 0 p( S 0 ) p( T0 ) p( Tmax )
S0
S0 T0 Tmax
dS 0 dT0 dTmax I 1,1 I 1,2 I 1,3
где
I1,1
T0 p( T0 ) ( s ,S0 )p( S0 ) p( T0 ) p( Tmax )dTmax dS0 dT0
S0 T0 Tmax
T0 p( T0 )dT0 s , S0 p( S0 )dS0 Tmax p( Tmax )dTmax
T0
S0
Tmax
Если учесть, что для любой случайной величины x выполняются соотношения:
(5.23)
421.
xp( x )dx x ,p( x )dx 1
и
то получим
I 1,1 T ( s , S0 )p( S0 ) dS0 .
S0
Аналогично
s
I1,2
Tmax S0 ( s ,S0 )p( S0 ) p( T0 ) p( Tmax ) dS0 dT0 dTmax
S0 T0 Tmax
T max
( s , S0 )
S0
S0
p( S0 ) dS0 .
s
I1,3
T0 S0 ( s ,S0 )p( S0 ) p( T0 ) p( Tmax ) dS0 dT0 dTmax
S0 T0 Tmax
T0
S0
( s , S0 )
S0
p( S0 ) dS0 .
Если ввести функции
1 ( s ) ( s , S 0 ) p( S 0 ) dS0
(5.24)
и
( s , S0 )
S0
1( s )
p( S 0 ) dS0 ,
то интеграл I1 можно представить в виде:
(5.25)
422.
I 1 T 1( s ) ( T max T 0 )s 2 ( s ).(5.26)
Если учесть, что на первом участке s < S0, то с учетом (5.20) формулы (5.24) и (5.25) упростятся и примут вид:
1( s ) p( S0 )dS0
(5.27)
s
2( s )
s
p( S0 )
dS0 .
S0
(5.28)
Для нормального распределения p(S0) функция 1 1 erf ( s ) , а функция записывается в виде:
( S0 S 0 )2
2
s
e
2 s2
S0
dS0 .
(5.29)
Для равномерного распределения функции 1 и 2 могут быть представлены аналитически:
1 при s S 0 s 3
1 S0 s 3 s при S 0 s 3 s S 0 s 3
0 при s S 0 s 3 .
(5.30)
S0 s 3
1
ln
при s S 0 s 3
2
3
S
3
0
s
s
S0 s 3
1
2
ln
при S 0 s 3 s S 0 s 3
s
2 s 3
0 при s S 0 s 3
(5.31)
Аналитическое представление для интеграла (5.23) весьма сложно. Для большинства видов распределений
его целесообразно табулировать; для равномерного распределения интегралы I1 и I2 представляются в
замкнутой форме:
423.
S0 s 3S
ln
при S S 0 s 3
T 0 ( T max T 0 )
2
3
S
3
0
s
s
S0 s 3
S0 s 3
1
( T max T 0 )S ln
I1
T 0 S 0 s 3 S ln
(5.32)
s
s
2
3
s
при S 0 s 3 S S 0 s 3
0 при S S 0 3
s
0 при S S 0 s 3
I2 T m
F( S ) F( s 3 )
2 s 3
(5.33)
при S S 0 s 3 ,
причем F ( x ) Ei ax( k k 3 ) Ei ax( k k 3 ) . В формулах (5.32, 5.33) Ei - интегральная показательная функция.
Полученные формулы подтверждены результатами экспериментальных исследований многоболтовых
соединений и рекомендуются к использованию при проектировании сейсмостойких конструкций с ФПС.
424.
6. РЕКОМЕНДАЦИИ ПО ТЕХНОЛОГИИИЗГОТОВЛЕНИЯ ФПС И СООРУЖЕНИЙ С
ТАКИМИ СОЕДИНЕНИЯМИ
Технология изготовления ФПС включает выбор материала элементов соединения,
подготовку контактных поверхностей, транспортировку и хранение деталей, сборку
соединений. Эти вопросы освещены ниже.
6.1. Материалы болтов, гаек, шайб и покрытий
контактных поверхностей стальных деталей ФПС
и опорных поверхностей шайб
Для ФПС следует применять высокопрочные болты по ГОСТ 553-77, гайки по ГОСТ
22354-74, шайбы по ГОСТ 22355-75 с обработкой опорной поверхности по указаниям
раздела 6.4 настоящего пособия. Основные размеры в мм болтов, гаек и шайб и расчетные
площади поперечных сечений в мм2 приведены в табл.6.1.
Таблица 6.1.
Номиналь
Расчетная
Высота
Высота
ный
площадь
головки
гайки
диаметр по сечения
телу по резьбе
по
Размер
Диаметр
Размеры шайб
Толщина
Диаметр
под ключ опис.окр.
внутр.
нар.
гайки
27
29,9
4
18
37
болта
16
201
157
12
15
18
255
192
13
16
30
33,3
4
20
39
20
314
245
14
18
32
35,0
4
22
44
22
380
303
15
19
36
39,6
6
24
50
24
453
352
17
22
41
45,2
6
26
56
27
573
459
19
24
46
50,9
6
30
66
30
707
560
19
24
46
50,9
6
30
66
36
1018
816
23
29
55
60,8
6
39
78
425.
ИЗГОТОВЛЕНИЯ ФПС И СООРУЖЕНИЙ С ТАКИМИ СОЕДИНЕНИЯМИТехнология изготовления ФПС включает выбор материала элементов соединения, подготовку контактных
поверхностей, транспортировку и хранение деталей, сборку соединений. Эти вопросы освещены ниже.
6.1.
Материалы болтов, гаек, шайб и покрытий контактных поверхностей стальных
деталей ФПС и опорных поверхностей шайб
Для ФПС следует применять высокопрочные болты по ГОСТ 553-77, гайки по ГОСТ 22354-74, шайбы по ГОСТ
22355-75 с обработкой опорной поверхности по указаниям раздела 6.4 настоящего пособия. Основные размеры
в мм болтов, гаек и шайб и расчетные площади поперечных сечений в мм2 приведены в табл.6.1.
Таблица 6.1.
Номина Расчетная Высота Высот Разме Диамет
льный
диаметр
болта
площадь головк
сечения
и
а
р под
р
Размеры шайб
Диаметр
внут нар.
на
Толщи
гайки ключ опис.ок
по
р.
р. гайки
по телу по
16
201 резьбе
157
12
15
27
29,9
4
18
37
18
255 192
13
16
30
33,3
4
20
39
20
314 245
14
18
32
35,0
4
22
44
22
380 303
15
19
36
39,6
6
24
50
24
453 352
17
22
41
45,2
6
26
56
27
573 459
19
24
46
50,9
6
30
66
426.
30707 560
19
24
46
50,9
6
30
66
36
1018 816
23
29
55
60,8
6
39
78
42
1386 1120
26
34
65
72,1
8
45
90
48
1810 1472
30
38
75
83,4
8
52
100
Полная длина болтов в случае использования шайб по ГОС 22355-75 назначается в соответствии с данными
табл.6.2.
Таблица 6.2.
Номинальна Длина резьбы 10
16 18 20 22
я
длина резьбы d
40
*
45
38 *
стержня
50
38 42 *
55
38 42 46 *
60
38 42 46 50
65
38 42 46 50
70
38 42 46 50
75
38 42 46 50
80
38 42 46 50
85
38 42 46 50
90
38 42 46 50
95
38 42 46 50
100
38 42 46 50
105
38 42 46 50
110
38 42 46 50
115
38 42 46 50
120
38 42 46 50
125
38 42 46 50
130
38 42 46 50
140
38 42 46 50
150
38 42 46 50
160,
170,
при номинальном диаметре
24 27 30 36 42 48
*
54
54
54
54
54
54
54
54
54
54
54
54
54
54
54
54
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
66
66
66
66
66
66
66
66
66
66
66
66
66
66
78
78
78
78
78
78
78
78
78
78
78
90
90
90
90
90
90
90
90
102
102
102
102
102
102
102
427.
190,200, 44 48 52 56 60 66 72 84 96 108
240,260,280,
220болты с резьбой по всей длине стержня.
Примечание: знаком * отмечены
300
Для консервации контактных поверхностей стальных деталей следует применять фрикционный грунт
ВЖС 83-02-87 по ТУ. Для нанесения на опорные поверхности шайб методом плазменного напыления
антифрикционного покрытия следует применять в качестве материала подложки интерметаллид
ПН851015 по ТУ-14-1-3282-81, для несущей структуры - оловянистую бронзу БРОФ10-8 по ГОСТ, для
рабочего тела - припой ПОС-60 по ГОСТ.
Примечание: Приведенные данные действительны при сроке хранения несобранных конструкций до 1 года.
6.2. Конструктивные требования к соединениям
В конструкциях соединений должна быть обеспечена возможность свободной постановки болтов,
закручивания гаек и плотного стягивания пакета болтами во всех местах их постановки с применением
динамометрических ключей и гайковертов.
Номинальные диаметры круглых и ширина овальных отверстий в элементах для пропуска
высокопрочных болтов принимаются по табл.6.3.
Таблица 6.3.
Группа
Номинальный диаметр болта в мм.
16 18 20 22 24 27 30 36 42 48
соединений
Определяющи 17 19 21 23 25 28 32 37 44 50
х геометрию
Не
20
23
25
28
30
33
36
40
45
52
определяющи
Длины овальных отверстий в элементах для пропуска высокопрочных болтов назначают по
х геометрию
результатам вычисления максимальных абсолютных смещений соединяемых деталей для каждого ФПС
428.
по результатам предварительных расчетов при обеспечении несоприкосновения болтов о края овальныхотверстий, и назначают на 5 мм больше для каждого возможного направления смещения.
ФПС следует проектировать возможно более компактными.
Овальные отверстия одной детали пакета ФПС могут быть не сонаправлены.
Размещение болтов в овальных отверстиях при сборке ФПС устанавливают с учетом назначения ФПС
и направления смещений соединяемых элементов.
При необходимости в пределах одного овального отверстия может быть размещено более одного
болта.
Все контактные поверхности деталей ФПС, являющиеся внутренними для ФПС, должны быть
обработаны грунтовкой ВЖС 83-02-87 после дробеструйной (пескоструйной) очистки.
Не допускается осуществлять подготовку тех поверхностей деталей ФПС, которые являются
внешними поверхностями ФПС.
Диаметр болтов ФПС следует принимать не менее 0,4 от толщины соединяемых пакета соединяемых
деталей.
Во всех случаях несущая способность основных элементов конструкции, включающей ФПС, должна
быть не менее чем на 25% больше несущей способности ФПС на фрикционно-неподвижной стадии
работы ФПС.
Минимально допустимое расстояние от края овального отверстия до края детали должно составлять:
- вдоль направления смещения >= 50 мм.
- поперек направления смещения >= 100 мм.
В соединениях прокатных профилей с непараллельными поверхностями полок или при наличии
непараллельности
наружных
плоскостей
ФПС
должны
предотвращающие перекос гаек и деформацию резьбы.
применяться
клиновидные
шайбы,
429.
Конструкции ФПС и конструкции, обеспечивающие соединение ФПС с основными элементамисооружения, должны допускать возможность ведения последовательного не нарушающего связности
сооружения ремонта ФПС.
6.3. Подготовка контактных поверхностей элементов и методы контроля.
Рабочие контактные поверхности элементов и деталей ФПС должны быть подготовлены посредством
либо пескоструйной очистки в соответствии с указаниями ВСН 163-76, либо дробеструйной очистки в
соответствии с указаниями.
Перед обработкой с контактных поверхностей должны быть удалены заусенцы, а также другие
дефекты, препятствующие плотному прилеганию элементов и деталей ФПС.
Очистка должна производиться в очистных камерах или под навесом, или на открытой площадке при
отсутствии атмосферных осадков.
Шероховатость поверхности очищенного металла должна находиться в пределах 25-50 мкм.
На очищенной поверхности не должно быть пятен масел, воды и других загрязнений.
Очищенные контактные поверхности должны соответствовать первой степени удаления окислов и
обезжиривания по ГОСТ 9022-74.
Оценка шероховатости контактных поверхностей производится визуально сравнением с эталоном
или другими апробированными способами оценки шероховатости.
Контроль степени очистки может осуществляться внешним осмотром поверхности при помощи лупы с
увеличением не менее 6-ти кратного. Окалина, ржавчина и другие загрязнения на очищенной
поверхности при этом не должны быть обнаружены.
Контроль степени обезжиривания осуществляется следующим образом: на очищенную поверхность
наносят 2-3 капли бензина и выдерживают не менее 15 секунд. К этому участку поверхности прижимают
430.
кусок чистой фильтровальной бумаги и держат до полного впитывания бензина. На другой кусокфильтровальной бумаги наносят 2-3 капли бензина. Оба куска выдерживают до полного испарения
бензина. При дневном освещении сравнивают внешний вид обоих кусков фильтровальной бумаги.
Оценку
степени
обезжиривания
определяют
по
наличию
или
отсутствию
масляного
пятна
на
фильтровальной бумаге.
Длительность перерыва между пескоструйной очисткой поверхности и ее консервацией не должна
превышать 3 часов. Загрязнения, обнаруженные на очищенных поверхностях, перед нанесением
консервирующей грунтовки ВЖС 83-02-87 должны быть удалены жидким калиевым стеклом или
повторной очисткой. Результаты проверки качества очистки заносят в журнал.
6.4. Приготовление и нанесение протекторной грунтовки ВЖС 83 -02-87. Требования
к загрунтованной поверхности. Методы контроля
Протекторная
грунтовка
ВЖС
83-02-87
представляет
собой
двуупаковочный
лакокрасочный
материал, состоящий из алюмоцинкового сплава в виде пигментной пасты, взятой в количестве 66,7%
по весу, и связующего в виде жидкого калиевого стекла плотностью 1,25, взятого в количестве 33,3% по
весу.
Каждая партия материалов должна быть проверена по документации на соответствие ТУ. Применять
материалы, поступившие без документации завода-изготовителя, запрещается.
Перед смешиванием составляющих протекторную грунтовку ингредиентов следует довести жидкое
калиевое стекло до необходимой плотности 1,25 добавлением воды.
Для
приготовления
грунтовки
ВЖС
83-02-87
пигментная
часть
и
связующее
тщательно
перемешиваются и доводятся до рабочей вязкости 17-19 сек. при 18-20°С добавлением воды.
Рабочая вязкость грунтовки определяется вискозиметром ВЗ-4 (ГОСТ 9070-59) по методике ГОСТ
17537-72.
431.
Перед и во время нанесения следует перемешивать приготовленную грунтовку до полного поднятияосадка.
Грунтовка ВЖС 83-02-87 сохраняет малярные свойства (жизнеспособность) в течение 48 часов.
Грунтовка ВЖС 83-02-87 наносится под навесом или в помещении. При отсутствии атмосферных
осадков нанесение грунтовки можно производить на открытых площадках.
Температура воздуха при произведении работ по нанесению грунтовки ВЖС 83-02-87 должна быть не
ниже +5°С.
Грунтовка ВЖС 83-02-87 может наноситься методами пневматического распыления, окраски кистью,
окраски терками. Предпочтение следует отдавать пневматическому распылению.
Грунтовка ВЖС 83-02-87 наносится за два раза по взаимно перпендикулярным направлениям с
промежуточной сушкой между слоями не менее 2 часов при температуре +18-20°С.
Наносить грунтовку следует равномерным сплошным слоем, добиваясь окончательной толщины
нанесенного покрытия 90-110 мкм. Время нанесения покрытия при естественной сушке при температуре
воздуха 18-20 С составляет 24 часа с момента нанесения последнего слоя.
Сушка загрунтованных элементов и деталей во избежание попадания атмосферных осадков и других
загрязнений на невысохшую поверхность должна проводится под навесом.
Потеки, пузыри, морщины, сорность, не прокрашенные места и другие дефекты не допускаются.
Высохшая грунтовка должна иметь серый матовый цвет, хорошее сцепление (адгезию) с металлом и не
должна давать отлипа.
Контроль толщины покрытия осуществляется магнитным толщиномером ИТП-1.
Адгезия определяется методом решетки в соответствии с ГОСТ 15140-69 на контрольных образцах,
окрашенных по принятой технологии одновременно с элементами и деталями конструкций.
432.
Результаты проверки качества защитного покрытия заносятся в Журнал контроля качестваподготовки контактных поверхностей ФПС.
6.4.1 Основные требования по технике безопасности при работе
с грунтовкой ВЖС 83-02-87
Для обеспечения условий труда необходимо соблюдать:
"Санитарные
правила
при
окрасочных
работах
с
применением
ручных
распылителей"
(Министерство здравоохранения СССР, № 991-72)
"Инструкцию
по
санитарному
содержанию
помещений
и
оборудования
производственных
предприятий" (Министерство здравоохранения СССР, 1967 г.).
При пневматическом методе распыления, во избежание увеличения туманообразования и расхода
лакокрасочного материала, должен строго соблюдаться режим окраски. Окраску следует производить в
респираторе и защитных очках. Во время окрашивания в закрытых помещениях маляр должен
располагаться
таким
образом,
чтобы
струя
лакокрасочного
материала
имела
направление
преимущественно в сторону воздухозаборного отверстия вытяжного зонта. При работе на открытых
площадках
маляр
должен
расположить
окрашиваемые
изделия
так,
чтобы
ветер
не
относил
распыляемый материал в его сторону и в сторону работающих вблизи людей.
Воздушная магистраль и окрасочная аппаратура должны быть оборудованы редукторами давления и
манометрами. Перед началом работы маляр должен проверить герметичность шлангов, исправность
окрасочной аппаратуры и инструмента, а также надежность присоединения воздушных шлангов к
краскораспределителю и воздушной сети. Краскораспределители, кисти и терки в конце рабочей смены
необходимо тщательно очищать и промывать от остатков грунтовки.
433.
На каждом бидоне, банке и другой таре с пигментной частью и связующим должна быть наклейкаили бирка с точным названием и обозначением этих материалов. Тара должна быть исправной с плотно
закрывающейся крышкой.
При приготовлении и нанесении грунтовки ВЖС 83-02-87 нужно соблюдать осторожность и не
допускать ее попадания на слизистые оболочки глаз и дыхательных путей.
Рабочие и ИТР, работающие на участке консервации, допускаются к работе только
после
ознакомления с настоящими рекомендациями, проведения инструктажа и проверки знаний по технике
безопасности. На участке консервации и в краскозаготовительном помещении не разрешается работать
без спецодежды.
Категорически запрещается прием пищи во время работы. При попадании составных частей
грунтовки или самой грунтовки на слизистые оболочки глаз или дыхательных путей необходимо обильно
промыть загрязненные места.
434.
6.4.2 Транспортировка и хранение элементов и деталей, законсервированныхгрунтовкой
ВЖС 83-02-87
Укладывать, хранить и транспортировать законсервированные элементы и детали нужно так, чтобы
исключить возможность механического повреждения и загрязнения законсервированных поверхностей.
Собирать можно только те элементы и детали, у которых защитное покрытие контактных
поверхностей полностью высохло. Высохшее защитное покрытие контактных поверхностей не должно
иметь загрязнений, масляных пятен и механических повреждений.
При наличии загрязнений и масляных пятен контактные поверхности должны быть обезжирены.
Обезжиривание контактных поверхностей, законсервированных ВЖС 83-02-87, можно производить
водным раствором жидкого калиевого стекла с последующей промывкой водой и просушиванием. Места
механических повреждений после обезжиривания должны быть подконсервированы.
6.5. Подготовка и нанесение антифрикционного покрытия на опорные поверхности
шайб
Производится очистка только одной опорной поверхности шайб в дробеструйной камере каленой
дробью крупностью не более 0,1 мм. На отдробеструенную поверхность шайб методом плазменного
напыления наносится подложка из интерметаллида ПН851015 толщиной . …..м. На подложку из
интерметаллида ПН851015 методом плазменного напыления наносится несущий слой оловянистой
бронзы БРОФ10-8. На несущий слой оловянистой бронзы БРОФ10-8 наносится способом лужения припой
ПОС-60 до полного покрытия несущего слоя бронзы.
435.
6.6. Сборка ФПССборка ФПС проводится с использованием шайб с фрикционным покрытием одной из поверхностей,
при постановке болтов следует располагать шайбы обработанными поверхностями внутрь ФПС.
Запрещается очищать внешние поверхности внешних деталей ФПС. Рекомендуется использование
неочищенных внешних поверхностей внешних деталей ФПС.
Каждый болт должен иметь две шайбы (одну под головкой, другую под гайкой). Болты и гайки
должны быть очищены от консервирующей смазки, грязи и ржавчины, например, промыты керосином и
высушены.
Резьба болтов должна быть прогнана путем провертывания гайки от руки на всю длину резьбы.
Перед навинчиванием гайки ее резьба должна быть покрыта легким слоем консистентной смазки.
Рекомендуется следующий порядок сборки:
совмещают отверстия в деталях и фиксируют их взаимное положение;
устанавливают болты и осуществляют их натяжение гайковертами на 90% от проектного усилия.
При сборке многоболтового ФПС установку болтов рекомендуется начать с болта находящегося в центре
тяжести поля установки болтов, и продолжать установку от центра к границам поля установки болтов;
после проверки плотности стягивания ФПС производят герметизацию ФПС;
болты затягиваются до нормативных усилий натяжения динамометрическим ключом.
436.
Общество с ограниченной ответственностью «С К С Т Р О Й КО М П Л Е К С - 5» СПб, ул. Бабушкина, д. 36 тел./факс 812705-00-65 E-mail: stanislav@stroycomplex-5. ru http://www.
stroycomplex-5. ru
РЕГЛАМЕНТ
МОНТАЖА АМОРТИЗАТОРОВ СТЕРЖНЕВЫХ ДЛЯ СЕЙСМОЗАЩИТЫ
МОСТОВЫХ СООРУЖЕНИЙ
1. Подготовительные работы
1.1 Очистка верхних поверхностей бетона оголовка опоры и пролетного строения
от загрязнений;
1.2. Контрольная съемка положения закладных деталей (фундаментных болтов) в
оголовке опоры и диафрагме железобетонного пролетного строения или отверстий в
металле металлического или сталежелезобетонного пролетного строения с
составлением схемы (шаблона).
1.3. Проверка соответствия положения отверстий для крепления амортизатора к
опоре и к пролетному строению в элементах амортизатора по шаблонам и, при
необходимости, райберовка или рассверловка новых отверстий.
1.4. Проверка высотных и горизонтальных параметров поступившего на монтаж
амортизатора и пространства для его установки на опоре (под диафрагмой). При
необходимости, срубка выступающих частей бетона или устройство подливки на
оголовке опоры.
1.5. Устройство
подмостей в уровне площадки, на которую устанавливается
амортизатор.
2.
Установка и закрепление амортизатора
2.1. Установка амортизаторов с нижним расположением ФПС (под
железобетонные пролетные строения).
437.
2.1.1. Расположение фундаментных болтов для крепления на опоре может бытьдвух видов:
1) болты
расположены внутри основания и при полностью смонтированном
амортизаторе не видны, т.к. закрыты корпусом упора, при этом концы фундаментных
болтов выступают над поверхностью площадки, на которой монтируется амортизатор;
2) болты расположены внутри основания и оканчиваются резьбовыми втулками,
верхние торцы которых расположены заподлицо с бетонной поверхностью;
3) болты расположены у края основания, которое совмещено с корпусом упора, и
после монтажа амортизатора доступ к болтам возможен, при этом концы
фундаментных болтов выступают над поверхностью площадки;
438.
4) болты расположены у края основания и оканчиваются резьбовыми втулками, каки во втором случае
2.1.2. Последовательность операций по монтажу амортизатора в первом случае
приведена ниже.
а) Затяжка болтов ФПС на усилие, предусмотренное проектом.
б) Разборка соединения основания с корпусом упора, собранного на время
транспортировки.
в) Подъем основания амортизатора на подмости в уровне, превышающем уровень
площадки, на которой монтируется амортизатор, на высоту выступающего конца
фундаментного болта.
г) Надвижка основания в проектное положение до совпадения отверстий для
крепления амортизатора с фундаментными болтами, опускание основания на площадку,
затяжка фундаментных болтов, при необходимости срезка выступающих над гайками
концов фундаментных болтов.
д) Подъем сборочной единицы, включающей остальные части амортизатора, на
подмости в уровне установленного основания.
е) Снятие транспортных креплений.
ж) Надвижка упомянутой сборочной единицы на основание до совпадения
отверстий под штифты и резьбовые отверстия под болты в основании с
соответствующими отверстиями в упоре, забивка штифтов в отверстия, затяжка и
законтривание болтов.
з) Завинчивание болтов крепления верхней плиты стержневой пружины в
резьбовые отверстия втулок анкерных болтов на диафрагме пролетного строения. Если
439.
зазор между верхней плитой и нижней плоскостью диафрагмы менее 5мм,производится затяжка болтов. Если зазор более 5 мм, устанавливается опалубка по
контуру верхней плиты, бетонируется или инъектирует- ся зазор, после набора
прочности бетоном или раствором производится затяжка болтов.
и) Восстановление антикоррозийного покрытия.
2.1.3. Операции по монтажу амортизатора во втором случае отличаются от операций
первого случая только тем, что основание амортизатора поднимается на подмости в
уровне площадки, на которой монтируется амортизатор и надвигается до совпадения
резьбовых отверстий во втулках фундаментных болтов с отверстиями под болты в
основании.
2.1.4. Последовательность операций по монтажу амортизатора в третьем случае
приведена ниже.
а) Затяжка болтов ФПС на усилие, предусмотренное проектом.
б) Подъем амортизатора на подмости в уровень, превышающий уровень площадки,
на которой монтируется амортизатор, на высоту выступающего конца фундаментного
болта.
440.
в) Снятие транспортных креплений.г) Надвижка амортизатора в проектное положение до совпадения отверстий для
его крепления с фундаментными болтами, опускание амортизатора на площадку,
затяжка фундаментных болтов.
Далее выполняются операции, указанные в подпунктах 2.1.2.д...2.1.2.и.
2.1.5. Операции по монтажу амортизаторов в четвертом случае отличаются от
операций для третьего случая только тем, что амортизатор поднимается на подмости в
уровень площадки, на которой он монтируется и надвигается до совпадения отверстий
в амортизаторе с резьбовыми отверстиями во втулках.
Установка амортизаторов с верхним расположением ФПС (под металлические
пролетные строения)
2.2.1. Последовательность
и содержание операций по установке на опоры
амортизаторов как с верхним, так и с нижним расположением ФПС одинаковы.
2.2.2. К
металлическому пролетному строению амортизатор прикрепляется
посредством горизонтального упора. После прикрепления амортизатора к опоре
выполняются следующие операции:
1) замеряются зазоры между поверхностями примыкания горизонтального упора к
конструкциям металлического пролетного строения;
2) в отверстия вставляются высокопрочные болты и на них нанизываются гайки;
3) при наличии зазоров более 2 мм в местах расположения болтов вставляются
вильчатые прокладки (вилкообразные шайбы) требуемой толщины;
4) высокопрочные болты затягиваются до проектного усилия.
2.2.
Подъемка амортизатора на подмости в уровне площадки, на которой он будет
смонтирован.
2.4. Демонтаж транспортных креплений.
2.3.
441.
Заместитель генерального директора Л.А. УшаковаСогласовано:
Главный инженер проекта
ОАО «Трансмост»
И.В. Совершаев
Главный инженер проекта ОАО
И.А. Мурох
«Трансмост»
442.
Главный инженер проекта Е.И. Коваленко (812) 694-78-10443.
444.
445.
Рис. 1. Безбалластное мостовое полотно на железобетонных плитах:1 - железобетонная плита; 2 - контруголок; 3 - путевой рельс со скреплениями; 4 - металлическая обойма; 5 - заполнение мелкозернистым бетоном; 6 - высокопрочная шпилька
крепления плиты;
7 — главная или продольная балка.
Примечание. На виде сверху шпильки не показаны
2.3. Для возможности укладки мостового полотна на пролетных строениях различной длины и при различных расстояниях между главными или продольными балками должны
предусматриваться различные марки плит, отличающихся по длине (вдоль моста) и по расстояниям между отверстиями для крепежных шпилек (поперек оси моста).
Опалубочные размеры плит должны быть унифицированы для укладки на пролетных строениях различной длины.
Размеры плит вдоль оси моста должны назначаться из условия их укладки на пролетные строения без устройства монолитных вставок.
Безбалластное мостовое полотно на железобетонных плитах должно иметь ширину не менее 3,20 м для обеспечения безаварийного прохода подвижного состава при сходе с
рельсов.
Толщина плиты на подрельсовых площадках (вдоль оси рельсов) должна соответствовать проектной документации на типовое мостовое полотно.
446.
При новом строительстве разрешается увеличивать толщину безбалластной плиты до 20 см по согласованию с Главным управлением пути МПС.2.4. Сопряжение между плитами и главными или продольными балками может быть выполнено в виде сплошного прокладного слоя или дискретных опор по длине плиты
(вдоль оси пути).
В качестве прокладного слоя могут использоваться обычные или полимерные материалы антисептированные доски и резиновые полосы.
Дискретное опирание может быть выполнено с использованием металлических обойм, заполненных бетоном, прокладок из полимерных материалов и резино-металлических
опор.
Разрешается применение и других видов сопряжении по согласованию с Главным управлением пути МПС.
Устройство сопряжения производится в соответствии с проектной документацией, утвержденной в установленном порядке.
Рис. 2. Узел прикрепления плиты к балке:
1 - шпилька высокопрочная; 2 - шайба 200х110х20; 3 - резиновая шайба 200х110х3;
4 - шайба; 5 -гайка; 6 - сопряжение в виде металлической обоймы, заполненной бетоном;
7 - монтажная деревянная опора
447.
Рис. 3. Высокопрочная шпилька2.5. Плиты мостового полотна, как правило, прикрепляются к балкам высокопрочными шпильками с наружной стороны верхних поясов балок (рис. 2) с расстояниями между
ними не более чем 50 см. На шпильку (рис. 3) сверху устанавливаются гидроизоляционная резиновая прокладка и металлическая шайба, закрывающие овальное отверстие
плиты.
Применение других типов прикреплений допускается по согласованию с Главным управлением пути МПС.
При укладке плит на клепаные балки рекомендуется для крепежных шпилек использовать заклепочные отверстия, при необходимости рассверливаемые до требуемого
диаметра. Спецификация элементов прикрепления плиты к верхнему поясу балки на одно крепление приведена в приложении 1.
2.6. На поверхности плит, в овальных отверстиях, в стыках между плитами и на верхних поясах поперечных балок устраивается гидроизоляция. Отверстия для закладных болтов
рельсовых скреплений гидроизолируются консервационной смазкой.
2.7. Рельсовый путь на плитах укладывается из рельсов типа Р50 и выше. При более легких рельсах на перегоне применяются рельсы типа Р50 на подходах к мосту на
расстояниях не менее 100 м в каждую сторону.
Стыки рельсов на мосту перекрываются шестидырными двухголовыми накладками. Промежуточные рельсовые скрепления типовые (рис. 4, 5; приложение 2).
На подходах к мосту не менее чем по 50 м с каждой стороны должен быть уложен щебеночный балласт независимо от рода балласта на линии.
На больших мостах между температурными пролетами укладываются уравнительные приборы на плитах специальной конструкции. В пределах температурного пролета рельсы
свариваются
448.
Рис. 4. Узел прикрепления рельсов и контруголков к плите:1 — рельсовая подкладка; 2 — скоба для изолирующей втулки; 3 — шайба двухвитковая; 4 — гайка путевая;
5 — болт закладной М22; 6— прокладка под подошву рельса; 7 - путевой рельс; 8 - болт клеммный М22х75;
9 — клемма промежуточная; 10 — втулка изолирующая; 11 - резиновая прокладка под подкладку КБ;
12 - болт М22Х280; 13 - контруголок 160х160х16; 14 - резиновая прокладка под контруголок;
15 - шайба 100х100х10; 16- шайба путевая; 17 - шайба закладная;
18- пробка из тиоколовой мастики или цементного раствора; 19 — консервационная смазка ПВК
449.
Рис.5. Опорная площадка под рельс2.8. Охранные устройства устраиваются в соответствии с указаниями Главного управления пути МПС.
Более подробно об поглотителе для рассеивания пиковых напряжений (нагрузки от
танка) и пиковых поглощений со скрипом по овальным отверстиям и с медной
обожженной гильзой или тросовой гильзы без оплетки, с высокой степени
рассеивания пиковых нагрузок на железнодорожный мост, что экономит до 50
процентом строительных материалов и повышает грузоподъемность моста без
остановки поездов и автомашин в два раза , поэтом японские , китайские,
американские, канадские компаньоны заинтересовались, изучили, уворовали и
внедрили изобретения проф дтн А.М.Уздина в странах блока НАТО, и это очень
печально и обидно !
1. Журнал «Сельское строительство» № 9/95 стр.30 «Отвести опасность»,
А.И.Коваленко
450.
2. Журнал «Жилищное строительство» № 4/95 стр.18 «Использованиесейсмоизолирующего пояса для существующих зданий», А.И.Коваленко
3. Журнал «Жилищное строительство» № 9/95 стр.13 «Сейсмоизоляция малоэтажных
жилых зданий»,
4. Журнал «Монтажные и специальные работы в строительстве» № 4/95 стр. 24-25
«Сейсмоизоляция малоэтажных зданий»,
5. Российская газета от 26.07.95 стр.3 «Секреты сейсмостойкости». А.И.Коваленко.
6. Российская газета от 11.06.95 «Землетрясение: предсказание на завтра»,
А.И.Коваленко
8. Газета «Грозненский рабочий» № 5 февраль 1996 «Честь мундира или
сэкономленные миллиарды»,
9. «Голос Чеченской Республики» 1 февраль 1996 «Башни и баллы» А.И.Коваленко.
10. Республика ЧР № 7 август 1995 «Удар невиданной звезды или через четыре
года». А.И.Коваленко
11. Газета «Земля России» за октябрь 1998 стр. 3 «Уникальные технологии
возведения фундаментов без заглубления – дом на грунте. Строительство на
пучинистых и просадочных грунтах»
12. Газета «Земля России» № 2 ( 26 ) стр. 2-3 « Предложение ученых общественной
организации инженеров «Сейсмофонд» –
Фонда «Защита и безопасность
451.
городов» в области реформы ЖКХ.13. Журнал «Жизнь и безопасность « № 3/96 стр. 290-294 «Землетрясение по
графику» Ждут ли через четыре года планету
«Земля глобальные и
разрушительные потрясения «звездотрясения» А.И.Коваленко, Е.И.Коваленко.
14. Журнал «Монтажные и специальные работы в строительстве» № 11/95 стр. 25
«Датчик регистрации электромагнитных
волн, предупреждающий о
землетрясении - гарантия сохранения вашей жизни!» и другие зарубежные
научные издания и
журналах за 1994- 2004 гг. А.И.Коваленко и др. изданиях С
брошюрой «Как построить сейсмостойкий дом с учетом народного опыта
сейсмостойкого строительства горцами Северного
Кавказа сторожевых башен»
с.79 г. Грозный –1996. А.И.Коваленко в ГПБ им Ленина г. Москва и РНБ СПб пл.
Островского, д.3 .
15. Патент на полезную модель № 165 076 " Опора сейсмостойкая" 10.10.2016 Б.л 28
16. Патент на полезную модель № 154506 "Панель противовзрывная" 27.08.2015 бюл
№ 28
17.Изобретение № 1760020 "Сейсмостойкий фундамент" 07.09.1992
18. Изобретение № 1011847 "Башня" 30.08.1982
19. Изобретение № 1038457 "Сферический резервуар" 30.08.1982
20. Изобретение № 1395500 "Способ изготовления ячеистобетонных изделий на
452.
пористых заполнителях" 15.05.1988 8. Изобретение № 998300 "Захватное устройстводля колонн" 23.02.1983
21.
Захватное устройство сэндвич-панелей № 24717800 опуб 05 05.2011
22. Стена и способ ее возведения № 1728414 опул 19.06.1989
23. Заявки на изобретение № 20181229421/20(47400) от 10.08.2018 «Опора
сейсмоизолирующая «гармошка». Используется Японии.
12. 24.Заявки на изобретение № 2018105803/20 (008844) от 11.05.2018
«Антисейсмическое фланцевое фрикционно-подвижное соединение для
трубопроводов» F 16L 23/02 ,
13. 25.Заявка на изобретение № 2016119967/20 ( 031416) от 23.05.2016 «Опора
сейсмоизолирующая маятниковая» E04 H 9/02.
453.
Материалы хранятся на Кафедре металлических и деревянных конструкций 190005,Санкт-Петербург, 2-я Красноармейская ул., д. 4, СПб ГАСУ у заведующий кафедрой
металлических и деревянных конструкций , дтн проф ЧЕРНЫХ Александр Григорьевич
строительный факультет т/ф (812) 694-78-10, (921) 962-67-78, ( 996) 785-62-76, (911)
175-84-65 https://t.me/resistance_test [email protected] [email protected]
[email protected] [email protected] [email protected]
Шпренгельное усиление пролетного строения металлических железнодорожных
мостов с ездой по низу на безбалластных плитах мостового полотна пролетами 33 -110
метров (Пролетное строение пролетами 33 -55 метра) ШИФП 2948358 ОАО "РЖД"
190005, СПб, 2-я Красноармейская ул.д 4 СПбГАСУ "Сейсмофонд" ОГРН:
1022000000824 ИНН 2014000780
454.
455.
456.
ЭЛЕМЕНТЫ ТЕОРИИ ТРЕНИЯ,РАСЧЕТ И ТЕХНОЛОГИЯ ПРИМЕНЕНИЯ
ФРИКЦИОННО-ПОДВИЖНЫХ СОЕДИНЕНИЙ
УЗДИН А.М., ЕЛИСЕЕВ О.Н., , НИКИТИН А.А., ПАВЛОВ В.Е., СИМКИН А.Ю., КУЗНЕЦОВА И.О.
ЭЛЕМЕНТЫ ТЕОРИИ ТРЕНИЯ,
РАСЧЕТ И ТЕХНОЛОГИЯ ПРИМЕНЕНИЯ
ФРИКЦИОННО-ПОДВИЖНЫХ СОЕДИНЕНИЙ
457.
СОДЕРЖАНИЕ1
Введение
3
2
Элементы теории трения и износа
6
3
Методика расчета одноболтовых ФПС
18
3.1
Исходные посылки для разработки методики расчета ФПС
18
3.2
Общее уравнение для определения несущей способности ФПС.
20
3.3
Решение общего уравнения для стыковых ФПС
21
3.4
Решение общего уравнения для нахлесточных ФПС
22
4
Анализ экспериментальных исследований работы ФПС
26
5
Оценка
параметров
диаграммы
деформирования
многоболтовых
фрикционно-подвижных соединений (ФПС)
31
5.1
Общие положения методики расчета многоболтовых ФПС
31
5.2
Построение уравнений деформирования стыковых многоболтовых ФПС
32
5.3
Построение уравнений деформирования нахлесточных многоболтовых 38
ФПС
6
Рекомендации по технологии изготовления ФПС и сооружений с такими
соединениями
6.1
42
Материалы болтов, гаек, шайб и покрытий контактных поверхностей
стальных деталей ФПС и опорных поверхностей шайб
42
6.2
Конструктивные требования к соединениям
43
6.3
Подготовка
контактных
поверхностей
элементов
и
методы
контроля
6.4
45
Приготовление и нанесение протекторной грунтовки ВЖС 83-0287. Требования к загрунтованной поверхности. Методы контроля
6.4.1
Основные требования по технике безопасности при работе с
грунтовкой ВЖС 83-02-87
6.4.2
46
Транспортировка
и
47
хранение
элементов
законсервированных грунтовкой ВЖС 83-02-87
и
деталей,
49
458.
6.5Подготовка и нанесение антифрикционного покрытия на опорные 49
поверхности шайб
6.6
Сборка ФПС
49
7
Список литературы
51