20.14M
Category: ConstructionConstruction
Similar presentations:

Учебное пособие для студентов строительных вузов по усилению и повышению грузоподъемности строения мостового сооружения

1.

RUSnarodINFO Военно-политическая газета ветеранов боевых действий "Русская народ дружина" № 3 от 23.03.24
Методичка учебное пособие для студентов строительных вузов по усиление и повышение
грузоподъемности пролетного строения мостового сооружения с шпренгельным усилением
металлических железнодорожных мостов с ездой по низу на безбалластных плитах мостового
полотна, пролетами 33-110 метров с большими перемещениями для сейсмоопасных районов
Patent US 6,892, 410 B2 May 17, 2005
Для научной конференции по проектированию мостов в 2024 году (BEI-2024) 22 - 25 июля 2024 г.
3801 Las Vegas Blvd S Лас-Вегас , Невада, США Доклад научное сообщение , сборник тезисов,
организации Сейсмофонд СПбГАСУ для конференции Bridge Engineering Institute (BAY), которая

2.

пройдёт с 22 по 25 июля 2024 года в Лас-Вегасе, США. Это официальное мероприятие Института
мостостроительной инженерии (Bridge Engineering Institute). Оно станет форумом для
международных исследователей и практиков со всего мира» (812) 694-78-10
Bridge Engineering Conference in 2024 (BEI-2024) July 22 - July 25, 2024 3801 Las Vegas Blvd S Las Vegas , NV
United States " ПОЯСНИТЕЛЬНАЯ ЗАПИСКА по повышению грузоподъемности пролетных строений
мостового сооружения , выполненные по заявке на изобретение" "Способ имени
Уздина А. М. шпренгельного усиления пролетного строения мостового
сооружения с использованием трехгранных балочных ферм , для сейсмоопасных
районов" МПК E 04 D 22 /00, выполненные по заявке на изобретение" "Способ
имени Уздина А. М. шпренгельного усиления пролетного строения мостового
сооружения с использованием трехгранных балочных ферм , для сейсмоопасных
районов" МПК E 04 D 22 /00 https://t.me/resistance_test (921) 962-67-78, (921) 94467-78, (996) 785-62-76, (911) 175-84-65
Методичка учебное пособие для студентов строительных вузов по усиление и
повышение грузоподъемности пролетного строения мостового сооружения с
шпренгельным усилением металлических железнодорожных мостов с ездой по низу
на безбалластных плитах мостового полотна, пролетами 33-110 метров с большими
перемещениями для сейсмоопасных районов Patent US 6,892, 410 B2 May 17, 2005
на разработку проектной документации на повышение грузоподъемности аварийных железнодорожных, автомобильных мостовых
сооружений, по японским изобретениям , изобретенных японскими инженерами в 2004 году, с помощью шпренгельного усиления
нижнего пояса фермы-балки , с взаимодействием раскосов фермы при создании усилий в ферме , которое сопратевляется нагрузке и тем

3.

самым повышает грузоподъемность стальной фермы моста , без остановки движения поездов по скрипучему мосту с большими
перемещениями и приспособляемости Изобретенные в СССР проф дтн ЛИИЖТ , а внедрено в Японии , КНР, США , а инженерные и
железнодорожные войска не имеют на вооружении шпренгельной методики усиления или повышения грузоподъемности скрипучих
мостовых сооружений , с проскальзываение фланцевых фрикционно-подвижных соедениях в овальных отверстиях , на высокопрочных
болтах с медной обожженной гильзой или тросовой обмотки вместо медной гильзы , Для Фронта Для Победы , повышающие
грузоподъемность мостового сооружения без остановки поездов в два раза по японском изобретениям № US 6 892 410 В 2 May 17, 2005,
усилением железнодорожного моста из стальных конструкций, с применением замкнутых гнутосварных профилей прямоугольного сечения для системы несущих элементов и
элементов проезжей части армейского пролетного скрипучего ( на фланцевых фрикционно-подвижных соединениях по изобретениям проф дтн ПГУПС Уздина А М №№1143895, 11687755,
1174616, аспирата ПГУПС А.И.Коваленко №№ 2010136746, 165076, 154506 ) строения железнодорожного моста, с быстросъемными упругопластичными , скрипучими и
проскальзываемые, компенсаторам, гасителем вибрационных напряжений от динамических нагрузок с учетом опыта наших американских инженеров из Японии , КНР и
блока НАТО, США, Канады, Великобритании

4.

Методичка учебное пособие для студентов строительных вузов по усиление и
повышение грузоподъемности пролетного строения мостового сооружения с
шпренгельным усилением металлических железнодорожных мостов с ездой по низу
на безбалластных плитах мостового полотна, пролетами 33-110 метров с большими
перемещениями для сейсмоопасных районов Patent US 6,892, 410 B2 May 17, 2005
на курсовой проект по разработке быстровозводимого, быстро
собираемого железнодорожного моста из стальных конструкций покрытий
производственных здании пролетами 18, 24 и 30 м с применением замкнутых
гнутосварных профилей прямоугольного сечения типа «Молодечно» (серия
1.460.3-14 ГПИ «Ленпроектстальконструкция» ) для системы несущих
элементов и элементов проезжей части армейского сборно-разборного

5.

пролетного надвижного строения железнодорожного моста, с
быстросъемными упругопластичными компенсаторам, гасителем
вибрационных напряжений от динамических нагрузок от прохождения
гусеничной груженной военной техники ( Т-72 весит 80 тонн ) с
боеприпасами , со сдвиговой фрикционно-демпфирующей жесткостью с
использованием и учетом опыта японски, китайских, американских
инженеров из блока НАТО, США, Канады, Великобритании
Отклоняющая конструкция, приспособленная для приложения направленного
вниз усилия к тросу, вставляется между тросом и нижним поясом ферменной
балки или арочной балки для натяжения троса, и направленное вверх усилие
прикладывается к нижнему поясу за счет силы реакции, относящейся к
натяжению троса через отклоняющая конструкция.

6.

Современные технологии и проектирование
строительства и эксплуатации пролетных строений
мостовых шпренгельных усилений с использованием
треугольных балочных ферм для гидротехнических
сооружений ( с использованием изобретения "Решетчато
пространственный узел покрытия (перекрытия ) из
перекрестных ферм типа "Новокисловодск" № 153753,
"Комбинированное пространственное структурное покрытие"
№ 80471, и с использованием типовой документации серия
1.460.3-14 , с пролетами 18, 24, 30 метров, типа Молодечно" ,
чертежи КМ ГПИ "Ленпроектстальконструкция" и
изобретений проф дтн ПГУПС Уздина А М №№ 1143895,
1168755, 1174616, заместителя организации "Сейсмофонд"
СПб ГАСУ ( ОГРН 1022000000824 , ИНН 2014000780 ) инж
Коваленко А.И №№ 167076, 1760020, 2010136746
The Uzdin A M METHOD OF SPRENGTHENING THE
SUPERSTRUCTURE of a bridge structure using triangular
girder trusses for earthquake-prone areas IPC E 01 D 22
СПОСОБ имени Уздина А М ШПРЕНГЕЛЬНОГО
УСИЛЕНИЯ ПРОЛЕТНОГО СТРОЕНИЯ мостового
сооружения с использованием треугольных балочных ферм
для сейсмоопасных районов МПК
E 01 D 22 /00
/00
ОПОРА СЕЙСМОСТОЙКАЯ
076
RU165
(51) МПКE04H 9/02 (2006.01) Коваленко
Александр Иванович (RU)

7.

Комбинированное пространственное структурное
покрытие № 80471
Помощь для внедрения изобретения "Способ им Уздина А. М.
шпренгельного усиления пролетного строения мостового сооружения с
использованием трехгранных балочных ферм" , аналог "Новокисловодск"
Марутян Александр Суренович МПК Е01ВD 22/00 для ветеранf боевых
действий , инвалида второй группы по общим заболеваниям , изобретателю
по СБЕР карта МИР 2202 2056 3053 9333 тел привязан 911 175 84 65
Aleksandr Kovalenko (996) 785-62-76 [email protected]
https//t.me/resistance_test
(54) СПОСОБ ЗАЩИТЫ ЗДАНИЯ И СООРУЖЕНИЯ ПРИ ВЗРЫВЕ С
ИСПОЛЬЗОВАНИЕМ СДВИГОУСТОЙЧИВЫХ И
ЛЕГКОСБРАСЫВАЕМЫХ СОЕДИНЕНИЙ, ИСПОЛЬЗУЮЩИЕ
СИСТЕМУ ДЕМПФИРОВАНИЯ ФРИКЦИОННОСТИ И
СЕЙСМОИЗОЛЯЦИЮ ДЛЯ ПОГЛОЩЕНИЯ ВЗРЫВНОЙ И
СЕЙСМИЧЕСКОЙ ЭНЕРГИИ
136 746
RU 2010
(51) МПК E04C 2/00 (2006.01)
Коваленко Александр Иванович (RU)
https://t.me/resistance_test т/ф (812) 694-78-10, (921) 944-6710, (911) 175-84-65, (996) 785-62-76
[email protected] [email protected]
[email protected] СБЕР карта 2202 2006 4085 5233
Elena Kovalenko
Reinforcement structure of truss bridge or arch bridge
[email protected]
[email protected] [email protected]
[email protected] СБЕР карта МИР 2202 2006 4085
5233 Elena Kovalenko МИР карта 2202 2056 3053 9333
(921) 175 84 65 т/ф (812) 694-78-10
[email protected]
тел привязан
[email protected]
https://patents.google.com/patent/EP1396582A2/es
https://patentimages.storage.googleapis.com/a3/0b/99/68bd
a2d0c463eb/EP1396582A2.pdf
10

8.

9.

Методичка учебное пособие для студентов строительных вузов пособие по
усиление и реконструкция пролетного строения мостового сооружения с
использованием комбинированных пространственных структур для сейсмоопасных
районов
Методичка учебное пособие для студентов строительных вузов по усиление и
повышение грузоподъемности пролетного строения мостового сооружения с
шпренгельным усилением металлических железнодорожных мостов с ездой по низу
на безбалластных плитах мостового полотна, пролетами 33-110 метров с большими
перемещениями для сейсмоопасных районов Patent US 6,892, 410 B2 May 17, 2005
Благодаря взаимодействию между вспомогательными треугольными
конструктивными рамами, каждая из которых выполнена на противоположных
концах ферменной балки или арочной балки, и тросом, натянутым между
вспомогательными треугольными конструктивными рамами, к ферменной балке
или арочной балке прикладывается направленное вверх усилие, тем самым
эффективно создавая усилие сопротивления нагрузке.
Усилительная конструкция ферменного моста или арочного перемычки состоит
из ферменной балки или арочного прогона, первый и второй концы которых
снабжены основным треугольным конструктивным каркасом. Основной

10.

треугольный конструктивный каркас снабжен с внутренней стороны
вспомогательным треугольным конструктивным каркасом
Трос проходит в продольном направлении ферменного моста, будучи натянутым
между близлежащей частью соединяемой детали на одной из вершин
вспомогательной треугольной конструктивной рамы со стороны первого конца
ферменной балки
или арочной балки и близлежащую часть соединяемой детали на
соответствующей одной из вершин вспомогательной треугольной
конструктивной рамы со стороны второго конца стропильной балки или арочной
балки.
Отклоняющая конструкция, приспособленная для приложения направленного
вниз усилия к тросу, вставляется между тросом и нижним поясом ферменной
балки или арочной балки для натяжения троса, и направленное вверх усилие
прикладывается к нижнему поясу за счет силы реакции, относящейся к
натяжению троса через отклоняющая конструкция.
Учебно-методическим объединением по образованию в области железнодорожного
транспорта и транспортного строительства в качестве учебного пособия для студентов
строительных вузов для разработки курсовых работ и гуманитарной и интеллектуальной

11.

помощи инженерным и железнодорожным войскам истекающей кровью из –за
отсутствия научной методики по скоростному повышению грузоподъемности
пролетных строений мостовых сооружений, хотя бы повысить грузоподъемность до
60- 90 тонн, за 24 часа как в КНР и СЩА, для грузовых автомашин и военной
техники Все для Фронта Все для Победы
Уздин А М, Егорова О А , Коваленко А.И Усиление и реконструкция мостов на
автомобильных дорогах с использованием шпренгельного усиления пролетного
строения мостового сооружения с использованием трехгранных структур и балочных
ферм для сейсмоопасных районо [Текст]: учеб. пособие / А.М. Уздин; О.А.Егорова
под общ. ред. аспирант СПбЗНИИЭП . А.И. Коваленко; СПб ГАСУ . гос. арх.- строит.
ун-т. - СПб, 2024. - 8 с.
Рассмотрены вопросы содержания мостов на автомобильных дорогах, их
обследования, испытаний и методы определения грузоподъемности. Подробно, на
многих примерах, разобраны способы усиления и реконструкции железобетонных и
металлических мостов. Приведены методы определения расчета экономической
целесообразности реконструкции мостов с учетом их технического состояния и
определения стоимости работ.

12.

13.

Разгрузка конструкций и усиление и реконструкция пролетного строения мостового
сооружения с использованием комбинированных пространственных структур для
сейсмоопасных районов , зависит
от собственного веса может быть осуществлена различными способами в зависимости от
местных условий, особенностей конструкции и способа усиления. Решение выбирают на
основании технико- экономического обоснования вариантов усиления.

14.

15.

Когда высота моста небольшая и воды в реке немного, при усилении балочных
разрезных пролетных строений их разгрузка может быть произведена путем
поддомкрачивания. Для этого под пролетным строением устанавливают временные
опоры или шпальные клетки и пролетные строения поддомкрачиваются. После усиления
и снятия разгружающих устройств элементы усиления (добавочная арматура,
шпренгели) будут работать не только на усилия от временной нагрузки, но и от
собственного веса пролетных строений.

16.

17.

4.2 . Усиление пролетных строений изменением расчетной схемы
Усиление разрезных железобетонных балок может быть произведено путем
превращения их в неразрезные (рис. 4.5). Опорный участок при этом омоноличивается,
возникающий на опоре отрицательный изгибающий момент воспринимается
предварительно напряженной арматурой. Напряжения в пучках арматуры разгружают
перенапряженные элементы. Эти особенности усиления
путем изменения расчетной схемы конструкции делают данный способ во многих
случаях выгодным.
Шпренгели составляют из двух ветвей, располагаемых симметрично по отношению к
ребру главной балки.
Заключение по учебному пособию для студентов строительных вузов по усиление
и повышение грузоподъемности пролетного строения мостового сооружения с
шпренгельным усилением металлических железнодорожных мостов с ездой по низу
на безбалластных плитах мостового полотна, пролетами 33-110 метров с большими
перемещениями для сейсмоопасных районов Patent US 6,892, 410 B2 May 17, 2005
Рассмотренные в пособии вопросы позволят студентам лучше изучить методы
усиления и реконструкции мостов, способы их расчета, методы производства работ и
условия применения и усиление и реконструкция пролетного строения мостового
сооружения с использованием комбинированных пространственных структур для
сейсмоопасных районов

18.

Методы усиления и реконструкции мостов имеют много различных решений. Одно
из самых экономичных является усиление и реконструкция пролетного строения
мостового сооружения с использованием комбинированных пространственных
структур для сейсмоопасных районов
Выбор наиболее рационального и экономичного решения для конкретного случая задача студентов при курсовом и дипломном проектировании.
ТЕРМИНЫ И ОПРЕДЕЛЕНИЯ
Содержание мостов, труб и других искусственных сооружений - это надзор за их
состоянием и проведение необходимых ремонтных работ по предупреждению
появления и устранению на ранней стадии развития возникающих в сооружениях
расстройств и повреждений.
Содержание искусственных сооружений должно обеспечивать исправное их состояние
для бесперебойного и безопасного движения автотранспорта с установленными
скоростями и длительным сроком службы всех элементов конструкции. Содержание
включает в себя комплекс мероприятий и работ, состоящих из текущего содержания и
ремонта.

19.

Усилением моста - это увеличение грузоподъемности. Необходимость в усилении
возникает вследствие потери конструкций несущей способности (физический износ) или
возрастания нагрузок (моральный износ). В отличие от ремонтных работ при усилении
конструкция усиляемого элемента может быть изменена, тогда как при ремонте
конструкция сохраняется. Но генеральные размеры сооружения при усилении
сохраняются.
Реконструкция моста - это капитальное переустройство, повышающее его
технические характеристики, при котором в общем случае понимается приспособление
его к новым изменившимся эксплуатационным нормам и требованиям. При
реконструкции изменяются генеральные размеры: габарит моста, его грузоподъемность;
может быть изменена его схема, увеличен подмостовой габарит, расположение моста в
плане и профиле, увеличена пропускная способность. При реконструкции может быть
сделано усиление отдельных элементов или всего моста. Наиболее распространенным
видом реконструкции мостов на автомобильных дорогах является их уширение и
увеличение грузоподъемности.
Грузоподъемность - это наибольшая масса (класс) транспортного средства
определенного вида, которая может быть безопасно пропущена в транспортном потоке
или отдельном порядке по сооружению.
Несущая способность - это предельное усилие, которое может быть воспринято
сечением элемента до достижения им предельного состояния.
Дефект - это каждое отдельное несоответствие конструкции установленным
требованиям.

20.

Повреждение - это недостаток в виде нарушения формы или целостности элемента,
возникающее в результате силового, температурного или влажностно- го воздействия,
приводящее к снижению его грузоподъемности и долговечности.
Накладные расходы - это расходы, связанные с обслуживанием строительного
производства, содержанием аппарата управления и административных зданий, техникой
безопасности, разъездным характером работ и т.д.
Нормативная прибыль - это плановая прибыль строительной организации,
включаемая в сметную стоимость строительно-монтажных работ.
Капитальные затраты - это единовременные вложения, связанные с производством
работ по строительству и реконструкции
Эксплуатационные затраты - это текущие затраты связанные с содержанием мостов.
БИБЛИОГРАФИЧЕСКИЙ СПИСОК
1. СНиП 2.05.03-84* Мосты и трубы - М., Изд-во Госстрой, 1985 - 199с.
2. СНиП 2.05.02-85 Автомобильные дороги - М., Изд-во Госстрой, 1986 - 51с.
3. СНиП 11-44-78 Автодорожные тоннели - М., Изд-во Госстрой, 1978.
4. ГОСТ 24-451-80 Автодорожные тоннели - М., Изд-во Стандартов, 1980..
5. ГОСТ 26775-97 Габариты подмостовых судоходных пролетов - М., Изд- во
Стандартов, 1997.
6. СНиП 3.06.07-86 Мосты и трубы. Правила обследований и испытаний - М., Изд-во
Госстрой, 1986 - 40 с.
7. ГОСТ 19537-83 Антикоррозионная смазка «Пушечная».

21.

8. СНиП II-22-81 Каменные и армокаменные конструкции - М., Стройиздат, 1983.
9. ВСН 32-89 Инструкция по определению грузоподъемности железобетонных балочных
пролетных строений эксплуатируемых автодорожных мостов - М., Транспорт, 1991 165с.
10. ВСН 51-88 Инструкция по уширению автодорожных мостов - М., Минав- тодор
РСФСР, 1989.
11. ВСН 4-81 Инструкция по проведению осмотров мостов и труб на автомобильных
дорогах - М., Минавтодор РСФСР, 1981.
12. Брик А.А., Давыдов В.Г., Савельев В.Н. Эксплуатация искусственных сооружений на
железных дорогах. - М., Транспорт, 1990.
13. Кириллов В.С. Эксплуатация и реконструкция мостов и труб на автомобильных
дорогах - М., Транспорт, 1971 - 196с.
14. Никонов И. Н. Искусственные сооружения железнодорожного транспорта - М.,
Трансжелдориздат, 1963 - 338с.
15. Осипов В.О., Козьмин Ю.Г. и др. Содержание, реконструкция, усиление и ремонт
мостов и труб. - М., Транспорт 1996 - 471с.
16. Методические рекомендации по содержанию мостовых сооружений на
автомобильных дорогах. - М., Росавтодор, М., 1999.
17. Нормы денежных затрат на ремонт и содержание мостовых сооружений на
автомобильных дорогах. - Утв. ФДС России, М., 1999.
18. ГСЭН - 2001-30 Государственные элементные сметные нормы на строительные
работы. Сборник № 30 Мосты и трубы. М., Стройиздат, 2000.

22.

19. Методические указания по определению величины накладных расходов в
строительстве. - МДС 81 - 33. 2004. М., Стройиздат, 2003. - 51с.
20. Требования к техническому отчету по обследованию и испытаниям мостового
сооружения на автодороге.
21. Справочник проектировщика. Расчетно-теоретический. Государственное
издательство литературы по строительству, архитектуре и строительным материалам.
М.,1960.

23.

24.

25.

Более подробно смотрите учебное пособие для студентов строительных вузов по
усиление и повышение грузоподъемности пролетного строения мостового сооружения
с шпренгельным усилением металлических железнодорожных мостов с ездой по низу
на безбалластных плитах мостового полотна, пролетами 33-110 метров с большими
перемещениями для сейсмоопасных районов Patent US 6,892, 410 B2 May 17, 2005
УСИЛЕНИЕ И РЕКОНСТРУКЦИЯ МОСТОВ НА АВТОМОБИЛЬНЫХ ДОРОГАХ
Учебное пособие для студентов строительных вузов по усиление и повышение
грузоподъемности пролетного строения мостового сооружения с шпренгельным
усилением металлических железнодорожных мостов с ездой по низу на безбалластных
плитах мостового полотна, пролетами 33-110 метров с большими перемещениями для
сейсмоопасных районов Patent US 6,892, 410 B2 May 17, 2005
Федеральное агентство по образованию Государственное образовательное учреждение
высшего профессионального образования Воронежский государственный архитектурно
- строительный университет
В.А. Дементьев, В.П. Волокитин, Н.А. Анисимова

26.

Рекомендовано Учебно-методическим объединением по образованию в области
железнодорожного транспорта и транспортного строительства в качестве учебного
пособия для студентов строительных вузов
Воронеж 2006
ББК 39.112 УДК 625.745.1
Дементьев, В.А. Усиление и реконструкция мостов на автомобильных дорогах
[Текст]: учеб. пособие / В.А. Дементьев, В.П. Волокитин, Н.А. Анисимова; под общ. ред.
проф. В.А. Дементьева; Воронеж. гос. арх.- строит. ун-т. - Воронеж, 2006. - 116 с.
ISBN 5-89040-144-0 Приобрети бесплатно (гуманитарная миссия) для
восстановления разрушенных мостов в ЛНР , ДНР, Херсоне, Мариуполе, Авдеевке
[email protected] 6947810@mail/ru [email protected] (812) 694-78-10
Reinforcement structure of truss bridge or arch bridge
Abstract
Through co-action between auxiliary triangular structural frames which are each
constructed at opposite ends of a truss girder or arch girder and a cable stretched
between the auxiliary triangular structural frames, an upward directing force is exerted
to the truss girder or arch girder, thereby effectively inducing a load resisting force. A
reinforcement structure of a truss bridge or arch bridge is comprised of a truss girder

27.

(2) or arch girder a first and a second end of which are each provided with a main
triangular structural frame (6) which is further provided at an inner side thereof with an
auxiliary triangular structural frame (9), the auxiliary triangular structural frame (9)
being joined at vertexes thereof with frame structural elements at the respective sides
of the main triangular structural frame (6), a cable (10) extending in a longitudinal
direction of the truss bridge being stretched between a nearby part of the joined part at
the vertex of the auxiliary triangular structural frame (9) on the side of the first end of
the truss girder (2) or arch girder and a nearby part of the joined part at the
corresponding vertex of the auxiliary triangular structural frame (9) on the side of the
second end of the truss girder (2) or arch girder, deflecting means (11) adapted to exert
a downward directing force to the cable (10) being inserted between the cable (10) and
a lower chord (3) of the truss girder (2) or arch girder so as to tension the cable (10), an
upward directing force being exerted to the lower chord (3) by a reacting force
attributable to tension of the cable (10) through the deflecting means (11).
Приложение к учебному пособию для студентов строительных вузов по усиление
и повышение грузоподъемности пролетного строения мостового сооружения с
шпренгельным усилением металлических железнодорожных мостов с ездой по низу
на безбалластных плитах мостового полотна, пролетами 33-110 метров с большими
перемещениями для сейсмоопасных районов Patent US 6,892, 410 B2 May 17, 2005

28.

Фигуры СПОСОБ имени Уздина А М ШПРЕНГЕЛЬНОГО УСИЛЕНИЯ ПРОЛЕТНОГО
СТРОЕНИЯ мостового сооружения с использованием треугольных балочных ферм для
сейсмоопасных районов МПК
E 01 D 22 /00

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

93.

94.

95.

96.

97.

98.

99.

100.

101.

102.

103.

104.

105.

106.

107.

108.

109.

110.

111.

112.

113.

114.

115.

116.

117.

118.

119.

120.

121.

122.

123.

124.

125.

126.

127.

128.

129.

130.

РАСЧЁТ И КОНСТРУИРОВАНИЕ СТРОПИЛЬНОЙ ФЕРМЫ ИЗ ГНУТОСВАРНЫХ
ПРОФИЛЕЙ
Требуется рассчитать и сконструировать стропильную ферму покрытия со стержнями из гнутосварных профилей при заданных условиях. При расчёте фермы в примере 5
используются СП 16.13330.2011 «Стальные конструкции. Актуализированная редакция СНиП 11-23—81*», СП 20.13330.2011 «Нагрузки и воздействия. Актуализированная
редакция СНиП 2.01.07—85*».
1. Исходные данные
Район строительства, состав конструкции покрытия и кровли приняты по аналогии с примером 4.
Назначение проектируемого здания — механосборочный цех. Уровень ответственности здания - нормальный. Для примера 5 назначаем коэффициент надёжности по
ответственности уп = 1,0.
Условия эксплуатации здания: здание отапливаемое.
Здание однопролётное, одноэтажное. Габариты объекта (размеры даны по осям здания): длина 90,0 м; пролёт 18,0 м. Высота до низа стропильной конструкции 9,0 м; шаг
колонн 6,0 м.
Краткое описание покрытия: двускатное, бесфонарное, уклон кровли 2,5%. Фермы стальные с параллельными поясами высотой по наружным граням поясов 2,0 м, пролётом
18,0 м, располагаются с шагом Вф = 6,0 м. Устойчивость и геометрическая неизменяемость покрытия обеспечивается постановкой связей по поясам ферм и вертикальных связей
с развязкой их распорками в пролёте и по опорам стропильных конструкций (в соответствии с требованиями *29+). Опирание ферм осуществляется на стальные колонны, тип
узла сопряжения фермы с колоннами — шарнирный.
Кровля рулонная из наплавляемых материалов. В качестве основания под кровлю принята стяжка. Покрытие утеплённое, утеплитель - минераловатные плиты повышенной
жёсткости; толщина утеплителя определяется по теплотехническим строительным нормативам. Пароизоляция принята из наплавляемых материалов согласно нормативам.
Несущие ограждающие конструкции покрытия — стальные профилированные листы, монтируемые по прогонам. Конструкция кровли (состав кровельных слоев), а также
конструкция покрытия принимаются в соответствии с нормами проектирования.
Равномерно распределённая нагрузка от покрытия, в том числе от массы кровли (с учётом всех кровельных слоёв), стяжки, теплоизоляции, пароизоляции, а также от
собственного веса профнастила покрытия: нормативная q"p п = 10 гН/м2; расчётная <7крп = 12,4 гН/м2. Данная нагрузка рассчитана как сумма нагрузок от 1 м2 всех принятых в
проекте слоёв кровли и покрытия с учётом их конструктивных особенностей и в соответствии с укзаниями норм проектирования *31+.
Фермы не подвержены динамическим воздействиям и работают на статические нагрузки.
Согласно *29, табл. В.2+ принимаем материалы конструкций: верхний, нижний пояса и решётка из гнутосварных профилей по ТУ 36-2287-80 и ТУ 67-2287-80 - сталь С255; фасонки

131.

- сталь С255 по ГОСТ 27772—88*; фланцы для стыка верхнего пояса — сталь С255 по ГОСТ 27772—88*; фланцы для стыка нижнего пояса — сталь С345-3 поГОСТ 27772-88*.
Сварка полуавтоматическая в среде углекислого газа (ГОСТ 8050—85*) сварочной проволокой марки СВ-08Г2С (ГОСТ 2246—70*) диаметром 2 мм.
Антикоррозионное покрытие проектируемых стальных конструкций назначается в соответствии с указаниями норм проектирования по защите строительных конструкций от
коррозии.
2. Статический расчёт фермы
Заданный уклон кровли / = 2,5%. Требуемый уклон создаётся за счёт строительного подъёма фермы. При выполнении сбора нагрузок уклоном пренебрегаем ввиду его
незначительности.
Сбор нагрузок ведём в табличной форме (табл. 28).
Расчётные узловые силы на ферму (см. пример 4):
• от постоянной нагрузки Fg = qgd = 100,2 • 3 = 300,6 гН;
• от снеговой нагрузки Fs = psd = 108-3 = 324,0 гН.
Горизонтальную рамную нагрузку условно принимаем Fp = 500 гН. Обозначения стержней при расчёте стропильной фермы — см. на
рис. 64. Усилия в ферме определяем методом построения диаграммы Максвелла—Кремоны (рис. 65). Результаты расчёта заносим в табл. 33.
Рис. 64. Обозначение стержней и узлов фермы из ГСП (пример 5)

132.

133.

Посмотреть оригинал
< Пред
СОДЕРЖАНИЕ
ОРИГИНАЛ
След >
ПРИМЕРЫ РАСЧЁТА И КОНСТРУИРОВАНИЯ СТРОПИЛЬНЫХ ФЕРМ
Расчѐт ферм покрытия в соответствии со СНиП II-23-81* широко представлен в технической литературе. Примеры расчѐта конструкций
покрытия по СП 16.13330.2011 в технической литературе встречаются редко. Опыт применения актуализированных СНиП практически
небольшой, так как новые нормативы были приняты совсем...
(Проектирование и расчѐт стальных ферм покрытий промышленных зданий)
РАСЧЁТ И КОНСТРУИРОВАНИЕ СТРОПИЛЬНОЙ ФЕРМЫ ИЗ ПАРНЫХ УГОЛКОВ
Требуется рассчитать и сконструировать стропильную ферму покрытия со стержнями из парных уголков при определѐнных заданных
условиях. При расчѐте фермы в этом примере используются СП 16.13330.2011 «Стальные конструкции. Актуализированная редакция
СНиП 11-23—81*», СП 20.13330.2011 «Нагрузки и воздействия....
(Проектирование и расчѐт стальных ферм покрытий промышленных зданий)
РАСЧЁТ И КОНСТРУИРОВАНИЕ СТРОПИЛЬНОЙ ФЕРМЫ С ПОЯСАМИ ИЗ ТАВРОВ И РЕШЁТКОЙ ИЗ ПАРНЫХ УГОЛКОВ
Требуется рассчитать и сконструировать стропильную ферму покрытия с поясами из широкополочных тавров и решѐткой из парных
уголков при заданных условиях. При расчѐте фермы в примере 2 применяются СП 16.13330.2011 «Стальные конструкции.
Актуализированная редакция СНиП 11-23-81*», СП 20.13330.2011 «Нагрузки...
(Проектирование и расчѐт стальных ферм покрытий промышленных зданий)
РАСЧЁТ И КОНСТРУИРОВАНИЕ СТРОПИЛЬНОЙ ФЕРМЫ С ВЕРХНИМ ПОЯСОМ ИЗ ШИРОКОПОЛОЧНОГО ДВУТАВРА
Требуется рассчитать и сконструировать стропильную ферму покрытия при заданных условиях. При расчѐте фермы в примере 3
используются СП 16.13330.2011 «Стальные конструкции. Актуализированная редакция СНиП 11-23-81*», СП 20.13330.2011 «Нагрузки и
воздействия. Актуализированная редакция СНиП 2.01.07—85*»....

134.

(Проектирование и расчѐт стальных ферм покрытий промышленных зданий)
РАСЧЁТ И КОНСТРУИРОВАНИЕ СТРОПИЛЬНОЙ ФЕРМЫ ИЗ КРУГЛЫХ ТРУБ
Требуется рассчитать и сконструировать стропильную ферму покрытия со стержнями из круглых труб при заданных условиях. При
расчѐте фермы в примере 4 используются СП 16.13330.2011 «Стальные конструкции. Актуализированная редакция СНиП 11-23 — 81*»,
СП 20.13330.2011 «Нагрузки и воздействия. Актуализированная...
(Проектирование и расчѐт стальных ферм покрытий промышленных зданий)
РАСЧЁТ И КОНСТРУИРОВАНИЕ СТРОПИЛЬНОЙ ФЕРМЫ С ПОЯСАМИ ИЗ ТАВРОВ И РЕШЁТКОЙ ИЗ ОДИНОЧНЫХ УГОЛКОВ
Требуется рассчитать и сконструировать стропильную ферму покрытия с поясами из широкополочных тавров и решѐткой из одиночных
уголков при заданных условиях. При расчѐте фермы в примере 6 используются СП 16.13330.2011 «Стальные конструкции.
Актуализированная редакция СНиП Н-23—81», СП 20.13330.2011 «Нагрузки...
(Проектирование и расчѐт стальных ферм покрытий промышленных зданий)
ФЕРМЫ ИЗ ЗАМКНУТЫХ ГНУТОСВАРНЫХ ПРОФИЛЕЙ (ГСП)
Общие положения Типовые фермы из замкнутых гнутосварных профилей проектируются с узлами без фасонок и опиранием покрытия
непосредственно на верхний пояс. Геометрические схемы решѐтки ферм из ГСП показаны на рис. 11. Углы примыкания раскосов к поясу
должны быть не менее 30°, в этом случае обеспечивается...
(Проектирование и расчѐт стальных ферм покрытий промышленных зданий)
РАСЧЁТ И КОНСТРУИРОВАНИЕ СТРОПИЛЬНОЙ ПРУТКОВОЙ ФЕРМЫ
Требуется рассчитать и сконструировать стропильную прутковую ферму покрытия при заданных условиях. При расчѐте фермы в примере
7 используются СП 16.13330.2011 «Стальные конструкции. Актуализированная редакция СНиП 11-23—81», СП 20.13330.2011 «Нагрузки
и воздействия. Актуализированная редакция СНиП 2.01.07-85*»....
(Проектирование и расчѐт стальных ферм покрытий промышленных зданий)

135.

ПОКРЫТИЯ ЗДАНИЙ ПО СТРОПИЛЬНЫМ ФЕРМАМ
Покрытие здания состоит из кровли (ограждающих конструкций), несущих элементов (прогонов, стропильных ферм), на которые
опирается кровля, и связей по покрытию. Кроме того, для освещения помещений верхним светом и их естественной вентиляции в
системе покрытия многопролетных зданий устраивают фонари, опирающиеся...
(Инженерные конструкции. Металлические конструкции и конструкции из древесины и пластмасс)
© Studref - Студенческие реферативные статьи и
материалы (info,aт-studref.com) © 2017 - 2023
https://studref.com/542649/stroitelstvo/raschyot_konstruirovanie_stropilnoy_fermy_gnutosvarnyh_profiley

136.

Особенности расчетной схемы пространственной трехгранной фермы
Андрей Левич
Резервное размещение материалов: Ruindex.net | Алфавитный указатель рубрик
УДК 624.01/04
А. В. МАТВЕЕВ, асп.
Особенности расчетной схемы пространственной трехгранной фермы
с пентагональным сечением верхнего пояса
В статье рассматривается расчетная схема трехгранной фермы - образующего блока бесфасоночного
складчатого покрытия с пентагональным сечением верхнего пояса. В такой стержневой системе при
действии внешней нагрузки происходит изменение формы сечения поясов, что приводит к возникновению
податливости в узлах сопряжения поясов с раскосной решеткой и снижению пространственной жесткости
конструкции. Произведенная оценка податливости узловых соединений позволяет уточнить расчетную
схему. В результате этого получена деформированная схема трехгранной фермы, которая хорошо
согласуется с экспериментальными данными.
Трехгранная пространственная ферма является образующим блоком стального складчатого покрытия с
пентагональным сечением верхнего пояса. Особенностью данной конструктивной формы является
составное сечение верхнего пояса, которое образовано путем стыковки швеллера и уголка так, чтобы они
формировали пятигранный контур замкнутого сечения [1, 2]. К поясному уголку без фасонок примыкают
раскосы из одиночных уголков. Таким образом, в узлах конструкции к стержню замкнутого сечения
примыкают стержни открытого сечения.
Для проведения экспериментальных исследований данной конструктивной формы была изготовлена

137.

натурная модель трехгранной пространственной фермы, пролетом 12 м и высотой 1,5 м *3+, которая
образована из двух наклонных ферм с нисходящими опорными раскосами и треугольной раскосной
решеткой. Для обеспечения геометрической неизменяемости в процессе эксперимента смежные узлы
нижних поясов по горизонтали связаны затяжками из уголков. Расчетная схема такой конструкции
представляет пространственную стержневую систему с шарнирным примыканием раскосов к поясам
(рис. 1).
Рис. 1. Расчетная схема трехгранной фермы
При реализации расчетной схемы были учтены как технологические факторы (расцентровка узлов), так и
дефекты изготовления (погнутия элементов, не предусмотренные проектом эксцентриситеты в узлах). В
результате проведения расчетов было оценено напряженно-деформированное состояние конструкции.
Проведенные испытания конструкции на стенде при проектном положении (цель, задачи, методика
проведения и основные результаты эксперимента опубликованы в [3]) для упругой стадии работы материала
выявили достаточно хорошее совпадение напряжений в поясах с теоретическими значениями. Среднее
расхождение в каждом исследуемом сечении не превысило ±5%. В раскосах расхождение значительно
больше, что вызвано появлением изгибных нормальных напряжений, не учитываемых расчетной схемой,
которая предусматривает шарнирное примыкание раскосов к поясам. Причем возникают оба изгибающих
момента MX и MY, относительные эксцентриситеты которых для наиболее сжатого раскоса (раскосы 3-10,
7-13 на рис. 1) составляют mX = 0,9, mY = 1,7.
Характер вертикальных перемещений соответствует расчетной схеме пространственной фермы. Однако
измеренные перемещения при максимальной нагрузке значительно превышают полученные из расчета для
всех реализованных вариантов загружения. Наименьшее расхождение между максимальными
теоретическими и экспериментальными прогибами, составляющее 6%, происходит при внеузловой нагрузке
сосредоточенной силой, приложенной в центре каждой панели верхнего пояса. Наибольшее расхождение,
достигающее 25%, происходит при узловом загружении трехгранной фермы. При равномерно

138.

распределенной нагрузке это расхождение составляет 10 – 12,5%. Такое явление происходит из-за
сниженной пространственной жесткости конструкции.
Студенческие работы
Возможными причинами снижения пространственной жесткости могут стать:
1. податливость прерывистых сварных швов, соединяющих швеллер и уголок верхнего пояса;
2. продольная (по направлению раскосов) упругая податливость узлов сопряжения поясов и раскосов.
Для оценки податливости поясных сварных швов верхнего пояса в панели 3-5 (рис. 1) экспериментальной
модели были установлены индикаторы МИТ (цена деления 0,001 мм), которые фиксировали смещение
верхней части сечения относительно нижней в местах сварных швов и в местах их отсутствия. При
загружении конструкции нагрузкой, составляющей 75% от предельной, показания приборов не превышали
0,005 мм. При таких смещениях происходит снижение изгибной жесткости верхнего пояса трехгранной
фермы. Однако введение пониженной эквивалентной жесткости верхнего пояса не приводит к
значительному увеличению прогибов всей конструкции, а лишь вызывает увеличение местных прогибов в
пределах каждой панели.
Другой возможной причиной снижения пространственной жесткости трехгранной фермы является
податливость узловых сопряжений поясов с раскосной решеткой. Это явление связано с конструктивной
особенностью узлов: раскосы из одиночных уголков торцами примыкают к поясному уголку, вызывая в них
местный изгиб полок от усилий, возникающий в раскосах.
Происходит изменение пространственной формы сечения верхнего пояса (рис. 2).
Таким образом, расчетная схема трехгранной пространственной фермы будет представлять стержневую
систему с продольной (по направлению раскоса) податливостью в узлах, примыкающих к поясам раскосов
(рис. 3).

139.

Для оценки влияния податливости узлов на пространственную жесткость конструкции решен комплекс
задач изгиба полки поясного уголка, загруженного локальной нагрузкой от усилия, возникающего в раскосе.
Полка равнополочного уголка 80х10 рассматривалась в виде полосы, находящейся в состоянии равновесия
под действием нагрузки. Полоса, длина которой принята в 10 раз больше ширины, разбивалась сеткой
конечных элементов оболочки, каждый из которых имеет 6 степеней свободы в узлах. После проведенных
расчетов проанализирована деформированная схема полосы. Нагрузка от примыкающих раскосов вызывает
в полосе локальные деформации полки уголка, которые быстро угасают.
Рис. 2. Изменение
пространственной
формы сечения
Рис. 3. Податливое
примыкание раскосов
к верхнему поясу
На рис. 4 представлены изолинии перемещений полосы поясного уголка для узла 5 (см. рис. 1) при общей
нагрузке на трехгранную ферму 8,4 тонн. Цифрами обозначены значения перемещений в мм. Значительные
перемещения происходят лишь на одной четверти пластины в области примыкания раскосной решетки (в
области действия нагрузки). На расстоянии 0,3 длины пластины от ее центра, они снижаются в три раза. К
концу пластины перемещения практически равны 0.
Рис. 4. Изолинии перемещений полки поясного уголка
При проведении эксперимента производилось наблюдение за изгибом полки поясных уголков в области
примыкающих раскосов. Были установлены индикаторы МИТ, регистрирующие максимальные прогибы
полок уголков. Полученные значения прогибов достаточно близки к расчетным данным. Так в
контролируемой точке узла 16 (см. рис. 1) экспериментальные перемещения составили 8 × 10-2 мм, а
расчетные - 11 × 10-2.
https://pandia.ru/text/77/470/952.php

140.

https://cyberleninka.ru/article/n/raschet-konstruktsii-uzla-besfasonochnoy-fermy-s-pentagonalnym-secheniempoyasov/viewer
7.3 Особенности расчета пространственных ферм
Плоская ферма не устойчива, поэтому в металлоконструкциях не применяется, а
используются исключительно пространственные фермы.
Простейшая пространственная ферма представляет собой элементарный тетраэдр,
составленный из 6 стержней, и имеет 4 узла.
Рисунок 18 – Тетраэдр
Этот элементарный тетраэдр может быть развит в ферму любых размеров путем
последовательного присоединения новых узлов с помощью 3-х стержней (рис 19).
Рисунок 19 – Простейшая пространственная ферма
Образованные таким образом фермы получили название простейшие. Фермы,
полученные любым другим способом, называют сложные.
https://studfile.net/preview/7078663/page:5/
Особенности расчетной схемы пространственной трехгранной фермы
Андрей Левич

141.

Резервное размещение материалов: Ruindex.net | Алфавитный указатель рубрик
УДК 624.01/04
А. В. МАТВЕЕВ, асп.
Особенности расчетной схемы пространственной трехгранной фермы
с пентагональным сечением верхнего пояса
В статье рассматривается расчетная схема трехгранной фермы - образующего блока бесфасоночного
складчатого покрытия с пентагональным сечением верхнего пояса. В такой стержневой системе при
действии внешней нагрузки происходит изменение формы сечения поясов, что приводит к возникновению
податливости в узлах сопряжения поясов с раскосной решеткой и снижению пространственной жесткости
конструкции. Произведенная оценка податливости узловых соединений позволяет уточнить расчетную
схему. В результате этого получена деформированная схема трехгранной фермы, которая хорошо
согласуется с экспериментальными данными.
Трехгранная пространственная ферма является образующим блоком стального складчатого покрытия с
пентагональным сечением верхнего пояса. Особенностью данной конструктивной формы является
составное сечение верхнего пояса, которое образовано путем стыковки швеллера и уголка так, чтобы они
формировали пятигранный контур замкнутого сечения *1, 2+. К поясному уголку без фасонок примыкают
раскосы из одиночных уголков. Таким образом, в узлах конструкции к стержню замкнутого сечения
примыкают стержни открытого сечения.

142.

Для проведения экспериментальных исследований данной конструктивной формы была изготовлена
натурная модель трехгранной пространственной фермы, пролетом 12 м и высотой 1,5 м *3+, которая
образована из двух наклонных ферм с нисходящими опорными раскосами и треугольной раскосной
решеткой. Для обеспечения геометрической неизменяемости в процессе эксперимента смежные узлы
нижних поясов по горизонтали связаны затяжками из уголков. Расчетная схема такой конструкции
представляет пространственную стержневую систему с шарнирным примыканием раскосов к поясам
(рис. 1).
Рис. 1. Расчетная схема трехгранной фермы
При реализации расчетной схемы были учтены как технологические факторы (расцентровка узлов), так и
дефекты изготовления (погнутия элементов, не предусмотренные проектом эксцентриситеты в узлах). В
результате проведения расчетов было оценено напряженно-деформированное состояние конструкции.
Проведенные испытания конструкции на стенде при проектном положении (цель, задачи, методика
проведения и основные результаты эксперимента опубликованы в *3+) для упругой стадии работы
материала выявили достаточно хорошее совпадение напряжений в поясах с теоретическими значениями.
Среднее расхождение в каждом исследуемом сечении не превысило ±5%. В раскосах расхождение

143.

значительно больше, что вызвано появлением изгибных нормальных напряжений, не учитываемых
расчетной схемой, которая предусматривает шарнирное примыкание раскосов к поясам. Причем возникают
оба изгибающих момента MX и MY, относительные эксцентриситеты которых для наиболее сжатого раскоса
(раскосы 3-10, 7-13 на рис. 1) составляют mX = 0,9, mY = 1,7.
Характер вертикальных перемещений соответствует расчетной схеме пространственной фермы. Однако
измеренные перемещения при максимальной нагрузке значительно превышают полученные из расчета для
всех реализованных вариантов загружения. Наименьшее расхождение между максимальными
теоретическими и экспериментальными прогибами, составляющее 6%, происходит при внеузловой
нагрузке сосредоточенной силой, приложенной в центре каждой панели верхнего пояса. Наибольшее
расхождение, достигающее 25%, происходит при узловом загружении трехгранной фермы. При равномерно
распределенной нагрузке это расхождение составляет 10 – 12,5%. Такое явление происходит из-за
сниженной пространственной жесткости конструкции.
Студенческие работы
Возможными причинами снижения пространственной жесткости могут стать:
1. податливость прерывистых сварных швов, соединяющих швеллер и уголок верхнего пояса;
2. продольная (по направлению раскосов) упругая податливость узлов сопряжения поясов и раскосов.
Для оценки податливости поясных сварных швов верхнего пояса в панели 3-5 (рис. 1) экспериментальной
модели были установлены индикаторы МИТ (цена деления 0,001 мм), которые фиксировали смещение
верхней части сечения относительно нижней в местах сварных швов и в местах их отсутствия. При
загружении конструкции нагрузкой, составляющей 75% от предельной, показания приборов не превышали

144.

0,005 мм. При таких смещениях происходит снижение изгибной жесткости верхнего пояса трехгранной
фермы. Однако введение пониженной эквивалентной жесткости верхнего пояса не приводит к
значительному увеличению прогибов всей конструкции, а лишь вызывает увеличение местных прогибов в
пределах каждой панели.
Другой возможной причиной снижения пространственной жесткости трехгранной фермы является
податливость узловых сопряжений поясов с раскосной решеткой. Это явление связано с конструктивной
особенностью узлов: раскосы из одиночных уголков торцами примыкают к поясному уголку, вызывая в них
местный изгиб полок от усилий, возникающий в раскосах.
Происходит изменение пространственной формы сечения верхнего пояса (рис. 2).
Таким образом, расчетная схема трехгранной пространственной фермы будет представлять стержневую
систему с продольной (по направлению раскоса) податливостью в узлах, примыкающих к поясам раскосов
(рис. 3).
Для оценки влияния податливости узлов на пространственную жесткость конструкции решен комплекс
задач изгиба полки поясного уголка, загруженного локальной нагрузкой от усилия, возникающего в раскосе.
Полка равнополочного уголка 80х10 рассматривалась в виде полосы, находящейся в состоянии равновесия
под действием нагрузки. Полоса, длина которой принята в 10 раз больше ширины, разбивалась сеткой
конечных элементов оболочки, каждый из которых имеет 6 степеней свободы в узлах. После проведенных
расчетов проанализирована деформированная схема полосы. Нагрузка от примыкающих раскосов
вызывает в полосе локальные деформации полки уголка, которые быстро угасают.

145.

Рис. 2. Изменение
пространственной
формы сечения
Рис. 3. Податливое
примыкание раскосов
к верхнему поясу
На рис. 4 представлены изолинии перемещений полосы поясного уголка для узла 5 (см. рис. 1) при общей
нагрузке на трехгранную ферму 8,4 тонн. Цифрами обозначены значения перемещений в мм. Значительные
перемещения происходят лишь на одной четверти пластины в области примыкания раскосной решетки (в
области действия нагрузки). На расстоянии 0,3 длины пластины от ее центра, они снижаются в три раза. К
концу пластины перемещения практически равны 0.
Рис. 4. Изолинии перемещений полки поясного уголка
При проведении эксперимента производилось наблюдение за изгибом полки поясных уголков в области
примыкающих раскосов. Были установлены индикаторы МИТ, регистрирующие максимальные прогибы
полок уголков. Полученные значения прогибов достаточно близки к расчетным данным. Так в

146.

контролируемой точке узла 16 (см. рис. 1) экспериментальные перемещения составили 8 × 10-2 мм, а
расчетные - 11 × 10-2.
Канал спокойной музыки
В результате проведенных расчетов была количественно оценена податливость узлов. В табл. 1 приведены
расчетные значения абсолютной деформации раскосов при общем значении равномерно распределенной
нагрузке на трехгранную ферму 8,4 т и перемещения концов раскосов вызванные изгибом полки поясных
уголков в области примыкания раскосной решетки. Из табл. 1 видно, что перемещения от изгиба полки
поясного уголка соизмеримы с абсолютными деформациями раскосов от продольных сил и достигают от 22
до 89 % их значения.
Таблица 1
Перемещения концов раскосов от изгиба полки поясного уголка и абсолютные деформации раскосов
Тип

раскоса сечения
А,
N, DL,
см2
кН мм
Перемещения от
изгиба полки уголка,
мм
4,8
29,2 0,75
0,05
0,012
0,17
15,1
0,24
29,3
0,04
0,012
0,16
нижний верхний
сумма
пояс
1-10
3-10
пояс
Уг. 50 х
5
Уг. 80 х
10

147.

3-11
5-11
Уг. 50 х
5
Уг. 75 х
8
4,8
8,45 0,22
0,032
0,018
0,05
11,5
-8,4 0,09
0,036
0,044
0,08
Учет продольной (по направлению раскосов) податливости узлов в расчетной схеме пространственной
трехгранной фермы приводит к снижению общей жесткости раскосной решетки в 1,5 раз. При этом
возрастают вертикальные расчетные перемещения конструкции. В табл. 2 дается сравнение
экспериментальных вертикальных перемещений узлов верхнего пояса и расчетных перемещений при
действии равномерно распределенной нагрузки.
Таблица 2
Сравнение экспериментальных и расчетных перемещений верхнего пояса трехгранной фермы
Адрес
Узел 2
данных
S, мм
Эксперим.
данные
Расчет без
учета
Узел
3
Узел 4
Узел
5
отличие от
отличие от
отличие от
отличие от
S,
S,
S,
эксперимента
эксперимента
эксперимента,
эксперимента,
мм
мм
мм
%
%
%
%
8,3
-
5,1
-
8,2
-
7,1
-
7
16
3,5
30
6,1
27
5
30

148.

податливости
Расчет с
учетом
податливости
7,7
7
4,5
11
7,1
13
6,1
15
Анализ расчетных и экспериментальных данных при других схемах загружения привел к аналогичным
выводам. Расхождение между максимальными теоретическими и экспериментальными прогибами при
внеузловой на грузке сосредоточенной силой, приложенной в центре каждой панели верхнего пояса,
составляет 2,4%. Расхождение при узловом загружении трехгранной фермы сосредоточенной нагрузкой
составляет 9%. При дополнительной схеме загружения равномерно распределенной нагрузкой половины
фермы это расхождение 4,2%.
При сравнении экспериментальных и теоретических перемещений как при учете податливости узлов, так и
без учета податливости можно видеть, что чем дальше находятся точки приложения внешних сил от узлов,
тем больше разница в сравниваемых перемещениях. Максимальная разница наблюдается при узловом
загружении. Это вполне закономерно. При узловом загружении наиболее нагружен узел и деформации в
нем, а, следовательно, и его податливость будут максимальными в отличие от внеузлового загружения.
Студенческие работы
В отличие от вертикальных перемещений снижение пространственной жесткости конструкции практически
не влияет на внутренние усилия в поясах и раскосах. Произведенные расчеты трехгранной фермы при
варьировании податливостью узлов показывают, что перемещения узлов конструкции линейно зависят от
податливости и при её увеличении в два раза происходит возрастание перемещений на 90% по сравнению с

149.

жесткими узлами. А внутренний изгибающий момент и продольная сила изменяется не более чем на 4,8%.
Это и подтверждается экспериментально.
Основные выводы
Учет податливости узлов в расчетной схеме привел к возрастанию теоретических вертикальных
перемещений и их отличие от экспериментальных данных при основной схеме загружения (равномерно –
распределенная нагрузка) составляет от 7 до 15 %. Представляется возможным дальнейшее уточнение
расчетной схемы путем анализа напряженно-деформированного состояния пространственных узлов и
оценки изменения их формы в процессе деформирования.
Податливость узлов в меньшей степени влияет на внутренние усилия элементов.
Произведенные расчеты и эксперимент позволил уточнить расчетную схему трехгранной фермы с
пентагональным замкнутым сечением верхнего пояса и приблизить теоретические значения перемещений
к экспериментальным.
Список литературы
1. Свидетельство на полезную модель № 000МПК6 Е04 С3/04. Складчатое покрытие из наклонных ферм /
(Россия) №, Заявлено 12.02.98; 16.12.98, Бюл. №12.
2. М, Матвеев складчатое покрытие. Информационный листок №44-98. Томский МТЦНТИ, 1998 г. – 4 с.
3. , , Косинцев покрытие из прокатных профилей. //Труды НГАСУ, т. 2, №2(4). Новосибирск 1999 С. 43-49.
Материал поступил в редакцию 28.02.2000

150.

A. V. MATVEEV
Features of the designed circuit of a space trihedral farm with pentahedrals by section of a upper belt
The designed scheme of a trihedral girder - forming block of an easy steel coating with pentahedrals section of an
upper belt is considered. In such rod system under external load there is a change of the form of section of belts,
that results in the origin of a pliability in sites of interface of belts with a lattice and lowering reducing a space
rigidity of a construction. The estimation of a pliability of nodal connections allows to specify the designed scheme.
As a result of it the deformed schem of a trihedral girder is obtained which well is coordinated to experimental
data.
Структурные плиты конструкции цнииск
Выполнены в виде пространственных конструкций из стержней в виде блоков размерами 18*12 и
12*24 м. Сборка их осуществляется тем или иным методом непосредственно на строительной
площадке из отправочных заводских марок. Верхние пояса, по продольным осям выполняются
из прокатного профиля, а верхние поперечные, нижние пояса и раскосы – из прокатной
уголковой стали.

151.

Рисунок 5.1 Конструктивная схема структурной плиты ЦНИИСК: 1 –колонна; 2- нижний пояс
плиты; 3- верхний пояс плиты; 4- вертикальные связи; 5- «настил» плиты из трехслойных панелей
типа «сэндвич», 6 – «косынки» для крепления элементов решетки, 7 – электросварка косынок.
Соединение стержней в узлах – на болтах или, как вариант, с помощью электросварки. Верхние и
нижние пояса блоков стыкуются с помощью фланцев, а нижние поперечные – с помощью
накладок. Конструкция структуры беспрогонная и предусматривает установку «настила»
непосредственно по верхнему поясу конструкции. Высота структурной плиты h= 2,2 м. По
верхнему поясу плиты крепится профилированный настил H 79*66 *1,0 с самонарезающими
болтами М 6*20 с шагом, равным 300 мм. Листы между собой соединяются на заклепках с шагом
300 мм.

152.

5.1.2 Структурная плита «Кисловодск»
Представляют собой структурную плиту из трубчатых профилей с ортогональной сеткой поясов
(пирамида на квадратной основе) размерами 3*3 высотой 1.8-2.4 м. Стержни выполнены из
цельнотянутых труб диаметром ≥ 100мм с приваренными по торцам шайбами. В отверстии шайб
закреплены стержни высокопрочных болтов, на противоположных концах которых установлены
муфты из «шестигранника». Последние обеспечивают соединение стержней в пространственную
конструкцию. Опирание структурной плиты на колонны – шарнирное, через опорные пирамиды
– капители. Сборка плиты в пространственный блок размером 30*30 и 36*36 с сеткой колонн
соответствен-

153.

Рисунок 5.2 Конструктивная схема структурной плиты «Кисловодск»: 1- колонна; 2- капитель
(опорная секция плиты); 3- структурная плита; 3а – горизонтальные связи ячейки плиты; 3б –
вертикальные связи между поясами плиты; 4- узел соединительной решетки плиты в виде
многогранника; 5- прогон; 6- «настил».

154.

Рисунок 5.3 Структурная плита типа Кисловодск (схема узла В): 1- многогранник; 2- сверление с
резьбой; 3- болт; 4- шайба с резьбой под болт; 5- стержень трубчатого профиля d≤100мм.
но 18*18 и 24*24 выполняется из отправочных элементов: стержни и узлы «решетки» в виде
многогранника.
Плита типа «Кисловодск» требует установки прогонов по трубчатым элементам верхнего пояса
для настила кровельных панелей.
Конструктивная схема структуры и узлов решетки, приведенная на рис. 5.2, 5.3, предназначена,
главным образом, для возведения зданий павильонного типа гражданского и производственного

155.

назначения с «разреженным» шагом колонн. Варианты сопряжения нескольких зданий между
собой (см. рис. 5.4) позволяет формировать многопролетное здание требуемой площади.
<<< Предыдущая
https://studfile.net/preview/2179938/page:19/
Особенности расчетной схемы пространственной комбинированных структурной
стальной трехгранной фермы SCAD с применением замкнутых гнутосварных
профилей прямоугольного сечения на болтовых соединениях с большими
перемещениями на предельное равновесие и приспособляемость
Features of the design scheme of the spatial combined structural steel triangular truss SCAD with the use of closed bent-welded rectangular cross-section profiles on bolted joints with
large displacements for extreme equilibrium and adaptability
SAP2000-Modeling, Analysis and Design of Space Truss(Triangular Arch
Truss) 01/02
https://www.youtube.com/watch?v=g76K3hvhAQg
РАСЧЁТ И КОНСТРУИРОВАНИЕ СТРОПИЛЬНОЙ ФЕРМЫ ИЗ ГНУТОСВАРНЫХ
ПРОФИЛЕЙ
Требуется рассчитать и сконструировать стропильную ферму покрытия со стержнями из гнутосварных профилей при заданных условиях. При расчёте фермы в примере 5

156.

используются СП 16.13330.2011 «Стальные конструкции. Актуализированная редакция СНиП 11-23—81*», СП 20.13330.2011 «Нагрузки и воздействия. Актуализированная
редакция СНиП 2.01.07—85*».
1. Исходные данные
Район строительства, состав конструкции покрытия и кровли приняты по аналогии с примером 4.
Назначение проектируемого здания — механосборочный цех. Уровень ответственности здания - нормальный. Для примера 5 назначаем коэффициент надёжности по
ответственности уп = 1,0.
Условия эксплуатации здания: здание отапливаемое.
Здание однопролётное, одноэтажное. Габариты объекта (размеры даны по осям здания): длина 90,0 м; пролёт 18,0 м. Высота до низа стропильной конструкции 9,0 м; шаг
колонн 6,0 м.
Краткое описание покрытия: двускатное, бесфонарное, уклон кровли 2,5%. Фермы стальные с параллельными поясами высотой по наружным граням поясов 2,0 м, пролётом
18,0 м, располагаются с шагом Вф = 6,0 м. Устойчивость и геометрическая неизменяемость покрытия обеспечивается постановкой связей по поясам ферм и вертикальных связей
с развязкой их распорками в пролёте и по опорам стропильных конструкций (в соответствии с требованиями *29+). Опирание ферм осуществляется на стальные колонны, тип
узла сопряжения фермы с колоннами — шарнирный.
Кровля рулонная из наплавляемых материалов. В качестве основания под кровлю принята стяжка. Покрытие утеплённое, утеплитель - минераловатные плиты повышенной
жёсткости; толщина утеплителя определяется по теплотехническим строительным нормативам. Пароизоляция принята из наплавляемых материалов согласно нормативам.
Несущие ограждающие конструкции покрытия — стальные профилированные листы, монтируемые по прогонам. Конструкция кровли (состав кровельных слоев), а также
конструкция покрытия принимаются в соответствии с нормами проектирования.
Равномерно распределённая нагрузка от покрытия, в том числе от массы кровли (с учётом всех кровельных слоёв), стяжки, теплоизоляции, пароизоляции, а также от
собственного веса профнастила покрытия: нормативная q"p п = 10 гН/м2; расчётная <7крп = 12,4 гН/м2. Данная нагрузка рассчитана как сумма нагрузок от 1 м2 всех принятых в
проекте слоёв кровли и покрытия с учётом их конструктивных особенностей и в соответствии с укзаниями норм проектирования *31+.
Фермы не подвержены динамическим воздействиям и работают на статические нагрузки.
Согласно *29, табл. В.2+ принимаем материалы конструкций: верхний, нижний пояса и решётка из гнутосварных профилей по ТУ 36-2287-80 и ТУ 67-2287-80 - сталь С255; фасонки
- сталь С255 по ГОСТ 27772—88*; фланцы для стыка верхнего пояса — сталь С255 по ГОСТ 27772—88*; фланцы для стыка нижнего пояса — сталь С345-3 поГОСТ 27772-88*.
Сварка полуавтоматическая в среде углекислого газа (ГОСТ 8050—85*) сварочной проволокой марки СВ-08Г2С (ГОСТ 2246—70*) диаметром 2 мм.
Антикоррозионное покрытие проектируемых стальных конструкций назначается в соответствии с указаниями норм проектирования по защите строительных конструкций от
коррозии.

157.

2. Статический расчёт фермы
Заданный уклон кровли / = 2,5%. Требуемый уклон создаётся за счёт строительного подъёма фермы. При выполнении сбора нагрузок уклоном пренебрегаем ввиду его
незначительности.
Сбор нагрузок ведём в табличной форме (табл. 28).
Расчётные узловые силы на ферму (см. пример 4):
• от постоянной нагрузки Fg = qgd = 100,2 • 3 = 300,6 гН;
• от снеговой нагрузки Fs = psd = 108-3 = 324,0 гН.
Горизонтальную рамную нагрузку условно принимаем Fp = 500 гН. Обозначения стержней при расчёте стропильной фермы — см. на
рис. 64. Усилия в ферме определяем методом построения диаграммы Максвелла—Кремоны (рис. 65). Результаты расчёта заносим в табл. 33.
Рис. 64. Обозначение стержней и узлов фермы из ГСП (пример 5)

158.

159.

Посмотреть оригинал
< Пред
СОДЕРЖАНИЕ
ОРИГИНАЛ
След >
ПРИМЕРЫ РАСЧЁТА И КОНСТРУИРОВАНИЯ СТРОПИЛЬНЫХ ФЕРМ
Расчѐт ферм покрытия в соответствии со СНиП II-23-81* широко представлен в технической литературе. Примеры расчѐта конструкций
покрытия по СП 16.13330.2011 в технической литературе встречаются редко. Опыт применения актуализированных СНиП практически
небольшой, так как новые нормативы были приняты совсем...
(Проектирование и расчѐт стальных ферм покрытий промышленных зданий)
РАСЧЁТ И КОНСТРУИРОВАНИЕ СТРОПИЛЬНОЙ ФЕРМЫ ИЗ ПАРНЫХ УГОЛКОВ
Требуется рассчитать и сконструировать стропильную ферму покрытия со стержнями из парных уголков при определѐнных заданных
условиях. При расчѐте фермы в этом примере используются СП 16.13330.2011 «Стальные конструкции. Актуализированная редакция
СНиП 11-23—81*», СП 20.13330.2011 «Нагрузки и воздействия....
(Проектирование и расчѐт стальных ферм покрытий промышленных зданий)
РАСЧЁТ И КОНСТРУИРОВАНИЕ СТРОПИЛЬНОЙ ФЕРМЫ С ПОЯСАМИ ИЗ ТАВРОВ И РЕШЁТКОЙ ИЗ ПАРНЫХ УГОЛКОВ
Требуется рассчитать и сконструировать стропильную ферму покрытия с поясами из широкополочных тавров и решѐткой из парных
уголков при заданных условиях. При расчѐте фермы в примере 2 применяются СП 16.13330.2011 «Стальные конструкции.
Актуализированная редакция СНиП 11-23-81*», СП 20.13330.2011 «Нагрузки...
(Проектирование и расчѐт стальных ферм покрытий промышленных зданий)
РАСЧЁТ И КОНСТРУИРОВАНИЕ СТРОПИЛЬНОЙ ФЕРМЫ С ВЕРХНИМ ПОЯСОМ ИЗ ШИРОКОПОЛОЧНОГО ДВУТАВРА
Требуется рассчитать и сконструировать стропильную ферму покрытия при заданных условиях. При расчѐте фермы в примере 3
используются СП 16.13330.2011 «Стальные конструкции. Актуализированная редакция СНиП 11-23-81*», СП 20.13330.2011 «Нагрузки и
воздействия. Актуализированная редакция СНиП 2.01.07—85*»....

160.

(Проектирование и расчѐт стальных ферм покрытий промышленных зданий)
РАСЧЁТ И КОНСТРУИРОВАНИЕ СТРОПИЛЬНОЙ ФЕРМЫ ИЗ КРУГЛЫХ ТРУБ
Требуется рассчитать и сконструировать стропильную ферму покрытия со стержнями из круглых труб при заданных условиях. При
расчѐте фермы в примере 4 используются СП 16.13330.2011 «Стальные конструкции. Актуализированная редакция СНиП 11-23 — 81*»,
СП 20.13330.2011 «Нагрузки и воздействия. Актуализированная...
(Проектирование и расчѐт стальных ферм покрытий промышленных зданий)
РАСЧЁТ И КОНСТРУИРОВАНИЕ СТРОПИЛЬНОЙ ФЕРМЫ С ПОЯСАМИ ИЗ ТАВРОВ И РЕШЁТКОЙ ИЗ ОДИНОЧНЫХ УГОЛКОВ
Требуется рассчитать и сконструировать стропильную ферму покрытия с поясами из широкополочных тавров и решѐткой из одиночных
уголков при заданных условиях. При расчѐте фермы в примере 6 используются СП 16.13330.2011 «Стальные конструкции.
Актуализированная редакция СНиП Н-23—81», СП 20.13330.2011 «Нагрузки...
(Проектирование и расчѐт стальных ферм покрытий промышленных зданий)
ФЕРМЫ ИЗ ЗАМКНУТЫХ ГНУТОСВАРНЫХ ПРОФИЛЕЙ (ГСП)
Общие положения Типовые фермы из замкнутых гнутосварных профилей проектируются с узлами без фасонок и опиранием покрытия
непосредственно на верхний пояс. Геометрические схемы решѐтки ферм из ГСП показаны на рис. 11. Углы примыкания раскосов к поясу
должны быть не менее 30°, в этом случае обеспечивается...
(Проектирование и расчѐт стальных ферм покрытий промышленных зданий)
РАСЧЁТ И КОНСТРУИРОВАНИЕ СТРОПИЛЬНОЙ ПРУТКОВОЙ ФЕРМЫ
Требуется рассчитать и сконструировать стропильную прутковую ферму покрытия при заданных условиях. При расчѐте фермы в примере
7 используются СП 16.13330.2011 «Стальные конструкции. Актуализированная редакция СНиП 11-23—81», СП 20.13330.2011 «Нагрузки
и воздействия. Актуализированная редакция СНиП 2.01.07-85*»....
(Проектирование и расчѐт стальных ферм покрытий промышленных зданий)

161.

ПОКРЫТИЯ ЗДАНИЙ ПО СТРОПИЛЬНЫМ ФЕРМАМ
Покрытие здания состоит из кровли (ограждающих конструкций), несущих элементов (прогонов, стропильных ферм), на которые
опирается кровля, и связей по покрытию. Кроме того, для освещения помещений верхним светом и их естественной вентиляции в
системе покрытия многопролетных зданий устраивают фонари, опирающиеся...
(Инженерные конструкции. Металлические конструкции и конструкции из древесины и пластмасс)
© Studref - Студенческие реферативные статьи и
материалы (info,aт-studref.com) © 2017 - 2023
https://studref.com/542649/stroitelstvo/raschyot_konstruirovanie_stropilnoy_fermy_gnutosvarnyh_profiley

162.

163.

164.

165.

166.

167.

168.

169.

170.

171.

172.

173.

174.

175.

176.

177.

178.

179.

180.

181.

182.

183.

184.

185.

186.

187.

188.

189.

190.

191.

192.

193.

194.

195.

196.

197.

198.

199.

200.

201.

202.

203.

204.

205.

206.

207.

208.

209.

210.

211.

212.

213.

214.

215.

216.

217.

218.

219.

220.

221.

222.

223.

224.

225.

226.

227.

228.

Through co-action between auxiliary triangular structural frames, which are each constructed at
opposite ends of a truss girder or arch girder, and a cable stretched between the auxiliary
triangular structural frames, an upwardly directed force is exerted to the truss girder or arch
girder, thereby effectively inducing a load resisting force.
Благодаря взаимодействию между вспомогательными треугольными конструктивными
рамами, каждая из которых выполнена на противоположных концах ферменной балки
или арочной балки, и тросом, натянутым между вспомогательными треугольными
конструктивными рамами, к ферменной балке или арочной балке прикладывается
направленное вверх усилие, тем самым эффективно создавая усилие сопротивления
нагрузке.
A reinforcement structure of a truss bridge or arch bridge is comprised of a truss girder or arch
girder, a first and a second end of which are each provided with a main triangular structural
frame. The main triangular structural frame is provided at an inner side thereof with an auxiliary
triangular structural frame.
Усилительная конструкция ферменного моста или арочного перемычки состоит из
ферменной балки или арочного прогона, первый и второй концы которых снабжены
основным треугольным конструктивным каркасом. Основной треугольный
конструктивный каркас снабжен с внутренней стороны вспомогательным треугольным
конструктивным каркасом

229.

The auxiliary triangular structural frame is joined at vertexes thereof with frame structural
elements at respective sides of the main triangular structural frame.
Вспомогательная треугольная конструктивная рама соединена в своих вершинах с
элементами каркасной конструкции на соответствующих сторонах основной треугольной
конструктивной рамы.
A cable extends in a longitudinal direction of the truss bridge, being stretched between a
nearby part of a joined part at one of the vertexes of the auxiliary triangular structural frame on
a side of the first end of the truss girder
Трос проходит в продольном направлении ферменного моста, будучи натянутым между
близлежащей частью соединяемой детали на одной из вершин вспомогательной
треугольной конструктивной рамы со стороны первого конца ферменной балки
or arch girder and a nearby part of a joined part at a corresponding one of the vertexes of the
auxiliary triangular structural frame on a side of the second end of the truss girder or arch
girder.

230.

или арочной балки и близлежащую часть соединяемой детали на соответствующей
одной из вершин вспомогательной треугольной конструктивной рамы со стороны второго
конца стропильной балки или арочной балки.
Deflecting structure, adapted to exert a downwardly directed force to the cable, is inserted
between the cable and a lower chord of the truss girder or arch girder so as to tension the
cable, and an upwardly directed force is exerted to the lower chord by a reaction force
attributable to tension of the cable via the deflecting structure.
Отклоняющая конструкция, приспособленная для приложения направленного
вниз усилия к тросу, вставляется между тросом и нижним поясом ферменной
балки или арочной балки для натяжения троса, и направленное вверх усилие
прикладывается к нижнему поясу за счет силы реакции, относящейся к
натяжению троса через отклоняющая конструкция.
Reinforcement structure of truss bridge or arch bridge
Abstract
Through co-action between auxiliary triangular structural frames which are each
constructed at opposite ends of a truss girder or arch girder and a cable stretched
between the auxiliary triangular structural frames, an upward directing force is exerted

231.

to the truss girder or arch girder, thereby effectively inducing a load resisting force. A
reinforcement structure of a truss bridge or arch bridge is comprised of a truss girder
(2) or arch girder a first and a second end of which are each provided with a main
triangular structural frame (6) which is further provided at an inner side thereof with an
auxiliary triangular structural frame (9), the auxiliary triangular structural frame (9)
being joined at vertexes thereof with frame structural elements at the respective sides
of the main triangular structural frame (6), a cable (10) extending in a longitudinal
direction of the truss bridge being stretched between a nearby part of the joined part at
the vertex of the auxiliary triangular structural frame (9) on the side of the first end of
the truss girder (2) or arch girder and a nearby part of the joined part at the
corresponding vertex of the auxiliary triangular structural frame (9) on the side of the
second end of the truss girder (2) or arch girder, deflecting means (11) adapted to exert
a downward directing force to the cable (10) being inserted between the cable (10) and
a lower chord (3) of the truss girder (2) or arch girder so as to tension the cable (10), an
upward directing force being exerted to the lower chord (3) by a reacting force
attributable to tension of the cable (10) through the deflecting means (11).

232.

Благодаря взаимодействию между вспомогательными треугольными конструктивными рамами,
каждая из которых выполнена на противоположных концах ферменной балки или арочной балки,
и тросом, натянутым между вспомогательными треугольными конструктивными рамами, к
ферменной балке или арочной балке прикладывается направленное вверх усилие, тем самым
эффективно создавая усилие сопротивления нагрузке.
Усилительная конструкция ферменного моста или арочного перемычки состоит из ферменной
балки или арочного прогона, первый и второй концы которых снабжены основным треугольным
конструктивным каркасом. Основной треугольный конструктивный каркас снабжен с внутренней
стороны вспомогательным треугольным конструктивным каркасом
Трос проходит в продольном направлении ферменного моста, будучи натянутым между
близлежащей частью соединяемой детали на одной из вершин вспомогательной треугольной
конструктивной рамы со стороны первого конца ферменной балки
или арочной балки и близлежащую часть соединяемой детали на соответствующей одной из
вершин вспомогательной треугольной конструктивной рамы со стороны второго конца
стропильной балки или арочной балки.
Отклоняющая конструкция, приспособленная для приложения направленного вниз усилия к
тросу, вставляется между тросом и нижним поясом ферменной балки или арочной балки для
натяжения троса, и направленное вверх усилие прикладывается к нижнему поясу за счет силы
реакции, относящейся к натяжению троса через отклоняющая конструкция.

233.

234.

Through co-action between auxiliary triangular structural frames, which are each
constructed at opposite ends of a truss girder or arch girder, and a cable stretched
between the auxiliary triangular structural frames, an upwardly directed force is
exerted to the truss girder or arch girder, thereby effectively inducing a load resisting
force. A reinforcement structure of a truss bridge or arch bridge is comprised of a truss
girder or arch girder, a first and a second end of which are each provided with a main
triangular structural frame. The main triangular structural frame is provided at an inner
side thereof with an auxiliary triangular structural frame. The auxiliary triangular
structural frame is joined at vertexes thereof with frame structural elements at
respective sides of the main triangular structural frame. A cable extends in a
longitudinal direction of the truss bridge, being stretched between a nearby part of a
joined part at one of the vertexes of the auxiliary triangular structural frame on a side
of the first end of the truss girder or arch girder and a nearby part of a joined part at a
corresponding one of the vertexes of the auxiliary triangular structural frame on a side
of the second end of the truss girder or arch girder. Deflecting structure, adapted to
exert a downwardly directed force to the cable, is inserted between the cable and a
lower chord of the truss girder or arch girder so as to tension the cable, and an
upwardly directed force is exerted to the lower chord by a reaction force attributable to
tension of the cable via the deflecting structure.

235.

Reinforcement structure of truss bridge or arch bridge
Abstract
Through co-action between auxiliary triangular structural frames which are each constructed at opposite ends of a truss girder or arch girder and a cable stretched between the
auxiliary triangular structural frames, an upward directing force is exerted to the truss girder or arch girder, thereby effectively inducing a load resisting force. A reinforcement
structure of a truss bridge or arch bridge is comprised of a truss girder 2 or arch girder a first and a second end of which are each provided with a main triangular structural
frame 6 which is further provided at an inner side thereof with an auxiliary triangular structural frame 9, the auxiliary triangular structural frame 9 being joined at vertexes
thereof with frame structural elements at the respective sides of the main triangular structural frame 6, a cable 10 extending in a longitudinal direction of the truss bridge being
stretched between a nearby part of the joined part at the vertex of the auxiliary triangular structural frame 9 on the side of the first end of the truss girder 2 or arch girder and a
nearby part of the joined part at the corresponding vertex of the auxiliary triangular structural frame 9 on the side of the second end of the truss girder 2 or arch girder,
deflecting means 11 adapted to exert a downward directing force to the cable 10 being inserted between the cable 10 and a lower chord 3 of the truss girder 2 or arch girder so
as to tension the cable 10, an upward directing force being exerted to the lower chord 3 by a reacting force attributable to tension of the cable 10 through the deflecting means
11.
Images (14)
Classifications
E01D1/005 Bowstring bridges
View 2 more classifications
US20040040100A1
United States
Download PDF Find Prior Art

236.

Similar
Inventor
Mitsuhiro Tokuno
Fumihiro Saito
Seio Takeshima
Yoshiaki Nakai
Current Assignee
Eco Japan Co Ltd
SE Corp
Asahi Engineering Co Ltd Fukuoka
Worldwide applications
2002 JP 2003 EP DE KR US CN
Application US10/653,173 events
2003-09-03
Application filed by Individual
2003-09-03
Assigned to ASAHI ENGINEERING CO., LTD., SE CORP, ECO JAPAN CO., LTD.
2004-03-04
Publication of US20040040100A1
2005-05-17
Application granted
2005-05-17
Publication of US6892410B2
2023-09-03
Anticipated expiration
Status
Expired - Fee Related
Info
Patent citations (31)
Cited by (39)
Legal events
Similar documents
Priority and Related Applications
External links
USPTO
USPTO PatentCenter
USPTO Assignment
Espacenet
Global Dossier
Discuss

237.

Description
BACKGROUND OF THE INVENTION
[0001]
1. Field of the Invention
[0002]
This invention relates to a reinforcement structure effective for improving a load resisting force of a truss bridge or arch bridge constructed over a river or on the land.
[0003]
2. Related Art
[0004]
There has heretofore been known, as a work for reinforcing a truss bridge or arch bridge, a method in which a structural frame(s) of a truss girder or arch girder which
constitutes the truss bridge or arch bridge, more specifically, an upper chord, a lower chord and a diagonal member in the truss girder or a lower chord and a vertical
member in the arch girder are abutted and overlaid by a short reinforcement member and bolted together, so that the sectional area of each structural frame is increased
to thereby enhance the load resisting force.
[0005]
However, the above-mentioned reinforcement work requires such a troublesome work that many reinforcement plates are needed and each sheet must be bolted. In
addition, a long period of time is required for the work and the working cost is increased.
[0006]
Moreover, many bolt heads are projected from the joined part of the structural frame through a gusset plate. In case the reinforcement plates are overlaid on the area of
the structural frame which excludes this joined part, a problem arises in which the load resisting force is hardly enhanced at the joined part on which a dead load and an
active load are concentrated.
[0007]
In order to avoid this problem, a large-scale work is required in which many bolts and gusset plates are removed from the joined part and replaced with a reinforcement
plate and then bolted again.
SUMMARY OF THE INVENTION
[0008]

238.

It is, therefore, an object of the present invention to provide a reinforcement structure of a truss bridge or arch bridge, in which through co-action between auxiliary
triangular structural frames which are each constructed at opposite ends of a truss girder or arch girder and a cable stretched between the auxiliary triangular structural
frames, an upward directing force is exerted to the truss girder or arch girder, thereby effectively inducing a load resisting force.
[0009]
To achieve the above object, from one aspect of the present invention, there is provided a reinforcement structure of a truss bridge comprising a truss girder a first and
a second end of which are each provided with a main triangular structural frame which is further provided at an inner side thereof with an auxiliary triangular structural
frame, the auxiliary triangular structural frame being joined at vertexes thereof with frame structural elements at the respective sides of the main triangular structural
frame, a cable extending in a longitudinal direction of the truss bridge being stretched between a nearby part of the joined part at the vertex of the auxiliary triangular
structural frame on the side of the first end of the truss girder and a nearby part of the joined part at the corresponding vertex of the auxiliary triangular structural frame
on the side of the second end of the truss girder, deflecting means adapted to exert a downward directing force to the cable being inserted between the cable and a
lower chord of the truss girder so as to tension the cable, an upward directing force being exerted to the lower chord by a reacting force attributable to tension of the
cable through the deflecting means.
[0010]
From another aspect of the invention, there is provided a reinforcement structure of an arch bridge comprising an arch girder a first and a second end of which are each
provided with a main triangular structural frame or main rectangular structural frame which is further provided at an inner side thereof with an auxiliary triangular
structural frame, the auxiliary triangular structural frame being joined at vertexes thereof with frame structural elements at the respective sides of the main triangular
structural frame or main rectangular structural frame, a cable extending in a longitudinal direction of the arch bridge being stretched between a nearby part of the
joined part at the vertex of the auxiliary triangular structural frame on the side of the first end of the arch girder and a nearby part of the joined part at the corresponding
vertex of the auxiliary triangular structural frame on the side of the second end of the arch girder, deflecting means adapted to exert a downward directing force to the
cable being inserted between the cable and a lower chord of the arch girder so as to tension the cable, an upward directing force being exerted to the lower chord by a
reacting force attributable to tension of the cable through the deflecting means.
[0011]
Preferably, the deflecting means is constituted by a jack capable of controlling the downward directing force by controlling an expanding/contracting amount.
BRIEF DESCRIPTION OF THE DRAWING
[0012]
FIG. 1 is a side view schematically showing a reinforcement structure of a truss girder.
[0013]
FIG. 2(A) is an enlarged side view of the reinforcement structural part of FIG. 1 and FIG. 2(B) is an enlarged side view of an anchor part of a cable.
[0014]

239.

FIG. 3 is a side view schematically showing another example of a reinforcement structure of a truss girder.
[0015]
FIG. 4 is an enlarged side view of the reinforcement structural part of FIG. 3.
[0016]
FIG. 5 is a side view schematically showing a reinforcement structure of a truss bridge having such a structure that a floor plate is loaded on the truss girder.
[0017]
FIG. 6 is a sectional view, when viewed in a widthwise direction of the bridge, showing a part provided with deflecting means in the truss girder of FIGS. 1 through 4.
[0018]
FIG. 7 is a side view showing an axial force in each part of the reinforcement structure of FIGS. 1 and 2.
[0019]
FIG. 8 is a side view schematically showing a reinforcement structure of an arch girder.
[0020]
FIG. 9 is a side view schematically showing another example of a reinforcement structure of an arch girder.
[0021]
FIG. 10 is a side view schematically showing a further example of a reinforcement structure of an arch girder.
[0022]
FIGS. 11(A) and 11(B) are sectional views showing an operating state of a jack forming deflecting means.
[0023]
FIG. 12 is a side view of a reinforcement structure of a truss bridge showing a comparative example of the present invention.
[0024]
FIG. 13 is a side view showing another comparative example of the above.

240.

DETAILED DESCRIPTION OF THE INVENTION
[0025]
Embodiments of a reinforcement structure of a truss bridge or arch bridge according to the present invention will be described hereinafter with reference to FIGS. 1
through 11.
[0026]
As shown in FIGS. 1 through 7, a truss bridge is a bridge having two truss girders 2 each of which is constructed on each side in a sense of a road width direction of a
floor slab 1. The truss girder 2 has a structure in which a lower chord 3 and an upper chord 4 are joined by a plurality of diagonal members 5 which are inserted
therebetween in a zigzag manner, thereby forming a plurality of main triangular frames 6 from one of the truss girder 2 to the other end.
[0027]
On the other hand, as shown in FIGS. 8 through 10, an arch bridge is a bridge having two arch girders 7 each of which is constructed on each side in a sense of a road
width direction of a floor slab 1. The arch bridge has a structure in which a lower chord 3 and an arch member 4′ are joined by a plurality of vertical members 8
inserted therebetween in parallel relation, thereby forming a plurality of rectangular structural frames 6′ between two main triangular structural frames 5 each of which
is formed on each end of the arch bridge.
[0028]
The truss girders 2 and the arch girders 7, as well as other vertical girders 22, are supported, in a suspending manner, at opposite ends thereof on bridge legs 24.
[0029]
The reinforcement structure of the truss bridge will be described first. FIGS. 1 through 4 show an example in which a truss girder 2 is arranged such that an upper
chord 4 is located above a floor slab 1, and FIG. 5 shows a truss bridge in which a floor slab 1 is loaded on a truss girder 2. The description to follow is common to
those two truss girders.
[0030]
As shown in FIGS. 1 through 7, a first and a second end of the truss girder 2 are each provided with a main triangular structural frame 6 which is further provided at an
inner side thereof with an auxiliary triangular structural frame 9, and the auxiliary triangular structural frame 9 is joined at vertexes thereof with frame structural
elements at the respective sides of the main triangular structural frame 6. Therefore, each auxiliary triangular structural frame 9 includes joined parts P1, P2 and P3
which correspond to the respective vertexes of a triangle.
[0031]
It is most effective to construct the auxiliary triangular structural frame 9 inside the main triangular structural frame 6 which is formed at each end of the truss bridge.
However, it may also be constructed inside the main triangular structural frame 6 which is formed at an inner side of the main triangular structural frame 6 which is
formed at each end of the truss bridge. That is, the auxiliary triangular structural frames 9 are each mounted on the first and second end side of the truss bridge.

241.

[0032]
The main triangular structural frame 6 comprises three main structural frame elements 6 a, 6 b 6 c. The main structural frame element 6 a comprises a lower chord 3
part, the main structural frame elements 6 b, 6 c comprise two diagonal members 5 which are adapted to interconnect the opposite ends of the main structural frame
element 6 a and the upper chord 4. The main structural frame elements 6 a, 6 b, 6 c form the respective sides of the triangle.
[0033]
On the other hand, the auxiliary triangular structural frame 9 comprises three auxiliary structural frame elements 9 a, 9 b, 9 c. The auxiliary structural frame element 9
a comprises a diagonal member for joining an intermediate part of the main structural frame element 6 b (one diagonal member 5) and an intermediate part of the main
structural frame element 6 a, the auxiliary structural frame element 9 b comprises a diagonal member for joining an intermediate part of the main structural frame
element 6 c (the other diagonal member 5) and an intermediate part of the main structural frame element 6 a. The auxiliary structural frame element 9 c comprises a
chord for joining an intermediate part of the main structural element 6 b as the diagonal member 5 and an intermediate part of the main structural frame element 6 c as
the diagonal member 5.
[0034]
Accordingly, the auxiliary structural frame elements 9 a, 9 b of the auxiliary triangular structural frame 9 are bolted to the intermediate part of the main structural
frame element 6 a through a gusset plate 12 a, the auxiliary structural frame elements 9 a, 9 c are bolted to the intermediate part of the main structural frame element 6
b through a gusset plate 12 b, and the auxiliary structural frame elements 9 b, 9 c are bolted to the intermediate part of the main structural frame element 6 c through a
gusset plate 12 c, thereby forming the joined parts P1, P2, P3.
[0035]
A cable 10 extending in the longitudinal direction of the bridge is stretched between a nearby area of the joined part at the vertex of the auxiliary triangular structural
frame 9 which is located on the first side and a nearby area of the joined part corresponding vertex of the auxiliary triangular structural frame 9 which is located on the
second side. Deflecting means 11 for exerting a downward directing force to the cable 10 is inserted between the cable 10 and the lower chord 3 of the truss girder 2,
so that an upward directing force W1 caused by reacting force attributable to tension of the cable 10 is exerted to the lower chord 3 through the deflecting means 11.
[0036]
The deflecting means 11 is attached to the lower chord 3 by a bolt or the like such that the deflecting means 11 is projected downward with its lower end supporting the
cable 10.
[0037]
As one preferable example, as shown in FIGS. 1 and 2, the cable 10 extending in the longitudinal direction of the bridge is stretched between the joined parts P1, P2 at
the vertexes of the auxiliary triangular structural frames 9 with respect to the lower chord 3, i.e., between the joined parts P1, P2 of the main structural frame elements
6a with respect to the auxiliary structural frame elements 9 a, 9 b, on the first and second end sides. Deflecting means 11 for exerting a downward directing force to the
cable 10 is inserted for tensioning the cable 10 between the cable 10 and the lower chord 3 of the truss girder 2, so that an upward directing force W1 is exerted to the
lower chord 3 through the deflecting means 11 and an upward directing force W1 is exerted to the bridge through the lower chord 3, while exerting a tensile force to
the joined parts P1, P1, by the reacting force attributable to tension of the cable 10.

242.

[0038]
As another preferable example, as shown in FIGS. 3 and 4, a cable 10 extending in the longitudinal direction of the bridge is stretched between the joined parts P3, P3
at the vertexes of the auxiliary triangular frames 9 with respect to the main structural frame elements 6 c, i.e., between the joined parts P3, P3 of the main structural
frame elements 6 c with respect to the auxiliary structural frame elements 9 b, 9 c, on the first and second end sides. Deflecting means 11 for exerting a downward
directing force to the cable 10 is inserted for tensioning the cable 10 between the cable 10 and the lower chord 3 of the truss girder 2, so that an upward directing force
W1 is exerted to the lower chord 3 through the deflecting means 11 and an upward directing force W1 is exerted to the bridge through the lower chord 3, while
exerting a tensile force to the joined parts P3, P3, by the reacting force attributable to tension of the cable 10.
[0039]
Similarly, in the arch bridge, as shown in FIGS. 8 and 9, a first and a second end of an arch girder 7 are each provided with a main triangular structural frame 6 or, as
shown in FIG. 10, a main rectangular structural frame 6′, which is further provided at an inner side thereof with an auxiliary triangular structural frame 9. The auxiliary
triangular structural frame 9 is joined at vertexes thereof with frame structural elements at the respective sides of the main triangular structural frame 6 or main
rectangular structural frame 6′. Therefore, each auxiliary rectangular structural frame 9 includes three joined parts P1, P2, P3 which correspond to the vertexes of a
triangle.
[0040]
In the same manner as described above, the main triangular structural frames 6 on the first and second ends of the arch girder 7 each comprise three main structural
frame elements 6 a, 6 b, 6 c. The main structural frame element 6 a comprises an end part (first or second end part) of the lower chord 3, the main structural frame
element 6 b comprises an end part (first or second end part) of the arch member 4′, and the main structural frame element 6 c comprises a vertical member 8 on an end
(first end or second end) of the lower chord 3. The main structural frame elements 6 a, 6 b, 6 c form the respective sides of a triangle.
[0041]
On the other hand, the auxiliary triangular structural frame 9 comprises three auxiliary structural frame elements 9 a, 9 b, 9 c. The auxiliary structural frame element 9
a comprises a diagonal member for joining an intermediate part of the main structural frame element 6 b (first or second end part of the arch member 4′) and an
intermediate part of the main structural frame element 6 a (first or second end part of the lower chord 3), the auxiliary structural frame element 9 b comprises a
diagonal member for joining an intermediate part of the main structural frame element 6c (the vertical member 8) and an intermediate part of the main structural frame
element 6 a (first or second end part of the lower chord 3). The auxiliary structural frame element 9 c comprises a chord for joining an intermediate part of the main
structural element 6 b as the first or second end part of the arch member 4′ and an intermediate part of the main structural frame element 6 c as the vertical member 8.
[0042]
Accordingly, the auxiliary structural frame elements 9 a, 9 b of the auxiliary triangular structural frame 9 are bolted to the intermediate part of the main structural
frame element 6 a through a gusset plate 12 a, the auxiliary structural frame elements 9 a, 9 c are bolted to the intermediate part of the main structural frame element 6
b through a gusset plate 12 b, and the auxiliary structural frame elements 9 b, 9 c are bolted to the intermediate part of the main structural frame element 6 c through a
gusset plate 12 c, thereby forming the joined parts P1, P2, P3.
[0043]

243.

As shown in FIG. 10, the main rectangular structural frames 6′ located between the main triangular structural frames 6, 6 on the first and second ends of the arch girder
7 each comprise four main structural frame elements 6 a, 6 b, 6 c, 6 d. The main structural frame element 6 a comprises a lower chord 3 part, the main structural frame
elements 6 b, 6 c comprise two vertical members 8 which are adjacent to each other in parallel relation, and the main structural frame element 6 d comprises an arch
member 4′ part. The main structural frame elements 6 a, 6 b, 6 c, 6 d form the respective sides of a rectangular.
[0044]
On the other hand, the auxiliary triangular structural frame 9 comprises three auxiliary structural frame elements 9 a, 9 b, 9 c. The auxiliary structural frame element 9
a comprises a diagonal member for joining an intermediate part of the main structural frame element 6 b (one vertical member 8) and an intermediate part of the main
structural frame element 6 a (the lower chord 3 part), the auxiliary structural frame element 9 b comprises a diagonal member for joining an intermediate part of the
main structural frame element 6 c (the other vertical member 8) and an intermediate part of the main structural frame element 6 a (the lower chord 3 part). The
auxiliary structural frame element 9 c comprises a chord for joining an intermediate part of the main structural element 6 b as the vertical member 8 and an
intermediate part of the main structural frame element 6 c as the vertical member 8.
[0045]
Accordingly, the auxiliary structural frame elements 9 a, 9 b of the auxiliary triangular structural frame 9 are bolted to the intermediate part of the main structural
frame element 6 a through a gusset plate 12 a, the auxiliary structural frame elements 9 a, 9 c are bolted to the intermediate part of the main structural frame element 6
b through a gusset plate 12 b, and the auxiliary structural frame elements 9 b, 9 c are bolted to the intermediate part of the main structural frame element 6 c through a
gusset plate 12 c, thereby forming the joined parts P1, P2, P3.
[0046]
In FIG. 10, a pair of auxiliary triangular structural frames 9, 9′ which commonly have the auxiliary structure frame element 9 c as the chord, the auxiliary structural
frame elements 9 a′, 9 b′ which comprise the diagonal member of the auxiliary triangular frame 9′ are joined to an intermediate part of the main structural frame 6 d
which comprises the arch member 4′ part through the gusset plate 12 d, thereby forming the joined parts P1, P2, P3, P4.
[0047]
In other words, a parallelogrammic structural frame, which comprises the auxiliary structural frame elements 9 a, 9 b, 9 a′, 9 b′, is constructed at an inner side of the
main rectangular structural frame 6′. A diagonal member comprising the auxiliary structural frame element 9 c is inserted along a diagonal line which joins the
opposing vertexes of the parallelogrammic structural frame, and the respective vertexes of the parallelogrammic structural frame are joined to intermediate parts of the
main structural frame members 6 a, 6 b, 6 c, 6 d.
[0048]
In the arch bridge, a cable 10 extending in a longitudinal direction of the arch bridge is stretched between a nearby part of the joined part at the vertex of the auxiliary
triangular structural frame 9 on the side of the first end of the arch girder and a nearby part of the joined part at the corresponding vertex of the auxiliary triangular
structural frame 9 on the side of the second end of the arch girder, deflecting means 11 adapted to exert a downward directing force to the cable 10 is inserted between
the cable 10 and the lower chord 3 of the arch girder member 4′ so as to tension the cable 10, and an upward directing force W1 is exerted to the lower chord 3 by a
reacting force attributable to tension of the cable 10 through the deflecting means 11.

244.

[0049]
The deflecting means 11 is attached to the lower chord 3 by a bolt or the like such that the deflecting means 11 is projected downward with its lower end supporting the
cable 10.
[0050]
As one preferable example, as shown in FIG. 8, the cable 10 extending in the longitudinal direction of the bridge is stretched between the joined parts P1, P2 of the
vertexes of the auxiliary triangular structural frames 9 with respect to the lower chord 3, i.e., between the joined parts P1, P2 of the main structural frame elements 6a
with respect to the auxiliary structural frame elements 9 a, 9 b, on the first and second ends. Deflecting means 11 for exerting a downward directing force to the cable
10 is inserted for tensioning the cable 10 between the cable 10 and the lower chord 3, so that an upward directing force W1 is exerted to the lower chord 3 through the
deflecting means 11 and an upward directing force W1 is exerted to the lower chord 3, while exerting a tensile force to the joined parts P1, P1, by the reacting force
attributable to tension of the cable 10.
[0051]
As another preferable example, as shown in FIGS. 9 and 10, a cable 10 extending in the longitudinal direction of the bridge is stretched between the joined parts P3, P3
of the vertexes of the auxiliary triangular frames 9 with respect to the main structural frame elements 6 c, i.e., between the joined parts P3, P3 of the main structural
frame elements 6 c with respect to the auxiliary structural frame elements 9 b, 9 c, on the first and second end sides. Deflecting means 11 for exerting a downward
directing force to the cable 10 is inserted for tensioning the cable 10 between the cable 10 and the lower chord 3, so that an upward directing force W1 is exerted to the
lower chord 3 through the deflecting means 11 and an upward directing force W1 is exerted to the bridge through the lower chord 3, while exerting a tensile force to
the joined parts P3, P3, by the reacting force attributable to tension of the cable 10.
[0052]
A single of plural deflecting means 11 are provided depending on the supporting interval length of the truss bridge or arch bridge. At that time, the cable 10 in the truss
bridge or arch bridge diagonally extends between the joined part P1 and the deflecting means 11 on the first end and between the joined part P3 and the deflecting
means 11 on the second end, but it horizontally extends between the deflecting means 11, 11.
[0053]
In case the opposite ends of the cable 10 are joined to the connecting points P3, the auxiliary structural frame element 9 c is diagonally oriented on a diagonal axis at
the diagonally extending part of the cable 10.
[0054]
The cable 10 in the truss bridge or arch bridge used in this embodiment is a steel cable called ―PC cable‖, in which opposite ends of the cable are provided with male
threads 14. As shown in FIGS. 2 and 4, cable threaders 13 are each attached to the joined parts P1, P3, and the opposite ends of the cable 10 are inserted in the cable
threaders 13. A nut 15 is threadingly engaged with the male thread part of the cable 10 at the outer end of the cable threader 13, and the nut 15 is abutted with the outer
end of the cable threader 13 so that the tensioning state of the cable 10 can be maintained.
[0055]

245.

That is, the opposite ends or one end of the cable 10 is pulled by a towing machine to create a tensioning state of the cable 10. In that state, the nut 15 is threadingly
advanced and abutted with the outer end of the cable threader 13 to maintain the tensioning state of the cable 10. Accordingly, the nut 15 constitutes a stopper against
the tensile force.
[0056]
In that tensioning state, the cable 10 is, as shown in FIG. 6, is inserted in a cable guide groove 16 formed in a cable guide at a lower end of the deflecting means 11 and
urged hard against the deflecting means 11 and tensioned in a state in which a relatively downward directing force is exerted to the cable 10. As a reacting force of this
downward directing force, the upward directing force W1 is generated.
[0057]
A simple or plural cables 10 are stretched on one side in the widthwise direction of the bridge. In case plural cables 10 are stretched on the opposite sides, a plurality of
the cable guide grooves 16 are formed in parallel.
[0058]
The floor slab 1 is supported by a vertical girder 22 which is formed of an H-shaped steel extending in the longitudinal direction of the bridge and a horizontal girder
23 which is formed of an H-shaped steel for joining the vertical girders 22. The opposite ends of the horizontal girder 23 are joined to the lower chord 3 formed of an
H-shaped steel of the truss girder 2 or arch girder 7. The upward directing force W1 is exerted to the vertical girder 22 through the horizontal girder 23, thereby
exerting the upward directing force W1 to the entire bridge.
[0059]
A prop post formed of steel or the like is used as the deflecting means 11. Preferably, a jack which can be adjusted in the downward directing force by controlling the
expanding/contracting amount is used as the deflecting means 11.
[0060]
As the jack, a jack having a hydraulic cylinder structure or pneumatic cylinder structure can be used.
[0061]
A thread type jack can also be used. Particularly preferably, a hydraulic thread type jack 11, as shown in FIGS. 11A and 11B, may be used which can be
expanded/contracted by hydraulic pressure and which can be fixed in expanding or contracting position by threading engagement.
[0062]
That is, a jack 11 is used which has both the hydraulic cylinder structure and thread type jack structure. In this jack 11, one end of a cylinder rod 17 is slidingly fitted
airtight to the inside of the cylinder 18, and a male thread is formed at the outer peripheral surface of the other end part of the cylinder rod 17 which projects from the
cylinder 18. A stopper flange 19 is threadingly engaged with the male thread, and a hydraulic pressure feed port 21 for feeding a hydraulic pressure into a hydraulic
chamber 20 formed at a lower surface of the cylinder rod 17 at an inner bottom part of the cylinder 18 is provided to the cylinder 18.

246.

[0063]
By feeding the hydraulic pressure through the hydraulic pressure feed port 21, the cylinder rod 17 is expanded by a constant expanding amount, thereby exerting a
constant tensioning force (downward directing force) to the cable 10.
[0064]
Then, the downward directing force exerted to the cable 10 is confirmed by a pressure gauge. In the state in which the downward directing force is exerted to the cable
10, the stopper flange 19 is threadingly retracted along the cylinder rod 17 and sat on an end face of the cylinder 18. Hence, contraction of the cylinder rod 17 is
prohibited and the expansion is retained so that the downward directing force exerted to the cable 10 is set and retained.
[0065]
After the expanding state is retained by prohibiting the threading retraction of cylinder rod 17 by the stopper flange 19, the hydraulic pressure within the hydraulic
chamber 20 is extracted through the hydraulic pressure feed port 21. Thereafter, the downward directing pressure exerted to the cable 10 is maintained by the thread
type cylinder rod 17, thereby maintaining the tensioning state of the cable 10.
[0066]
In case the cable 10 is loosened with the passage of time, the hydraulic pressure is fed again, so that the tensioning state can be corrected and the downward directing
force can be corrected.
[0067]
FIGS. 12 and 13 show comparison examples of the present invention. That is, as shown in FIG. 12, in case the opposite ends of the cable 10 are stretched between the
opposite ends of the truss girder 2 or arch girder 7 without providing the auxiliary triangular structural frame 9 and the deflecting means 11, the tensioning force of the
cable 10 merely exerts a main axial force (compressive force), as indicated by arrows, to the lower chord 3, and it is not effectively transmitted to other main structural
frames, i.e., the upper chord 4 and the diagonal member 5 in the truss girder 2, or the arch member 4′ and the vertical member 8 in the arch girder 7, thereby reducing
the reinforcement effect thereof.
[0068]
As shown in FIG. 13, in case the deflecting means 11 is provided between the cable 10 and the lower chord 3 of FIG. 12 and no auxiliary triangular structural frame 9
is provided, an axial force (compressive force and pulling force) as indicated by arrows of FIG. 13 is applied to the main triangular structural frame 6 of the respective
girders 2, 7.
[0069]
Particularly, in case the auxiliary triangular structural frame 9 is not provided, in the main structural frame 6 a formed by each end part (first or second end part) of the
lower chord 3, an axial force as indicated by arrows is applied to the outer main structural frame element part 6 a′ and the inner main structural frame element part 6 a″
with respect to the joined part P1. As a result, a strong shearing force and a bending moment are applied to the joined part P1.

247.

[0070]
On the other hand, as shown in FIG. 7, in case the auxiliary triangular structural frame 9 is provided and the cable 10 is stretched between the joined parts P1, P3, no
axial force is applied to the outer main structural frame element part 6 a′ with respect to the joined part P1 at all, and no shearing force nor bending moment are applied
thereto.
[0071]
The tensioning force of the cable 10 is effectively transmitted to other main structural frame, i.e., the upper chord 4 and the diagonal member 5 in the truss girder 2 or
the arch member 4′ and the vertical member 8 in the arch girder 7, while exerting an axial force (compressive force) to the lower chord 3, so that the reinforcement
effect thereof is effectively induced. Hence, the present invention is suitable as a reinforcement structure of a truss girder 2 or an arch girder 7.
[0072]
Obviously, many modifications and variations of the present invention are possible in light of the above teachings. It is, therefore, to be understood that within the
scope of the appended claims, the invention may be practiced otherwise than as specifically described.
Claims (3)
Hide Dependent
What is claimed is:
1. A reinforcement structure of a truss bridge comprising a truss girder a first and a second end of which are each provided with a main triangular structural frame which is
further provided at an inner side thereof with an auxiliary triangular structural frame, said auxiliary triangular structural frame being joined at vertexes thereof with frame
structural elements at the respective sides of said main triangular structural frame, a cable extending in a longitudinal direction of said truss bridge being stretched between a
nearby part of the joined part at said vertex of said auxiliary triangular structural frame on the side of said first end of said truss girder and a nearby part of the joined part at
the corresponding vertex of said auxiliary triangular structural frame on the side of said second end of said truss girder, deflecting means adapted to exert a downward
directing force to said cable being inserted between said cable and a lower chord of said truss girder so as to tension said cable, an upward directing force being exerted to said
lower chord by a reacting force attributable to tension of said cable through said deflecting means.
2. A reinforcement structure of an arch bridge comprising an arch girder a first and a second end of which are each provided with a main triangular structural frame or main
rectangular structural frame which is further provided at an inner side thereof with an auxiliary triangular structural frame, said auxiliary triangular structural frame being
joined at vertexes thereof with frame structural elements at the respective sides of said main triangular structural frame or main rectangular structural frame, a cable extending
in a longitudinal direction of said arch bridge being stretched between a nearby part of the joined part at said vertex of said auxiliary triangular structural frame on the side of
said first end of said arch girder and a nearby part of the joined part at the corresponding vertex of said auxiliary triangular structural frame on the side of said second end of
said arch girder, deflecting means adapted to exert a downward directing force to said cable being inserted between said cable and a lower chord of said arch girder so as to
tension said cable, an upward directing force being exerted to said lower chord by a reacting force attributable to tension of said cable through said deflecting means.
3. A reinforcement structure of a truss bridge or arch bridge according to claim 1 or 2, wherein said deflecting means is constituted by a jack capable of controlling said
downward directing force by controlling an expanding/contracting amount.
Patent Citations (31)
Publication number Priority date Publication date Assignee Title

248.

US29825A * 1860-08-28 Trussed compound girder
US47920A * 1865-05-30 Improvement in bridges
US118566A * 1871-08-29 Improvement in arched trusses for bridges
US238130A * 1881-02-22 Bridge
US428338A * 1890-05-20 Suspension-bridge
US534032A * 1895-02-12 Bridge
US627509A * 1898-08-17 1899-06-27 Henry E Koch Bridge.
US762632A * 1904-02-18 1904-06-14 Joseph W Headley Truss-bridge.
US809264A * 1903-12-04 1906-01-02 William J Humphreys Truss-bridge.
US824502A * 1903-06-05 1906-06-26 Edmond Molloy Frame structure.
US1153099A * 1915-01-13 1915-09-07 Thomas J Moore Bridge.
US2856644A * 1955-07-05 1958-10-21 Royal J Ahlberg Joist brace
US3909863A * 1972-09-11 1975-10-07 Krupp Gmbh Bridge crane girder
US4021875A * 1975-04-10 1977-05-10 The United States Of America As Represented By The Secretary Of The Army Pivotable and extensible tension post for a cable
bridge structure
US4353190A * 1979-03-02 1982-10-12 Gleeson Maurice J Stiffened elongate support member
US4589157A * 1982-01-29 1986-05-20 Bouygues Apparatus for the construction of a bridge floor and similar structures, and constructions which are obtained
US4620400A * 1980-11-25 1986-11-04 Bouygues Prestressed concrete structure, a method of producing this structure, and elements for implementing the method
US4631772A * 1983-12-28 1986-12-30 Bonasso S G Tension arch structure
US5065467A * 1989-05-25 1991-11-19 Mabey & Johnson Limited Prefabricated lattice panels for a bridge
US5671572A * 1994-02-11 1997-09-30 Siller-Franco; Jose Luis Method for externally reinforcing girders
US6065257A * 1999-05-24 2000-05-23 Hubbell, Roth & Clark, Inc. Tendon alignment assembly and method for externally reinforcing a load bearing beam
US6493895B1 * 1999-02-19 2002-12-17 Zachary M. Reynolds Truss enhanced bridge girder
Family To Family Citations
DE622446C * 1932-03-18 1935-11-28 Ludwig Bosch Dr Ing Reinforced truss arch bridge
DE817468C * 1950-05-27 1951-10-18 Maschf Augsburg Nuernberg Ag Method for assembling solid bridges from prefabricated bridge sections
DE817761C * 1950-08-11 1951-10-18 Arnold Von Dipl-Ing Pohl Statically determined bridge
JPH0338242Y2 1985-01-10 1991-08-13
JP2971043B2 1997-01-28 1999-11-02 アジア航測株式会社 Truss bridge
JP3948809B2 1998-02-05 2007-07-25 三井住友建設株式会社 Joining structure and joining method between concrete member and steel pipe member, and concrete / steel
composite truss bridge
CN2346861Y * 1998-12-30 1999-11-03 北京市建筑工程研究院 Flexible, third quarter and large span truss
JP3597168B2 * 2002-01-29 2004-12-02 朝日エンヂニヤリング株式会社 Bridge reinforcement structure
JP3732468B2 * 2002-09-04 2006-01-05 朝日エンヂニヤリング株式会社 Reinforcement structure of truss bridge or arch bridge
* Cited by examiner, † Cited by third party
Cited By (39)
Publication number Priority date Publication date Assignee Title
US20060143840A1 * 2002-09-14 2006-07-06 Dornier Gmbh Bridge that can be dismantled
CN102140780A * 2011-04-08 2011-08-03 浙江省电力设计院 Method and device for reinforcing bridge by external pre-stressed strands under bridge

249.

CN102288441A * 2011-05-13 2011-12-21 东南大学 Progressive method for recognizing damaged cable, slack cable and angular displacement of support based on cable
force monitoring
CN102778893A * 2012-08-07 2012-11-14 中铁二十三局集团有限公司 Precise locating detecting method for truss girder
CN102808373A * 2012-08-10 2012-12-05 南京工业大学 Rapidly assembled steel footbridge in truss string structure
CN103774543A * 2014-02-14 2014-05-07 王新民 Deck bridge with cable-arch combination structure
JP2015183351A * 2014-03-20 2015-10-22 国立大学法人 名古屋工業大学 Structure for preventing collapse of truss bridge
JP2016211238A * 2015-05-11 2016-12-15 東日本旅客鉄道株式会社 Girder deflection reduction device
JP2017057684A * 2015-09-18 2017-03-23 国立大学法人 名古屋工業大学 Bridge fall prevention device of truss bridge
CN106567344A * 2016-10-28 2017-04-19 浙江大学 Variable-height cable-truss bridge reinforcing structure system
ES2746623A1 * 2019-09-24 2020-03-06 Arenas & Asoc Ingenieria De Diseno S L P EXISTING STRUCTURE REINFORCEMENT DEVICE (Machine-translation by
Google Translate, not legally binding)
CN112726389A * 2020-12-29 2021-04-30 辽宁工程技术大学 Longitudinal limiting device for short suspender of through arch bridge
CN114635372A * 2022-03-21 2022-06-17 武汉理工大学 Multi-tower suspension bridge reinforcing structure for overcoming middle tower effect
Family To Family Citations
JP3732468B2 * 2002-09-04 2006-01-05 朝日エンヂニヤリング株式会社 Reinforcement structure of truss bridge or arch bridge
US20080092481A1 * 2004-07-21 2008-04-24 Murray Ellen Building Methods
WO2006007659A1 * 2004-07-21 2006-01-26 S2 Holdings Pty Limited Building methods
CN100334306C * 2004-10-27 2007-08-29 贵州大学 Short-brace rod type expanding-chord truss and producing method thereof
US7748180B1 * 2005-06-23 2010-07-06 Plavidal Richard W Joist stiffening system
JP4558609B2 * 2005-08-30 2010-10-06 オリエンタル白石株式会社 Extrusion construction method of bridge
KR100740888B1 * 2005-09-06 2007-07-19 선영선 A Reinforcing Supporting Structure For maintenance of Truss bridge And Method Thereof
FR2892735B1 * 2005-10-27 2008-01-04 Freyssinet Soc Par Actions Sim REINFORCED LATTICE STRUCTURE AND REINFORCEMENT METHOD
KR100877636B1 * 2007-02-13 2009-01-09 김정현 Truss girder reinforcement structure of truss bridge
JP4929083B2 * 2007-07-13 2012-05-09 日本車輌製造株式会社 Jack receptacle and truss bridge support exchange method
KR101078047B1 * 2008-02-01 2011-10-28 (주)써포텍 Precast concrete truss support structure and construction method thereof
KR101012275B1 * 2008-04-29 2011-02-07 주식회사 영진공영 Supporter of pipe for piping work
ES2332442B1 * 2008-07-11 2011-03-03 Universidad De Granada SELF-TENSED STRUCTURE FOR BRIDGE OF COMPOSITE MATERIAL.
US8347928B2 * 2008-11-20 2013-01-08 Gary Wilkinson Support element
KR101065633B1 * 2010-10-05 2011-09-20 대명건설(주) Prestressed steel tubular truss beam by external prestressing method
US20120180407A1 * 2011-01-13 2012-07-19 Rees Kyle J Roof truss kit to enable support of solar panels on roof structures
CN103061243B * 2013-01-30 2014-12-03 福州大学 Prestressed steel tube concrete combination trussed beam and construction method thereof
CH706630B1 2013-05-14 2013-12-31 S & P Clever Reinforcement Company Ag Method for pretensioning steel structure e.g. iron bridge, involves vertically driving lifting
element to polymer tapes in region between end anchorages for causing traction force tensioning between end regions of polymer tapes
CN104452604B * 2014-12-03 2016-04-20 中铁大桥局武汉桥梁特种技术有限公司 A kind of method of reinforcing rib-lifting section in steel work arch bridge
CN105780670A * 2014-12-23 2016-07-20 任丘市永基建筑安装工程有限公司 Overall stabilization technology for steel bridge frame
CN107201717A * 2017-06-12 2017-09-26 河南奥斯派克科技有限公司 Antinode plate and double C shape steel composites structure part arch bridge
CN108930222A * 2018-07-18 2018-12-04 广西大学 Camber consolidates triangle arch bridge
CN108755384B * 2018-07-27 2023-06-02 山东大学 Cantilever assembled steel truss bridge with track and construction method thereof
JP6664029B1 * 2019-09-19 2020-03-13 日鉄エンジニアリング株式会社 Truss structure and reinforcement method

250.

CN112878173A * 2021-03-16 2021-06-01 中天建设集团有限公司 Light prestressed steel arch bridge
CN113373787B * 2021-06-18 2022-05-06 中铁大桥勘测设计院集团有限公司 Ultra-wide truss bridge structure system and design method thereof
* Cited by examiner, † Cited by third party, ‡ Family to family citation
Similar Documents
Publication Publication Date Title
US6892410B2 2005-05-17 Reinforcement structure of truss bridge or arch bridge
CN105569263B 2017-07-14 Full assembled steel prefabricated concrete floor combination beam and its installation method
CN111827712B 2021-10-12 Assembled concrete truss building structure reinforcing equipment
JP2017078286A 2017-04-27 Beam construction method
CN106639348B 2022-08-16 Reinforced structure of purlin
CN109653536A 2019-04-19 A kind of large volume arc concrete steel lattice supporting framework and its construction method
JP3597168B2 2004-12-02 Bridge reinforcement structure
CN210507788U 2020-05-12 Gate-type steel frame construction based on many concatenations
KR101112172B1 2012-02-27 A work way structure for pc beam bridge
KR20050101145A 2005-10-20 Preloading system for strut
KR101807119B1 2017-12-08 Pre-Engineered Building system and Reinforcement structure of end plate connection using tendon
KR200352474Y1 2004-06-04 Cable tension introduction unit that used temporary steel bars
CN202252797U 2012-05-30 Hollow beam, arm support device with hollow beam and engineering machinery with hollow beam
CN211816155U 2020-10-30 Ship lock bottom plate wide seam template structure
KR102337872B1 2021-12-10 H-beam steel reinforcing member to prevent secondary deformation of Local Buckling Occurred H-beam steel
CN214656269U 2021-11-09 Longitudinal prestressed tendon crack prevention device for wide box girder top plate
CN215052197U 2021-12-07 Wedge block for temporarily tensioning V-shaped pier and temporary tensioning system for V-shaped pier
KR200321141Y1 2003-07-22 H-Beam Combined with Reinforcement Panel
KR200428360Y1 2006-10-16 Pre-stressed beam
JP2005344324A 2005-12-15 Reinforcing structure for existing wooden building
WO2020016996A1 2020-01-23 Elevator machine base and manufacturing method therefor
JP2004036318A 2004-02-05 Bridge reinforcing structure
JP3103290B2 2000-10-30 Pillar steel frame and steel frame connection method
JP2006183356A 2006-07-13 Roof membrane installing structure
CN111676845A 2020-09-18 Construction device for converting arch bridge from arch structure into cantilever structure
Priority And Related Applications
Applications Claiming Priority (2)
Application Filing date Title
JP2002258898A 2002-09-04 Reinforcement structure of truss bridge or arch bridge
JP2002-258898 2002-09-04
Legal Events

251.

Date Code Title Description
2003-09-03 AS Assignment
Owner name: ASAHI ENGINEERING CO., LTD., JAPAN
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:TOKUNO, MITSUHIRO;SAITO, FUMIHIRO;TAKESHIMA, SEIO;AND
OTHERS;REEL/FRAME:014459/0213;SIGNING DATES FROM 20030822 TO 20030828
Owner name: ECO JAPAN CO., LTD., JAPAN
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:TOKUNO, MITSUHIRO;SAITO, FUMIHIRO;TAKESHIMA, SEIO;AND
OTHERS;REEL/FRAME:014459/0213;SIGNING DATES FROM 20030822 TO 20030828
Owner name: SE CORP, JAPAN
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:TOKUNO, MITSUHIRO;SAITO, FUMIHIRO;TAKESHIMA, SEIO;AND
OTHERS;REEL/FRAME:014459/0213;SIGNING DATES FROM 20030822 TO 20030828
2005-11-01 CC Certificate of correction
2008-11-04 FPAY Fee payment
Year of fee payment: 4
2012-10-09 FPAY Fee payment
Year of fee payment: 8
2016-12-23 REMI Maintenance fee reminder mailed
2017-05-17 LAPS Lapse for failure to pay maintenance fees
2017-06-12 STCH Information on status: patent discontinuation
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362
2017-07-04 FP Lapsed due to failure to pay maintenance fee
Effective date: 20170517
Data provided by IFI CLAIMS Patent Services
https://patents.google.com/patent/US20040040100A1/en

252.

Hydraulic Jacking
Hydra Capsule has established itself as s leading contractor from over 50 years’ of practical experience and within the civil and construction industry, mainly used for heavy
lifting, pre-loading or lowering applications. All our hydraulic jacks and jacking equipment are designed, manufactured and calibrated/testing in-house.
Technical data information sheets for hydraulic jacking application can be downloaded from the applicable page.

253.

We officially provide the largest hire fleet and stock of hydraulic jacks in UK with over 1,500 cylinders which can be incorporated into any of our hydraulic jacking systems,
from hand-operated, electric pumps or synchronised lifting with control manifolds and pressure gauges, as illustrated below, to state of the art computerised control and
monitoring equipment used for precise controlled hydraulic movement when carrying out major lifting projects, such as, bridge jacking decks, bridge bearings or house lifting
operations or other large heavy superstructures.
Our range of low height hydraulic jacks vary from 5 to 1,200 tonnes capacity with stroke from 5mm to 500mm and are designed to work in the toughest environments to
which this type of equipment is normally associated. Our hydraulic jacks are also equipped with locking collars to mechanically lock-off the ram after lifting and swivel
heads to ensure that the load is transferred centrally through the jack.
Our bespoke hydraulic jacking and monitoring equipment is specially designed and manufactured to suit many applications from preloading steelworks to temporary
propping systems used for bridge jacking and bridge bearing replacement operations.
Bridge Jacking for Bearing Replacement & Concrete Repair
Propping and Jacking Solutions

254.

Pre-loading Operations
Bar Stressing and Anchorage Testing
House Jacking and Lifting

255.

Lifting, Lowering, Holding and Sliding Operations
Weighing & Logging
Pile Testing

256.

Jacking and Monitoring
Advantages of Hydraulic Jacking:
- We stock over 1,500 different types of cylinders for any applications (largest in the UK).
- Hydraulic Jacks capacities from 5 tonnes upto 1,200 tonnes from 5mm to 500mm stroke
- Cylinders can be used single, groups to synchronised lifting systems – manual, semi and fully automated facilities
- Range of monitoring services from real-time to remote access can be included into all systems set-ups
- Our expertise range from Construction Site, Steelwork Installation, Railways, Highways and major superstructures throughout the UK and Europe
- All cylinders are LOLER tested and UKAS traceable
Hydra-Capsule range of hydraulic jacks consists of:
Flat Jacks
Screwed ram jacks
Low profile jacks
Pad jacks
Hollow ram cylinders
Plain Ram Cylinders
Pull and Push Cylinders
Pre-Stressing and anchorage cylinders
Pull Testing Jacks
Double-acting cylinders (plain ram and screw ram)
Long stroke cylinders
Wedge Jacks

257.

Post-Tensioning Mono Jacks
Stressing Jacks
Strand Jacks
Multi-strand Jacks
Bespoke manufactured hydraulic jacks
Hydra-Capsule products and installation services are available on a contract basis for small to major projects – we offer site assistance, written method statements / safe
systems of works with permit to load and reports .
Or alternatively, customers can buy or hire our full range of specialist jacks depending on your requirements.
Contact Us
+44 (0) 1885 490 405
[email protected]
More Information
Site Map
Blog
Downloads
Legal
Terms & Conditions
Privacy Policy
Credit Application
Connect With Us

258.

Find Us
Address
Hydra-Capsule Limited
Hydra House - Bishops Frome
Worcestershire
WR6 5BP
Site Map | Privacy Policy | Conditions | Hydra Capsule AccountsContact | Blog
© Copyright 2024 Hydra-Capsule Ltd

259.

ЭЛЕМЕНТЫ ТЕОРИИ ТРЕНИЯ,
РАСЧЕТ И ТЕХНОЛОГИЯ ПРИМЕНЕНИЯ
ФРИКЦИОННО-ПОДВИЖНЫХ СОЕДИНЕНИЙ

260.

УЗДИН А.М., ЕЛИСЕЕВ О.Н., , НИКИТИН А.А., ПАВЛОВ В.Е., СИМКИН А.Ю., КУЗНЕЦОВА И.О.
ЭЛЕМЕНТЫ ТЕОРИИ ТРЕНИЯ,
РАСЧЕТ И ТЕХНОЛОГИЯ ПРИМЕНЕНИЯ
ФРИКЦИОННО-ПОДВИЖНЫХ СОЕДИНЕНИЙ

261.

СОДЕРЖАНИЕ
1
Введение
3
2
Элементы теории трения и износа
6
3
Методика расчета одноболтовых ФПС
18
3.1
Исходные посылки для разработки методики расчета ФПС
18
3.2
Общее уравнение для определения несущей способности ФПС.
20
3.3
Решение общего уравнения для стыковых ФПС
21
3.4
Решение общего уравнения для нахлесточных ФПС
22
4
Анализ экспериментальных исследований работы ФПС
26
5
Оценка
параметров
диаграммы
деформирования
многоболтовых
фрикционно-подвижных соединений (ФПС)
31
5.1
Общие положения методики расчета многоболтовых ФПС
31
5.2
Построение уравнений деформирования стыковых многоболтовых ФПС
32
5.3
Построение уравнений деформирования нахлесточных многоболтовых 38
ФПС
6
Рекомендации по технологии изготовления ФПС и сооружений с такими
соединениями
6.1
42
Материалы болтов, гаек, шайб и покрытий контактных поверхностей
стальных деталей ФПС и опорных поверхностей шайб
42
6.2
Конструктивные требования к соединениям
43
6.3
Подготовка
контактных
поверхностей
элементов
и
методы
контроля
6.4
45
Приготовление и нанесение протекторной грунтовки ВЖС 83-0287. Требования к загрунтованной поверхности. Методы контроля
6.4.1
Основные требования по технике безопасности при работе с
грунтовкой ВЖС 83-02-87
6.4.2
46
Транспортировка
и
47
хранение
элементов
законсервированных грунтовкой ВЖС 83-02-87
и
деталей,
49

262.

6.5
Подготовка и нанесение антифрикционного покрытия на опорные 49
поверхности шайб
6.6
Сборка ФПС
49
7
Список литературы
51

263.

1. ВВЕДЕНИЕ
Современный подход к проектированию сооружений, подверженных экстремальным, в частности, сейсмическим нагрузкам исходит из целенаправленного
проектирования предельных состояний конструкций. В литературе [1, 2, 11, 18] такой подход получил название проектирования сооружений с заданными
параметрами предельных состояний. Возможны различные технические реализации отмеченного подхода. Во всех случаях в конструкции создаются узлы, в
которых от экстремальных нагрузок могут возникать неупругие смещения элементов. Вследствие этих смещений нормальная эксплуатация сооружения, как
правило, нарушается, однако исключается его обрушение. Эксплуатационные качества сооружения должны легко восстанавливаться после экстремальных
воздействий. Для обеспечения указанного принципа проектирования и были предложены фрикционно-подвижные болтовые соединения.
Под фрикционно-подвижными соединениями (ФПС) понимаются соединения металлоконструкций высокопрочными болтами, отличающиеся тем, что
отверстия под болты в соединяемых деталях выполнены овальными вдоль направления действия экстремальных нагрузок. При экстремальных нагрузках
происходит взаимная сдвижка соединяемых деталей на величину до 3-4 диаметров используемых высокопрочных болтов. Работа таких соединений имеет целый
ряд особенностей и существенно влияет на поведение конструкции в целом. При этом во многих случаях оказывается возможным снизить затраты на усиление
сооружения, подверженного сейсмическим и другим интенсивным нагрузкам.
ФПС были предложены в НИИ мостов ЛИИЖТа в 1980 г. для реализации принципа проектирования мостовых конструкций с заданными параметрами
предельных состояний. В 1985-86 г.г. эти соединения были защищены авторскими свидетельствами [16-19]. Простейшее стыковое и нахлесточное соединения
приведены на рис.1.1. Как видно из рисунка, от обычных соединений на высокопрочных болтах предложенные в упомянутых работах отличаются тем, что болты
пропущены через овальные отверстия. По замыслу авторов при экстремальных нагрузках должна происходить взаимная подвижка соединяемых деталей вдоль
овала, и за счет этого уменьшаться пиковое значение усилий, передаваемое соединением. Соединение с овальными отверстиями применялись в строительных
конструкциях и ранее, например, можно указать предложения [8, 10 и др]. Однако в упомянутых работах овальные отверстия устраивались с целью упрощения
монтажных работ. Для реализации принципа проектирования конструкций с заданными параметрами предельных состояний необходимо фиксировать предельную
силу трения (несущую способность) соединения.
При использовании обычных болтов их натяжение N не превосходит 80-100 кН, а разброс натяжения N=20-50 кН, что не позволяет прогнозировать
несущую способность такого соединения по трению. При использовании же высокопрочных болтов при том же N натяжение N= 200 - 400 кН, что в принципе
может позволить задание и регулирование несущей способности соединения. Именно эту цель преследовали предложения [3,14-17].

264.

Рис.1.1. Принципиальная схема фрикционно-подвижного
соединения
а) встык , б) внахлестку
1- соединяемые листы; 2 – высокопрочные болты;
3- шайба;4 – овальные отверстия; 5 – накладки.
Однако проектирование и расчет таких соединений вызвал серьезные трудности. Первые испытания ФПС показали, что рассматриваемый класс соединений не
обеспечивает в общем случае стабильной работы конструкции. В процессе подвижки возможна заклинка соединения, оплавление контактных поверхностей
соединяемых деталей и т.п. В ряде случаев имели место обрывы головки болта. Отмеченные исследования позволили выявить способы обработки соединяемых
листов, обеспечивающих стабильную работу ФПС. В частности, установлена недопустимость использования для ФПС пескоструйной обработки листов пакета,
рекомендованы использование обжига листов, нанесение на них специальных мастик или напыление мягких металлов. Эти исследования показали, что расчету и
проектированию сооружений должны предшествовать детальные исследования самих соединений. Однако, до настоящего времени в литературе нет еще

265.

систематического изложения общей теории ФПС даже для одноболтового соединения, отсутствует теория работы многоболтовых ФПС. Сложившаяся ситуация
сдерживает внедрение прогрессивных соединений в практику строительства.
В силу изложенного можно заключить, что ФПС весьма перспективны для использования в сейсмостойком строительстве, однако, для этого необходимо
детально изложить, а в отдельных случаях и развить теорию работы таких соединений, методику инженерного расчета самих ФПС и сооружений с такими
соединениями. Целью, предлагаемого пособия является систематическое изложение
теории работы ФПС и практических методов их расчета. В пособии
приводится также и технология монтажа ФПС.
2.ЭЛЕМЕНТЫ ТЕОРИИ ТРЕНИЯ И ИЗНОСА
Развитие науки и техники в последние десятилетия показало, что надежные и долговечные машины, оборудование и
приборы могут быть созданы только при удачном решении теоретических и прикладных задач сухого и вязкого трения, смазки
и износа, т.е. задач трибологии и триботехники.
Трибология – наука о трении и процессах, сопровождающих трение (трибос – трение, логос – наука). Трибология
охватывает экспериментально-теоретические результаты исследований физических (механических, электрических, магнитных,
тепловых), химических, биологических и других явлений, связанных с трением.
Триботехника – это система знаний о практическом применении трибологии при проектировании, изготовлении и
эксплуатации трибологических систем.
С трением связан износ соприкасающихся тел – разрушение поверхностных слоев деталей подвижных соединений, в т.ч.
при резьбовых соединениях. Качество соединения определяется внешним трением в витках резьбы и в торце гайки и головки
болта (винта) с соприкасающейся деталью или шайбой. Основная характеристика крепежного резьбового соединения – усилие
затяжки болта (гайки), - зависит от значения и стабильности моментов сил трения сцепления, возникающих при завинчивании.
Момент сил сопротивления затяжке содержит две составляющих: одна обусловлена молекулярным воздействием в зоне
фактического касания тел, вторая – деформированием тончайших поверхностей слоев контактирующими микронеровностями
взаимодействующих деталей.

266.

Расчет этих составляющих осуществляется по формулам, содержащим ряд коэффициентов, установленных в результате
экспериментальных исследований. Сведения об этих формулах содержатся в Справочниках «Трение, изнашивание и смазка»
[22](в двух томах) и «Полимеры в узлах трения машин и приборах» [13], изданных в 1978-1980 г.г. издательством
«Машиностроение». Эти Справочники не потеряли своей актуальности и научной обоснованности и в настоящее время.
Полезный для практического использования материал содержится также в монографии Геккера Ф.Р. [5].
Сухое трение. Законы сухого трения
1. Основные понятия: сухое и вязкое трение; внешнее и внутреннее трение, пограничное трение; виды сухого трения.
Трение – физическое явление, возникающее при относительном движении соприкасающихся газообразных, жидких и
твердых тел и вызывающее сопротивление движению тел или переходу из состояния покоя в движение относительно
конкретной системы отсчета.
Существует два вида трения: сухое и вязкое.
Сухое трение возникает при соприкосновении твердых тел.
Вязкое трение возникает при движении в жидкой или газообразной среде, а также при наличии смазки в области
механического контакта твердых тел.
При учете трения (сухого или вязкого) различают внешнее трение и внутренне трение.
Внешнее трение возникает при относительном перемещении двух тел, находящихся в соприкосновении, при этом сила
сопротивления движению зависит от взаимодействия внешних поверхностей тел и не зависит от состояния внутренних частей
каждого тела. При внешнем трении переход части механической энергии во внутреннюю энергию тел происходит только вдоль
поверхности раздела взаимодействующих тел.
Внутреннее трение возникает при относительном перемещении частиц одного и того же тела (твердого, жидкого или
газообразного). Например, внутреннее трение возникает при изгибе металлической пластины или проволоки, при движении
жидкости в трубе (слой жидкости, соприкасающийся со стенкой трубы, неподвижен, другие слои движутся с разными

267.

скоростями и между ними возникает трение). При внутреннем трении часть механической энергии переходит во внутреннюю
энергию тела.
Внешнее трение в чистом виде возникает только в случае соприкосновения твердых тел без смазочной прослойки между
ними (идеальный случай). Если толщина смазки 0,1 мм и более, механизм трения не отличается от механизма внутреннего
трения в жидкости. Если толщина смазки менее 0,1 мм, то трение называют пограничным (или граничным). В этом случае учет
трения ведется либо с позиций сухого трения, либо с точки зрения вязкого трения (это зависит от требуемой точности
результата).
В истории развития понятий о трении первоначально было получено представление о внешнем трении. Понятие о
внутреннем трении введено в науку в 1867 г. английским физиком, механиком и математиком Уильямом Томсоном (лордом
Кельвиным).1)
Законы сухого трения
Сухое трение впервые наиболее полно изучал Леонардо да Винчи (1452-1519). В 1519 г. он сформулировал закон трения:
сила трения, возникающая при контакте тела с поверхностью другого тела, пропорциональна нагрузке (силе прижатия тел),
при этом коэффициент пропорциональности – величина постоянная и равна 0,25:
F 0 ,25 N .
Через 180 лет модель Леонарда да Винчи была переоткрыта французским механиком и физиком Гийомом Амонтоном 2),
который ввел в науку понятие коэффициента трения как французской константы и предложил формулу силы трения
скольжения:
1)
*Томсон (1824-1907) в 10-летнем возрасте был принят в университет в Глазго, после обучения в котором перешел в Кембриджский университет и закончил его в 21 год; в
22 года он стал профессором математики. В 1896 г. Томсон был избран почетным членом Петербургской академии наук, а в 1851 г. (в 27 лет) он стал членом Лондонского
королевского общества и 5 лет был его президентом+.

268.

F f N.
Кроме того, Амонтон (он изучал равномерное движение тела по наклонной плоскости) впервые предложил формулу:
f tg ,
где f – коэффициент трения; - угол наклона плоскости к горизонту;
В 1750 г. Леонард Эйлер (1707-1783), придерживаясь закона трения Леонарда да Винчи – Амонтона:
F f N,
впервые получил формулу для случая прямолинейного равноускоренного движения тела по наклонной плоскости:
f tg
2S
g t cos 2
2
,
где t – промежуток времени движения тела по плоскости на участке длиной S;
g – ускорение свободно падающего тела.
Окончательную формулировку законов сухого трения дал в 1781 г. Шарль Кулон3)
Эти законы используются до сих пор, хотя и были дополнены результатами работ ученых XIX и XX веков, которые более
полно раскрыли понятия силы трения покоя (силы сцепления) и силы трения скольжения, а также понятия о трении качения и
трении верчения.
Многие десятилетия XX века ученые пытались модернизировать законы Кулона, учитывая все новые и новые результаты
физико-химических исследований явления трения. Из этих исследований наиболее важными являются исследования природы
трения.
Кратко
о
природе
сухого
трения
можно
сказать
следующее.
Поверхность
любого
твердого
тела
обладает
микронеровностями, шероховатостью [шероховатость поверхности оценивается «классом шероховатости» (14 классов) –
2)
Г.Амонтон (1663-1705) – член Французской академии наук с 1699 г.
3) Ш.Кулон (1736-1806) – французский инженер, физик и механик, член Французской академии наук

269.

характеристикой качества обработки поверхности: среднеарифметическим отклонением профиля микронеровностей от средней
линии и высотой неровностей].
Сопротивление сдвигу вершин микронеровностей в зоне контакта тел – источник трения. К этому добавляются силы
молекулярного сцепления между частицами, принадлежащими разным телам, вызывающим прилипание поверхностей
(адгезию) тел.
Работа
внешней
силы,
приложенной
к
телу,
преодолевающей
молекулярное
сцепление
и
деформирующей
микронеровности, определяет механическую энергию тела, которая затрачивается частично на деформацию (или даже
разрушение) микронеровностей, частично на нагревание трущихся тел (превращается в тепловую энергию), частично на
звуковые эффекты – скрип, шум, потрескивание и т.п. (превращается в акустическую энергию).
В последние годы обнаружено влияние трения на электрическое и электромагнитное поля молекул и атомов
соприкасающихся тел.
Для решения большинства задач классической механики, в которых надо учесть сухое трение, достаточно использовать те
законы сухого трения, которые открыты Кулоном.
В современной формулировке законы сухого трения (законы Кулона) даются в следующем виде:
В случае изотропного трения сила трения скольжения тела А по поверхности тела В всегда направлена в сторону,
противоположную скорости тела А относительно тела В, а сила сцепления (трения покоя) направлена в сторону,
противоположную возможной скорости (рис.2.1, а и б).
Примечание. В случае анизотропного трения линия действия силы трения скольжения не совпадает с линией действия
вектора скорости. (Изотропным называется сухое трение, характеризующееся одинаковым сопротивлением движению тела по
поверхности другого тела в любом направлении, в противном случае сухое трение считается анизотропным).
Сила трения скольжения пропорциональна силе давления на опорную поверхность (или нормальной реакции этой
поверхности), при этом коэффициент трения скольжения принимается постоянным и определяется опытным путем для каждой

270.

пары соприкасающихся тел. Коэффициент трения скольжения зависит от рода материала и его физических свойств, а также от
степени обработки поверхностей соприкасающихся тел:
FСК fСК N
(рис. 2.1 в).
Y
Y
Fск
tg =fск
N
N
V
Fск
X
G
X
G
а)
N
Fсц
б)
в)
Рис.2.1
Сила сцепления (сила трения покоя) пропорциональна силе давления на опорную поверхность (или нормальной реакции
этой поверхности) и не может быть больше максимального значения, определяемого произведением коэффициента сцепления
на силу давления (или на нормальную реакцию опорной поверхности):
FСЦ f СЦ N .
Коэффициент сцепления (трения покоя), определяемый опытным путем в момент перехода тела из состояния покоя в
движение, всегда больше коэффициента трения скольжения для одной и той же пары соприкасающихся тел:
f СЦ f СК .
Отсюда следует, что:
max
FСЦ
FСК ,
поэтому график изменения силы трения скольжения от времени движения тела, к которому приложена эта сила, имеет вид
(рис.2.2).

271.

При переходе тела из состояния покоя в движение сила трения скольжения за очень короткий промежуток времени
max до F
изменяется от FСЦ
СК (рис.2.2). Этим промежутком времени часто пренебрегают.
В последние десятилетия экспериментально показано, что коэффициент трения скольжения зависит от скорости (законы
fсц
max
Fсц
Fск
fск
V
t
V0
Рис. 2.2
Vкр
Рис. 2. 3
Кулона установлены при равномерном движении тел в диапазоне невысоких скоростей – до 10 м/с).
v0
Эту зависимость качественно можно проиллюстрировать графиком f СК ( v ) (рис.2.3).
- значение скорости, соответствующее тому моменту времени, когда сила FСК достигнет своего нормального
значения FСК fСК N ,
v КР
- критическое значение скорости, после которого происходит незначительный рост (на 5-7 %) коэффициента трения
скольжения.
Впервые этот эффект установил в 1902 г. немецкий ученый Штрибек (этот эффект впоследствии был подтвержден
исследованиями других ученых).
Российский ученый Б.В.Дерягин, доказывая, что законы Кулона, в основном, справедливы, на основе адгезионной теории
трения предложил новую формулу для определения силы трения скольжения (модернизировав предложенную Кулоном
формулу):

272.

FСК fСК N S p0 .
[У Кулона: FСК fСК N А , где величина А не раскрыта].
В формуле Дерягина: S – истинная площадь соприкосновения тел (контактная площадь), р0 - удельная (на единицу
площади) сила прилипания или сцепления, которое надо преодолеть для отрыва одной поверхности от другой.
Дерягин также показал, что коэффициент трения скольжения зависит от нагрузки N (при соизмеримости сил N и S p0 ) -
fСК ( N ) , причем при увеличении N он уменьшается (бугорки микронеровностей деформируются и сглаживаются,
поверхности тел становятся менее шероховатыми). Однако, эта зависимость учитывается только в очень тонких экспериментах
при решении задач особого рода.
Во многих случаях S p0 N , поэтому в задачах классической механики, в которых следует учесть силу сухого трения,
пользуются, в основном, законом Кулона, а значения коэффициента трения скольжения и коэффициента сцепления
определяют по таблице из справочников физики (эта таблица содержит значения коэффициентов, установленных еще в 1830-х
годах французским ученым А.Мореном (для наиболее распространенных материалов) и дополненных более поздними
экспериментальными данными. [Артур Морен (1795-1880) – французский математик и механик, член Парижской академии наук,
автор курса прикладной механики в 3-х частях (1850 г.)].
В случае анизотропного сухого трения линия действия силы трения скольжения составляет с прямой, по которой
направлена скорость материальной точки угол:
arctg
Fn
,

где Fn и Fτ - проекции силы трения скольжения FCK на главную нормаль и касательную к траектории материальной точки,
при этом модуль вектора FCK определяется формулой: FCK Fn2 Fτ2 . (Значения Fn и Fτ определяются по методике МинкинаДоронина).

273.

Трение качения
При качении одного тела по другому участки поверхности одного тела кратковременно соприкасаются с различными
участками поверхности другого тела, в результате такого контакта тел возникает сопротивление качению.
В конце XIX и в первой половине XX века в разных странах мира были проведены эксперименты по определению
сопротивления качению колеса вагона или локомотива по рельсу, а также сопротивления качению роликов или шариков в
подшипниках.
В результате экспериментального изучения этого явления установлено, что сопротивление качению (на примере колеса и
рельса) является следствием трех факторов:
1) вдавливание колеса в рельс вызывает деформацию наружного слоя соприкасающихся тел (деформация требует затрат
энергии);
2) зацепление бугорков неровностей и молекулярное сцепление (являющиеся в то же время причиной возникновения
качения колеса по рельсу);
3) трение скольжения при неравномерном движении колеса (при ускоренном или замедленном движении).
(Чистое качение без скольжения – идеализированная модель движения).
Суммарное влияние всех трех факторов учитывается общим коэффициентом трения качения.
Изучая трение качения, как это впервые сделал Кулон, гипотезу абсолютно твердого тела надо отбросить и рассматривать
деформацию соприкасающихся тел в области контактной площадки.

274.

Так как равнодействующая N реакций опорной поверхности в точках зоны контакта смещена в сторону скорости центра
колеса, непрерывно набегающего на впереди лежащее микропрепятствие (распределение реакций в точках контакта
несимметричное – рис.2.4), то возникающая при этом пара сил N и G ( G - сила тяжести) оказывает сопротивление качению
(возникновение качения обязано силе сцепления FСЦ , которая образует вторую составляющую полной реакции опорной
поверхности).
Vc
C
N
G
Fск
K
N
K
Рис. 2.4
Момент пары сил N , G называется моментом сопротивления качению. Плечо пары сил
Fсопр

C
«к» называется коэффициентом трения качения. Он имеет размерность длины.
Момент сопротивления качению определяется формулой:
MC N k ,
где N - реакция поверхности рельса, равная вертикальной нагрузке на колесо с учетом его
Fсц
N
Рис. 2.5
веса.

275.

Колесо, катящееся по рельсу, испытывает сопротивление движению, которое можно отразить силой сопротивления Fсопр ,
приложенной к центру колеса (рис.2.5), при этом: Fсопр R N k , где R – радиус колеса,
откуда
Fсопр N
k
N h,
R
где h – коэффициент сопротивления, безразмерная величина.
Эту формулу предложил Кулон. Так как множитель h k во много раз меньше коэффициента трения скольжения для тех
R
же соприкасающихся тел, то сила Fсопр на один-два порядка меньше силы трения скольжения. (Это было известно еще в
древности).
Впервые в технике машин это использовал Леонардо да Винчи. Он изобрел роликовый и шариковый подшипники.
Если на рисунке дается картина сил с обозначением силы Fсопр , то силу N показывают без смещения в сторону скорости
(колесо и рельс рассматриваются условно как абсолютно твердые тела).
Повышение угловой скорости качения вызывает рост сопротивления качению. Для колеса железнодорожного экипажа и
рельса рост сопротивления качению заметен после скорости колесной пары 100 км/час и происходит по параболическому
закону. Это объясняется деформациями колес и гистерезисными потерями, что влияет на
коэффициент трения качения.
Fск
Fск
Трение верчения
r
О
Трение верчения возникает при вращении тела, опирающегося на некоторую поверхность. В
Fск
Рис. 2.6.
этом случае следует рассматривать зону контакта тел, в точках которой возникают силы трения

276.

скольжения FСК (если контакт происходит в одной точке, то трение верчения отсутствует – идеальный случай) (рис.2.6).
А – зона контакта вращающегося тела, ось вращения которого перпендикулярна к плоскости этой зоны. Силы трения
скольжения, если их привести к центру круга (при изотропном трении), приводятся к паре сил сопротивления верчению,
момент которой:
М сопр N f ск r ,
где r – средний радиус точек контакта тел;
f ск
- коэффициент трения скольжения (принятый одинаковым для всех точек и во всех направлениях);
N – реакция опорной поверхности, равная силе давления на эту поверхность.
Трение верчения наблюдается при вращении оси гироскопа (волчка) или оси стрелки компаса острием и опорной
плоскостью. Момент сопротивления верчению стремятся уменьшить, используя для острия и опоры агат, рубин, алмаз и другие
хорошо отполированные очень прочные материалы, для которых коэффициент трения скольжения менее 0,05, при этом радиус
круга опорной площадки достигает долей мм. (В наручных часах, например, М сопр менее 5 10 5 мм).
Таблица коэффициентов трения скольжения и качения.
f ск
к (мм)
Сталь по стали……0,15
Шарик из закаленной стали по стали……0,01
Сталь по бронзе…..0,11
Мягкая сталь по мягкой стали……………0,05
Железо по чугуну…0,19
Дерево по стали……………………………0,3-0,4
Сталь по льду……..0,027
Резиновая шина по грунтовой дороге……10
Процессы износа контактных поверхностей при трении

277.

Молекулярное сцепление приводит к образованию связей между трущимися парами. При сдвиге они разрушаются. Из-за
шероховатости поверхностей трения контактирование пар происходит площадками. На площадках с небольшим давлением
имеет место упругая, а с большим давлением - пластическая деформация. Фактическая площадь соприкасания пар
представляется суммой малых площадок. Размеры площадок контакта достигают 30-50 мкм. При повышении нагрузки они
растут и объединяются. В процессе разрушения контактных площадок выделяется тепло, и могут происходить химические
реакции.
Различают три группы износа: механический - в форме абразивного износа, молекулярно-механический - в форме
пластической деформации или хрупкого разрушения и коррозийно-механический - в форме коррозийного и окислительного
износа. Активным фактором износа служит газовая среда, порождающая окислительный износ. Образование окисной пленки
предохраняет пары трения от прямого контакта и схватывания.
Важным фактором является температурный режим пары трения. Теплота обусловливает физико-химические процессы в
слое трения, переводящие связующие в жидкие фракции, действующие как смазка. Металлокерамические материалы на
железной основе способствуют повышению коэффициента трения и износостойкости.
Важна быстрая приработка трущихся пар. Это приводит к быстрому локальному износу и увеличению контурной площади
соприкосновения тел. При медленной приработке локальные температуры приводят к нежелательным местным изменениям
фрикционного материала. Попадание пыли, песка и других инородных частиц из окружающей среды приводит к абразивному
разрушению не только контактируемого слоя, но и более глубоких слоев. Чрезмерное давление, превышающее порог
схватывания, приводит к разрушению окисной пленки, местным вырывам материала с последующим, абразивным разрушением
поверхности трения.
Под нагруженностью фрикционной пары понимается совокупность условий эксплуатации: давление поверхностей трения,
скорость относительного скольжения пар, длительность одного цикла нагружения, среднечасовое число нагружений,
температура контактного слоя трения.

278.

Главные требования, предъявляемые к трущимся парам, включают стабильность коэффициента трения, высокую
износостойкость пары трения, малые модуль упругости и твердость материала, низкий коэффициент теплового расширения,
стабильность физико-химического состава и свойств поверхностного слоя, хорошая прирабатываемость фрикционного
материала,
достаточная
механическая
прочность,
антикоррозийность,
несхватываемость,
теплостойкость
и
другие
фрикционные свойства.
Основные факторы нестабильности трения - нарушение технологии изготовления фрикционных элементов; отклонения
размеров отдельных деталей, даже в пределах установленных допусков; несовершенство конструктивного исполнения с
большой чувствительностью к изменению коэффициента трения.
Абразивный износ фрикционных пар подчиняется следующим закономерностям. Износ пропорционален пути трения s,
=ks s,
(2.1)
а интенсивность износа— скорости трения
k s v
(2.2)
Износ не зависит от скорости трения, а интенсивность износа на единицу пути трения пропорциональна удельной нагрузке
р,
kp p
s
(2.3)
Мера интенсивности износа рv не должна превосходить нормы, определенной на практике (pv<С).
Энергетическая концепция износа состоит в следующем.
Для имеющихся закономерностей износа его величина представляется интегральной функцией времени или пути трения
t
s
k p pvdt k p pds .
0
(2.4)
0
В условиях кулонова трения, и в случае kр = const, износ пропорционален работе сил трения W

279.

k w W
kp
f
s
W ; W Fds .
(2.5)
0
Здесь сила трения F=f N = f p ; где f – коэффициент трения, N – сила нормального давления; - контурная площадь
касания пар.
Работа сил трения W переходит в тепловую энергию трущихся пар E и окружающей среды Q
W=Q+ E.
Работа сил кулонова трения при гармонических колебаниях s == а sin t за период колебаний Т == 2л/ определяется
силой трения F и амплитудой колебаний а
W= 4F а.
(2.6)
3. МЕТОДИКА РАСЧЕТА ОДНОБОЛТОВЫХ ФПС
3.1. Исходные посылки для разработки методики расчета ФПС
Исходными посылками для разработки методики расчета ФПС являются экспериментальные исследования
одноболтовых нахлесточных соединений [13], позволяющие вскрыть основные особенности работы ФПС.
Для выявления этих особенностей в НИИ мостов в 1990-1991 гг. были выполнены экспериментальные
исследования
деформирования
нахлесточных
соединений
такого
типа.
Анализ
полученных
диаграмм
деформирования позволил выделить для них 3 характерных стадии работы, показанных на рис. 3.1.
На первой стадии нагрузка Т не превышает несущей способности соединения [Т], рассчитанной как для
обычного соединения на фрикционных высокопрочных болтах.

280.

На второй стадии Т > [Т] и происходит преодоление сил трения по контактным плоскостям соединяемых
элементов при сохраняющих неподвижность шайбах высокопрочных болтов. При этом за счет деформации
болтов в них растет сила натяжения, и как следствие растут силы трения по всем плоскостям контактов.
На третьей стадии происходит срыв с места одной из шайб и дальнейшее
взаимное смещение соединяемых элементов. В процессе подвижки
наблюдается
интенсивный
сопровождающийся
падением
износ
во
натяжения
всех
болтов
контактных
и,
как
парах,
следствие,
снижение несущей способности соединения.
В процессе испытаний наблюдались следующие случаи выхода из
строя ФПС:
• значительные взаимные перемещения соединяемых деталей, в
Рис.3.1. Характерная диаграмма деформирования
ФПС
1 – упругая работа ФПС;
2 – стадия проскальзывания листов ФПС при
заклиненных шайбах, характеризующаяся ростом
натяжения болта вследствие его изгибной деформации;
3 – стадия скольжения шайбы болта,
характеризующаяся интенсивным износом контактных
поверхностей.
результате которых болт упирается в край овального отверстия и в
конечном итоге срезается;
• отрыв головки болта вследствие малоцикловой усталости;
• значительные пластические деформации болта, приводящие к его
необратимому удлинению и исключению из работы при “обратном ходе"
элементов соединения;
• значительный износ контактных поверхностей, приводящий к ослаблению болта и падению несущей
способности ФПС.
Отмеченные результаты экспериментальных исследований представляют двоякий интерес для описания
работы ФПС. С одной стороны для расчета усилий и перемещений в элементах сооружений с ФПС важно задать
диаграмму деформирования соединения. С другой стороны необходимо определить возможность перехода ФПС
в предельное состояние.

281.

Для описания диаграммы деформирования наиболее существенным представляется факт интенсивного
износа трущихся элементов соединения, приводящий к падению сил натяжения болта и несущей способности
соединения. Этот эффект должен определять работу как стыковых, так и нахлесточных ФПС. Для нахлесточных
ФПС важным является и дополнительный рост сил натяжения вследствие деформации болта.
Для оценки возможности перехода соединения в предельное состояние необходимы следующие проверки:
а) по предельному износу контактных поверхностей;
б) по прочности болта и соединяемых листов на смятие в случае исчерпания зазора ФПС u0;
в) по несущей способности конструкции в случае удара в момент закрытия зазора ФПС;
г) по прочности тела болта на разрыв в момент подвижки.
Если учесть известные результаты [11,20,21,26], показывающие, что закрытие зазора приводит к
недопустимому росту ускорений в конструкции, то проверки (б) и (в) заменяются проверкой, ограничивающей
перемещения ФПС и величиной фактического зазора в соединении u0.
Решение вопроса об износе контактных поверхностей ФПС и подвижке в соединении должно базироваться
на задании диаграммы деформирования соединения, представляющей зависимость его несущей способности Т
от подвижки в соединении s. Поэтому получение зависимости Т(s) является основным для разработки методов
расчета ФПС и сооружений с такими соединениями. Отмеченные особенности учитываются далее при
изложении теории работы ФПС.
3.2. Общее уравнение для определения несущей способности ФПС
Для
построения
общего
уравнения
деформирования
ФПС
обратимся
к
более
сложному
случаю
нахлесточного соединения, характеризующегося трехстадийной диаграммой деформирования. В случае
стыкового соединения второй участок на диаграмме Т(s) будет отсутствовать.

282.

Первая стадия работы ФПС не отличается от работы обычных фрикционных соединений. На второй и
третьей стадиях работы несущая способность соединения поменяется вследствие изменения натяжения болта. В
свою
очередь
натяжение
болта
определяется
его
деформацией
(на второй стадии деформирования
нахлесточных соединений) и износом трущихся поверхностей листов пакета при их взаимном смещении. При
этом для теоретического описания диаграммы деформирования воспользуемся классической теорией износа [5,
14, 23], согласно которой скорость износа V пропорциональна силе нормального давления (натяжения болта) N:
V K N,
(3.1)
где К— коэффициент износа.
В свою очередь силу натяжения болта N можно представить в виде:
N N0 a N1 N2
(3.2)
здесь N 0 - начальное -натяжение болта, а - жесткость болта;
a
EF , где l - длина болта, ЕF - его погонная жесткость,
l
N1 k f ( s ) - увеличение натяжения болта вследствие его деформации;
N2 ( s ) - падение натяжения болта вследствие его пластических деформаций;
s - величина подвижки в соединении, - износ в соединении.
Для стыковых соединений обе добавки N1 N 2 0 .
Если пренебречь изменением скорости подвижки, то скорость V можно представить в виде:
V
d d ds
V ср ,
dt
ds dt
(3.3)
где V ср — средняя скорость подвижки.
После подстановки (3.2) в (3.1) с учетом (3.3) получим уравнение:
k a k N0 к f ( s ) ( s ) ,
(3.4)

283.

где k K / Vср .
Решение уравнения (3.4) можно представить в виде:
k N0 a
1
1 e
kas
k e ka( s z ) k f ( z ) ( z ) dz ,
s
0
или
k N0 a
1
e
kas
s
k k f ( z ) ( z ) e kazdz N0 a 1 .
0
(3.5)
3.3. Решение общего уравнения для стыковых ФПС
Для стыковых соединений общий интеграл (3.5) существенно упрощается, так как в этом случае N 1 N 2 0 , и
обращаются в 0 функции
f(z)
и ( z ) , входящие в (3.5). С учетом сказанного использование интеграла. (3.5)
позволяет получить следующую формулу для определения величины износа :
1 e kas k N0 a 1
(3.6)
Падение натяжения N при этом составит:
N 1 e kas k N0 ,
(3.7)
а несущая способность соединений определяется по формуле:
T T0 f N T0 f 1 e kas k N 0 a 1
T0 1 1 e kas k a 1 .
(3.8)
Как видно из полученной формулы относительная несущая способность
Рис.3.2.Падение несущей способности ФПС в
зависимости от величины подвижки для болта 24
мм при коэффициенте износа k=5 10-8Н-1 для
различной толщины листов пакета l
- l=20 мм; - l=30 мм; - l=40 мм; - l=50 мм;
- l=60 мм; - l=70 мм; - l=40 мм
соединения
КТ
=Т/Т0
определяется
всего
двумя
параметрами
-
коэффициентом износа k и жесткостью болта на растяжение а. Эти

284.

параметры могут быть заданы с достаточной точностью и необходимые для этого данные имеются в справочной
литературе.
На рис. 3.2 приведены зависимости КТ(s) для болта диаметром 24 мм и коэффициента износа k~5×10-8 H-1
при различных значениях толщины пакета l, определяющей жесткость болта а. При этом для наглядности
несущая способность соединения Т отнесена к своему начальному значению T0, т.е. графические зависимости
представлены в безразмерной форме. Как видно из рисунка, с ростом толщины пакета падает влияние износа
листов на несущую способность соединений. В целом падение несущей способности соединений весьма
существенно и при реальных величинах подвижки s 2 3см составляет для стыковых соединений 80-94%.
Весьма существенно на характер падений несущей способности соединения сказывается коэффициент износа k.
На рис.3.3 приведены зависимости несущей способности соединения от величины подвижки s при k~3×10-8 H-1.
Исследования показывают, что при k > 2 10-7 Н-1 падение несущей
способности соединения превосходит 50%. Такое падение натяжения должно
приводить к существенному росту взаимных смещений соединяемых деталей и
это обстоятельство должно учитываться в инженерных расчетах. Вместе с тем
рассматриваемый
эффект
будет
приводить
к
снижению
нагрузки,
передаваемой соединением. Это позволяет при использовании ФПС в качестве
Рис.3.3. Падение несущей способности ФПС в
зависимости от величины подвижки для болта
24 мм при коэффициенте износа k=3 10-8Н-1 для
различной толщины листов пакета l
- l=20 мм; - l=30 мм; - l=40 мм;
- l=50 мм; - l=60 мм; - l=70 мм; - l=80 мм
сейсмоизолирующего элемента конструкции рассчитывать усилия в ней,
моделируя ФПС демпфером сухого трения.
3.4. Решение общего уравнения для нахлесточных ФПС
Для нахлесточных ФПС общее решение (3.5) определяется видом функций f(s) и >(s).Функция f(s) зависит
от удлинения болта вследствие искривления его оси. Если принять для искривленной оси аппроксимацию в
виде:

285.

u( x ) s sin
x
2l
(3.9)
,
где x — расстояние от середины болта до рассматриваемой точки (рис. 3.3), то длина искривленной оси
стержня составит:
1
L
2
1
1
2
1
2
2
du
1 dx
dx
1
s 2 2
1
2
x
8l 2 1
2l
2
cos
1 s
2
4l
cos
2
dx 1
2l
1
dx
2
2 2
1 s cos x dx
8l 2
2l
1
2
s 2 2
.
8l
2
Удлинение болта при этом определится по формуле:
s 2 2
l L l
.
8l
(3.10)
Учитывая, что приближенность представления (3.9) компенсируется коэффициентом k, который может быть
определен из экспериментальных данных, получим следующее представление для f(s):
f(s) s
2
l
.
Для дальнейшего необходимо учесть, что деформирование тела болта будет иметь место лишь до момента
срыва его головки, т.е. при s < s0. Для записи этого факта воспользуемся единичной функцией Хевисайда :
s2
f ( s ) ( s s0 ).
l
(3.11)
Перейдем теперь к заданию функции (s). При этом необходимо учесть следующие ее свойства:
1. пластика проявляется лишь при превышении подвижкой s некоторой величины Sпл, т.е. при Sпл<s<S0.
2. предельное натяжение стержня не превосходит усилия Nт, при котором напряжения в стержне достигнут
предела текучести, т.е.:
lim ( N0 кf ( s ) ( s )) 0 .
s
(3.12)

286.

Указанным условиям удовлетворяет функция (s) следующего вида:
( s ) N пл ( NТ N пл ) ( 1 e q( s S пл ) ) 1 ( s s0 ) ( s S пл).
(3.13)
Подстановка выражений (3.11, 3.12) в интеграл (3.5) приводит к следующим зависимостям износа листов
пакета от перемещения s:
при s<Sпл
s
N0
k
2
2
( 1 e k1as ) s 2
s
1 e k1as ,
a
al
k1a
k1a 2
(3.14)
при Sпл< s<S0
( s ) I ( Sпл ) k1(
),
NT
N N пл
1 ek1a( S пл s ) T
k1a
k1 a
(3.15)
e ( S пл s ) ek1a( S пл s )
при s<S0
( s ) II ( S0 )
N ( S0 )
( 1 e k 2 a( s S0 ) ).
a
(3.16)
Несущая способность соединения определяется при этом выражением:
T T0 fv a .
(3.17)
Здесь fv— коэффициент трения, зависящий в общем случае от скорости подвижки v. Ниже мы используем
наиболее распространенную зависимость коэффициента трения от скорости, записываемую в виде:
f
f0
,
1 kvV
(3.18)
где kv — постоянный коэффициент.
Предложенная зависимость содержит 9 неопределенных параметров:
k1, k2, kv, S0, Sпл, q, f0, N0, и k0. Эти параметры должны определяться из данных эксперимента.

287.

В отличие от стыковых соединений в формуле (3.17) введено два коэффициента износа - на втором участке
диаграммы
деформирования
износ
определяется
трением
между
листами
пакета
и
характеризуется
коэффициентом износа k1, на третьем участке износ определяется трением между шайбой болта и наружным
листом пакета; для его описания введен коэффициент износа k2.
На рис. 3.4 приведен пример теоретической диаграммы деформирования при реальных значениях
параметров k1 = 0.00001; k2 =0.000016; kv = 0.15; S0 = 10 мм; Sпл = 4 мм; f0 = 0.3; N0 = 300 кН. Как видно из
рисунка, теоретическая диаграмма деформирования соответствует описанным выше экспериментальным
диаграммам.
Рис. 3.4 Теоретическая диаграмма деформирования ФПС

288.

4. АНАЛИЗ ЭКСПЕРИМЕНТАЛЬНЫХ
ИССЛЕДОВАНИЙ РАБОТЫ ФПС
Для анализа работы ФПС и сооружений с такими соединениями необходимы
фактические
данные
о
параметрах
исследуемых
соединений.
Экспериментальные
исследования работы ФПС достаточно трудоемки, однако в 1980-85 гг. такие исследования
были начаты в НИИ мостов А.Ю.Симкиным [3,11]. В частности, были получены записи Т(s)
для нескольких одноболтовых и четырехболтовых соединений.
Для анализа поведения ФПС были испытаны соединения с болтами диаметром 22, 24,
27 и 48 мм. Принятые размеры образцов обусловлены тем, что диаметры 22, 24 и 27 мм
являются наиболее распространенными. Однако при этом в соединении необходимо
размещение слишком большого количества болтов, и соединение становится громоздким.
Для уменьшения числа болтов необходимо увеличение их диаметра. Поэтому было
рассмотрено ФПС с болтами наибольшего диаметра 48 мм. Общий вид образцов показан на
рис. 4.1.
Рис. 4.1 Общий вид образцов ПС с болтами 48 мм

289.

ИССЛЕДОВАНИЙ РАБОТЫ ФПС
Для анализа работы ФПС и сооружений с такими соединениями необходимы фактические данные о
параметрах исследуемых соединений. Экспериментальные исследования работы ФПС достаточно трудоемки,
однако в 1980-85 гг. такие исследования были начаты в НИИ мостов А.Ю.Симкиным [3,11]. В частности, были
получены записи Т(s) для нескольких одноболтовых и четырехболтовых соединений.
Для анализа поведения ФПС были испытаны соединения с болтами диаметром 22, 24, 27 и 48 мм. Принятые
размеры образцов обусловлены тем, что диаметры 22, 24 и 27 мм являются наиболее распространенными.
Однако при этом в соединении необходимо размещение слишком большого количества болтов, и соединение
становится громоздким. Для уменьшения числа болтов необходимо увеличение их диаметра. Поэтому было
рассмотрено ФПС с болтами наибольшего диаметра 48 мм. Общий вид образцов показан на рис. 4.1.
Пластины ФПС были выполнены из толстолистовой стали марки 10ХСНД. Высокопрочные болты были
Рис. 4.1 Общий вид образцов

290.

изготовлены тензометрическими из стали 40Х "селект" в соответствии с требованиями [6]. Контактные
поверхности
пластин
были
обработаны
протекторной
цинкосодержащей
грунтовкой
ВЖС-41
после
дробеструйной очистки. Болты были предварительно протарированы с помощью электронного пульта АИ-1 и
при сборке соединений натягивались по этому же пульту в соответствии с тарировочными зависимостями
ручным ключом на заданное усилие натяжения N0.
Испытания проводились на пульсаторах в НИИ мостов и на универсальном динамическом стенде УДС-100
экспериментальной базы ЛВВИСКУ. В испытаниях на стенде импульсная нагрузка на ФПС обеспечивалась путем
удара движущейся массы М через резиновую прокладку в рабочую тележку, связанную с ФПС жесткой тягой.
Масса и скорость тележки, а также жесткость прокладки подбирались таким образом, чтобы при неподвижной
рабочей тележке получился импульс силы с участком, на котором сила сохраняет постоянное значение,
длительностью около 150 мс. Амплитудное значение импульса силы подбиралось из условия некоторого
превышения несущей способности ФПС. Каждый образец доводился до реализации полного смещения по
овальному отверстию.
Во время испытаний на стенде и пресс-пульсаторах контролировались следующие параметры:
• величина динамической продольной силы в пакете ФПС;
• взаимное смещение пластин ФПС;
• абсолютные скорости сдвига пластин ФПС;
• ускорение движения пластин ФПС и ударные массы (для испытаний на стенде).
После каждого нагружения проводился замер напряжения высокопрочного болта.
Из полученных в результате замеров данных наибольший интерес представляют для нас зависимости
продольной силы, передаваемой на соединение (несущей способности ФПС), от величины подвижки S. Эти
зависимости могут быть получены теоретически по формулам, приведенным выше в разделе 3. На рисунках 4.2
- 4.3 приведено графическое

291.

Рис. 4.2, 4.3 Экспериментальные диаграммы деформирования
ФПС для болтов 22 мм и 24 мм.
представление полученных диаграмм деформирования ФПС. Из рисунков видно, что характер зависимостей Т(s)
соответствует в целом принятым гипотезам и результатам теоретических построений предыдущего раздела. В
частности, четко проявляются три участка деформирования соединения: до проскальзывания элементов
соединения, после проскальзывания листов пакета и после проскальзывания шайбы относительно наружного
листа пакета. Вместе с тем, необходимо отметить существенный разброс полученных диаграмм. Это связано, повидимому, с тем, что в проведенных испытаниях принят наиболее простой приемлемый способ обработки
листов пакета. Несмотря на наличие существенного разброса, полученные диаграммы оказались пригодными
для дальнейшей обработки.
В
результате
предварительной
обработки
экспериментальных
данных
построены
диаграммы
деформирования нахлесточных ФПС. В соответствии с ранее изложенными теоретическими разработками эти
диаграммы должны описываться уравнениями вида (3.14). В указанные уравнения входят 9 параметров:
N0— начальное натяжение; f0 — коэффициент трения покоя;
k0 — коэффициент, определяющий влияние скорости на коэффициент трения скольжения;
k1— коэффициент износа по контакту трущихся листов пакета;

292.

k2— коэффициент износа по контакту листа и шайбы;
Sпл — предельное смещение, при котором возникают пластические деформации в теле болта;
S0— предельное смещение, при котором возникает срыв шайбы болта относительно листа пакета;
к

коэффициент,
характеризующий
увеличение
натяжения
болта
вследствие
геометрической
нелинейности его работы;
q — коэффициент, характеризующий уменьшение натяжения болта вследствие его пластической работы.
Обработка экспериментальных данных заключалась в определении этих 9 параметров. При этом параметры
варьировались на сетке их возможных значений. Для каждой девятки значений параметров по методу
наименьших квадратов вычислялась величина невязки между расчетной и экспериментальной диаграммами
деформирования, причем невязка суммировалась по точкам цифровки экспериментальной диаграммы.
Для поиска искомых значений параметров для болтов диаметром 24 мм последние варьировались в
следующих пределах:
k1, k2— от 0.000001 до 0.00001 с шагом 0.000001 Н; kv— от 0 до 1 с шагом 0.1 с/мм;
S0 — от величины Sпл до 25 с шагом 1 мм; Sпл — от 1 до 10 с шагом 1 мм;
q— от 0.1 до 1 с шагом 0.1 мм~1; f0— от 0.1 до 0.5 с шагом 0.05;
N0— от 30 до 60 с шагом 5 кН; к — от 0.1 до 1 с шагом 0.1;

293.

На рис. 4.4 и 4.5 приведены характерные
диаграммы деформирования ФПС, полученные
экспериментально
теоретические
и
соответствующие
диаграммы.
им
Сопоставление
расчетных и натурных данных указывают на то,
что подбором параметров ФПС удается добиться
хорошего совпадения натурных и расчетных
диаграмм деформирования ФПС. Расхождение
Рис. 4.5
Рис.4.4
диаграмм на конечном их участке обусловлено
резким падением скорости подвижки перед остановкой, не учитываемым в рамках предложенной теории
расчета ФПС. Для болтов диаметром 24 мм было обработано 8 экспериментальных диаграмм деформирования.
Результаты определения параметров соединения для каждой из подвижек приведены в таблице 4.1.
Таблица 4.1
Результаты определения параметров ФПС
параметры k1106, k2
k ,
S0, SПЛ
q,
f0 N0, к
1
6
-1
N подвижки кН10 , с/мм мм мм мм
кН
1
кН1
11
32
0.25 11
9 0.0000 0.34 105 260
2
8
15
0,24 8
7 0.0004
0.36 152 90
1
3
12
27
0.44 13.5 11.2 0.0001
0.39 125 230
4
4
7
14
0.42 14.6 12 0.0001
0.29 193 130
2
5
14
35
0.1
8 4.2 0.0006
0.3 370 310
1
6
6
11
0.2 12
9 0.0000 0.3 120 100
7
8
20
0.2 19 16 0.0000
0.3 106 130
2
8
8
15
0.3
9 2.5 0.0002
0.35
154 75
1
8
Приведенные
в
таблице
4.1
результаты
вычислений
параметров
соединения
были
статистически
обработаны и получены математические ожидания и среднеквадратичные отклонения для каждого из

294.

параметров. Их значения приведены в таблице 4.2. Как видно из приведенной таблицы, значения параметров
характеризуются
значительным
разбросом.
Этот
факт
затрудняет
рассмотренной обработкой поверхности (обжиг листов пакета).
применение
одноболтовых
ФПС
с
Вместе с тем, переход от одноболтовых к
многоболтовым соединениям должен снижать разброс в параметрах диаграммы деформирования.
Таблица. 4.2.
Результаты статистической обработки значений параметров ФПС
Значения параметров
Параметры
математическо среднеквадратичн
соединени
е
ое

1
ожидание
отклонение
k1 10 , КН9.25
2.76
6
1
k2 10 , кН21.13
9.06
kv с/мм
0.269
0.115
S0, мм
11.89
3.78
Sпл , мм
8.86
4.32
-1
q, мм
0.00019
0.00022
f0
0.329
0.036
Nо,кН
165.6
87.7
165.6
88.38
5. ОЦЕНКА ПАРАМЕТРОВ ДИАГРАММЫ
ДЕФОРМИРОВАНИЯ МНОГОБОЛТОВЫХ
ФРИКЦИОННО-ПОДВИЖНЫХ СОЕДИНЕНИЙ (ФПС)
5.1. Общие положения методики расчета

295.

многоболтовых ФПС
Имеющиеся теоретические и экспериментальные исследования одноболтовых ФПС позволяют перейти к
анализу многоболтовых соединений. Для упрощения задачи примем широко используемое в исследованиях
фрикционных болтовых соединений предположение о том, что болты в соединении работают независимо. В
этом случае математическое ожидание несущей способности T и дисперсию DT (или среднеквадратическое
отклонение T ) можно записать в виде:
T( s )
DT
T ( s , 1 , 2 ,... k ) p1( 1 ) p2 ( 2 )...pk ( k )d 1d 2 ...d k
( T T ) p1 p2 ... pk d 1d 2 ...d k
(5.1)
2
2
... T 2 p1 p2 ... pk d 1d 2 ...d k T
(5.2)
T DT
(5.3)
В приведенных формулах:
T ( s , 1 , 2 ,... k ) - найденная выше зависимость несущей способности T от подвижки s и параметров соединения
i; в нашем случае в качестве параметров выступают коэффициент износа k, смещение при срыве соединения
S0 и др.
pi(ai) — функция плотности распределения i-го параметра; по имеющимся данным нам известны лишь
среднее значение i и их стандарт (дисперсия).
Для
дальнейших
исследований
приняты
два
возможных
закона
распределения
параметров
ФПС:
равномерное в некотором возможном диапазоне изменения параметров min i max и нормальное. Если учесть,

296.

что в предыдущих исследованиях получены величины математических ожиданий i и стандарта i , то
соответствующие функции плотности распределения записываются в виде:
а) для равномерного распределения
pi
1
при 3 3
2 i 3
(5.4)
и pi = 0 в остальных случаях;
б) для нормального распределения
pi
1
i 2
e
a
i i
2 i 2
Результаты
2
(5.5)
.
расчетного
определения
зависимостей
T(s)
и
(s)
при
двух
законах
распределения
сопоставляются между собой, а также с данными натурных испытаний двух, четырех, и восьми болтовых ФПС.
5.2. Построение уравнений деформирования стыковых многоболтовых ФПС
Для вычисления несущей способности соединения сначала рассматривается более простое соединение
встык. Такое соединение характеризуется всего двумя параметрами - начальной несущей способностью Т0 и
коэффициентом износа k. При этом несущая способность одноболтового соединения описывается уравнением:
T=Toe-kas .
(5.6)
В случае равномерного распределения математическое ожидание несущей способности соединения из п
болтов составит:

297.

k T 3
dk
dT
kas
T
e
2 k 3 2 T 3
3 k T 3
T0 T 3
T n
T0 T
nT0 e kas
sh( sa k 3 )
sa k
(5.7)
.
При нормальном законе распределения математическое ожидание несущей способности соединения из п
болтов определится следующим образом:
T n
kas
Te
1
T 2
e
( T T ) 2
2 T 2
1
k 2
e
( k k )2
2 k 2
dkdT
( k k )2
( T T ) 2
1
1
2 k 2
2 T 2
kas
n
Te
dT
e
e
dk
.
2
2
T
k
Если учесть, что для любой случайной величины x с математическим ожиданием x функцией распределения
р(х} выполняется соотношение:
x x p( x ) dx ,
то первая скобка. в описанном выражении для вычисления несущей способности соединения Т равна
математическому ожиданию начальной несущей способности Т0. При этом:
T nT0
1
kas
e
k 2
( k k )2
2 k 2
dk .
Выделяя в показателе степени полученного выражения полный квадрат, получим:

298.

T nT0
nT0
1
k 2
1
k 2
k k as k2 2 as k as k2
2 k2
e
2
dk
2
as 2
k k as k2
k
as k
2
2 k2
e
e
dk .
Подынтегральный член в полученном выражении с учетом множителя
1
k 2
представляет не что иное, как
функцию плотности нормального распределения с математическим ожиданием k as k2 и среднеквадратичным
отклонением k . По этой причине интеграл в полученном выражении тождественно равен 1 и выражение для
несущей способности соединения принимает окончательный вид:
T nT0 e
ask
a 2 s 2 k2
2
.
(5.8)
Соответствующие принятым законам распределения дисперсии составляют:
для равномерного закона распределения
T2
2
1 2 F ( 2 x ) F ( x ) ,
T0
2 2 ask
D nT0 e
(5.9)
где F ( x ) shx ; x sa k 3
x
для нормального закона распределения
2
2
2 1 A
A1
2
D n T0 T 1 ( A1 ) e T0 e 1 ( A ) ,
2
где A1 2 as( k2 as k ).
(5.10)

299.

Представляет интерес сопоставить полученные зависимости с аналогичными зависимостями, выведенными
выше для одноболтовых соединений.
Рассмотрим, прежде всего, характер изменения несущей способности ФПС по мере увеличения подвижки s и
коэффициента износа k для случая использования равномерного закона распределения в соответствии с
формулой (5.4). Для этого введем по аналогии с (5.4) безразмерные характеристики изменения несущей
способности:
относительное падение несущей способности
sh( x )
kas
T
x
1
e
nT0
.
(5.11)
коэффициент перехода от одноболтового к многоболтовому соединению
1
T
nT0 e
kas
sh( x )
.
x
(5.12)
Наконец для относительной величины среднеквадратичного отклонения с с использованием формулы (5.9)
нетрудно получить
1
nT0 e kas
2
1
T2 sh2 x shx
1
.
2 2 x
n
x
T0
(5.13)
Аналогичные зависимости получаются и для случая нормального распределения:
2
1 A
e 1 ( A ) ,
2
1
2 e
2
2
k2 s 2
2
kas
1 ( A ) ,
2
T2
1
1 A
A
1 2 1 ( A1 ) e 1 e 1 ( A ) ,
n
2
T0
(5.14)
(5.15)
(5.16)

300.

где
2s2
A k 2 s ka ,
2
A1 2 As ( k2 sa k ) ,
( A )
2
A
2
z
e dz .
0
На рис. 5.1 - 5.2 приведены зависимости i и i от величины подвижки s. Кривые построены при тех же
значениях переменных, что использовались нами ранее при построении зависимости T/T0 для одноболтового
соединения.
Как
видно
из
рисунков,
зависимости
i ( k , s ) аналогичны
зависимостям,
полученным
для
одноболтовых соединений, но характеризуются большей плавностью, что должно благоприятно сказываться на
работе соединения и конструкции в целом.
Особый интерес представляет с нашей точки зрения зависимость коэффициента перехода i ( k , a , s ) . По своему смыслу математическое ожидание несущей
способности многоболтового соединения T получается из несущей способности одноболтового соединения Т1 умножением на , т.е.:
T T1
(5.17)
Согласно (5.12) lim x 1 . В частности, 1 при неограниченном увеличении математического ожидания коэффициента износа k или смещения
s. Более того, при выполнении условия
k k 3
(5.18)
будет иметь место неограниченный рост несущей способности ФПС с увеличением подвижки s, что противоречит смыслу задачи.
Полученный результат ограничивает возможность применения равномерного распределения условием (5.18).
Что касается нормального распределения, то возможность его применения определяется пределом:
lim 2
s
1
lim e ( kas A ) 1 ( A ) .
2 s
Для анализа этого предела учтем известное в теории вероятности соотношение:

301.

x2
1 2 1
lim 1 x lim
e
.
x
x
x
2

302.

1=
а)
S, мм

303.

2=Т/nT0
Подвижка S, мм
Рис.5.1. Графики зависимости расчетного снижения несущей способности ФПС от величины подвижки в соединении при различной толщине пакета листов l
а) при использовании равномерного закона распределения параметров ФПС
б) при использовании нормального закона распределения параметров ФПС
● - l=20мм; ▼ - l=30мм; □ - l=40мм; - l=50мм; - l=60мм; ○ - l=70мм; - l=80мм;

304.

1
а)
S, мм

305.

Коэффициент перехода 2
б)
Подвижка S, мм
Рис.5.2. Графики зависимости коэффициента перехода от одноболтового к многоболтовому ФПС от величины подвижки в соединении при различной
толщине пакета листов l
а) при использовании равномерного закона распределения параметров ФПС
б) при использовании нормального закона распределения параметров ФПС
● - l=20мм; - l=30мм; □ - l=40мм; - l=50мм; - l=60мм; ○ - l=70мм; - l=80мм
С учетом сказанного получим:
A2
1
1 2 1
0.
lim 2 lim e kas A
e
s
s 2
A
2
(5.19)
Предел (5.19) указывает на возможность применения нормального закона распределения при любых соотношениях k и k.

306.

Результаты обработки экспериментальных исследований, выполненные ранее, показывают, что разброс значений несущей способности ФПС для случая
обработки поверхностей соединяемых листов путем нанесения грунтовки ВЖС достаточно велик и достигает 50%. Однако даже в этом случае применение ФПС
вполне приемлемо, если перейти от одноболтовых к многоболтовым соединениям. Как следует из полученных формул (5.13, 5.16), для среднеквадратичного
отклонения 1 последнее убывает пропорционально корню из числа болтов.
На рисунке 5.3 приведена зависимость относительной величины
среднеквадратичного отклонения 1 от безразмерного параметра х для безразмерной подвижки 2-х, 4-х, 9-ти и 16-ти болтового соединений. Значения T и T0
приняты в соответствии с данными выполненных экспериментальных исследований. Как видно из графика, уже для 9-ти болтового соединения разброс значений
несущей способности Т не превосходит 25%, что следует считать вполне приемлемым.
Рис.5.3. Зависимость относительного разброса несущей
способности ФПС от величины подвижки при различном
числе болтов n
5.3. Построение уравнений деформирования нахлесточных многоболтовых соединений

307.

Распространение использованного выше подхода на расчет нахлесточных соединений достаточно громоздко из-за большого количества случайных
параметров, определяющих работу соединения. Однако с практической точки зрения представляется важным учесть лишь максимальную силу трения Тmax,
смещение при срыве соединения S0 и коэффициент износа k. При этом диаграмма деформирования соединения между точками (0,Т0) и (S0, Tmax)
аппроксимируется линейной зависимостью. Для учета излома графика T(S) в точке S0 введена функция :
1 при 0 S S 0
0 при S S 0
S , S 0
(5.20)
При этом диаграмма нагружения ФПС описывается уравнением:
T ( S ) T1( S , S0 ,T0 ,Tmax ) ( S , S0 ) T2 ( S ,Tmax ,k , S0 ) 1 ( S , S0 ) ,
где T1( S ) T0 ( Tmax T0 )
S
,
S0
(5.21)
T2 ( S ) Tmax e ka( S S0 ) .
Математическое ожидание несущей способности нахлесточного соединения из n болтов определяется следующим интегралом:
T n
T ( S ) p( k ) p( S0 ) p( Tmax ) dk dS0 dT0 dTmax n I1 I 2
(5.22)
k S0 T0 Tmax
Обратимся сначала к вычислению первого интеграла. После подстановки в (5.22) представления для Т1 согласно (5.20) интеграл I1 может быть представлен в
виде суммы трех интегралов:
s
I 1 T0 ( Tmax T0 ) s , S 0 p( S 0 ) p( T0 ) p( Tmax )
S0
S0 T0 Tmax
dS 0 dT0 dTmax I 1,1 I 1,2 I 1,3
где
(5.23)

308.

I1,1
T0 p( T0 ) ( s ,S0 )p( S0 ) p( T0 ) p( Tmax )dTmax dS0 dT0
S0 T0 Tmax
T0 p( T0 )dT0 s , S0 p( S0 )dS0 Tmax p( Tmax )dTmax
T0
S0
Tmax
Если учесть, что для любой случайной величины x выполняются соотношения:
p( x )dx 1
и
xp( x )dx x ,
то получим
I 1,1 T ( s , S0 )p( S0 ) dS0 .
S0
Аналогично
s
I1,2
Tmax S0 ( s ,S0 )p( S0 ) p( T0 ) p( Tmax ) dS0 dT0 dTmax
S0 T0 Tmax
T max
( s , S0 )
S0
S0
p( S0 ) dS0 .
s
I1,3
T0 S0 ( s ,S0 )p( S0 ) p( T0 ) p( Tmax ) dS0 dT0 dTmax
S0 T0 Tmax
T0
S0
( s , S0 )
S0
p( S0 ) dS0 .
Если ввести функции
1 ( s ) ( s , S 0 ) p( S 0 ) dS0
(5.24)

309.

и
( s , S0 )
S0
1( s )
p( S 0 ) dS0 ,
(5.25)
то интеграл I1 можно представить в виде:
I 1 T 1( s ) ( T max T 0 )s 2 ( s ).
(5.26)
Если учесть, что на первом участке s < S0, то с учетом (5.20) формулы (5.24) и (5.25) упростятся и примут вид:
1( s ) p( S0 )dS0
(5.27)
s
2( s )
s
p( S0 )
dS0 .
S0
(5.28)
Для нормального распределения p(S0) функция 1 1 erf ( s ) , а функция записывается в виде:
( S0 S 0 )2
2
s
e
2 s2
S0
dS0 .
(5.29)
Для равномерного распределения функции 1 и 2 могут быть представлены аналитически:
1 при s S 0 s 3
1 S0 s 3 s при S 0 s 3 s S 0 s 3
0 при s S 0 s 3 .
(5.30)

310.

S0 s 3
1
ln
при s S 0 s 3
2 s 3 S 0 s 3
S0 s 3
1
2
ln
при S 0 s 3 s S 0 s 3
s
2 s 3
0 при s S 0 s 3
(5.31)
Аналитическое представление для интеграла (5.23) весьма сложно. Для большинства видов распределений
его целесообразно табулировать; для равномерного распределения интегралы I1 и I2 представляются в
замкнутой форме:
S0 s 3
S
ln
при S S 0 s 3
T 0 ( T max T 0 )
2
3
S
3
0
s
s
S0 s 3
S0 s 3
1
( T max T 0 )S ln
I1
T 0 S 0 s 3 S ln
(5.32)
s
s
2
3
s
при S 0 s 3 S S 0 s 3
0 при S S 0 3
s
0 при S S 0 s 3
I2 T m
F( S ) F( s 3 )
2
3
s
(5.33)
при S S 0 s 3 ,
причем F ( x ) Ei ax( k k 3 ) Ei ax( k k 3 ) . В формулах (5.32, 5.33) Ei - интегральная показательная функция.
Полученные формулы подтверждены результатами экспериментальных исследований многоболтовых
соединений и рекомендуются к использованию при проектировании сейсмостойких конструкций с ФПС.

311.

6. РЕКОМЕНДАЦИИ ПО ТЕХНОЛОГИИ
ИЗГОТОВЛЕНИЯ ФПС И СООРУЖЕНИЙ С
ТАКИМИ СОЕДИНЕНИЯМИ
Технология изготовления ФПС включает выбор материала элементов соединения,
подготовку контактных поверхностей, транспортировку и хранение деталей, сборку
соединений. Эти вопросы освещены ниже.
6.1. Материалы болтов, гаек, шайб и покрытий
контактных поверхностей стальных деталей ФПС
и опорных поверхностей шайб
Для ФПС следует применять высокопрочные болты по ГОСТ 553-77, гайки по ГОСТ
22354-74, шайбы по ГОСТ 22355-75 с обработкой опорной поверхности по указаниям
раздела 6.4 настоящего пособия. Основные размеры в мм болтов, гаек и шайб и расчетные
площади поперечных сечений в мм2 приведены в табл.6.1.
Таблица 6.1.
Номиналь
Расчетная
Высота
Высота
ный
площадь
головки
гайки
диаметр по сечения
телу по резьбе
по
Размер
Диаметр
Размеры шайб
Толщина
Диаметр
под ключ опис.окр.
внутр.
нар.
гайки
27
29,9
4
18
37
болта
16
201
157
12
15
18
255
192
13
16
30
33,3
4
20
39
20
314
245
14
18
32
35,0
4
22
44
22
380
303
15
19
36
39,6
6
24
50
24
453
352
17
22
41
45,2
6
26
56
27
573
459
19
24
46
50,9
6
30
66
30
707
560
19
24
46
50,9
6
30
66
36
1018
816
23
29
55
60,8
6
39
78

312.

ИЗГОТОВЛЕНИЯ ФПС И СООРУЖЕНИЙ С ТАКИМИ СОЕДИНЕНИЯМИ
Технология изготовления ФПС включает выбор материала элементов соединения, подготовку контактных
поверхностей, транспортировку и хранение деталей, сборку соединений. Эти вопросы освещены ниже.
6.1.
Материалы болтов, гаек, шайб и покрытий контактных поверхностей стальных
деталей ФПС и опорных поверхностей шайб
Для ФПС следует применять высокопрочные болты по ГОСТ 553-77, гайки по ГОСТ 22354-74, шайбы по ГОСТ
22355-75 с обработкой опорной поверхности по указаниям раздела 6.4 настоящего пособия. Основные размеры
в мм болтов, гаек и шайб и расчетные площади поперечных сечений в мм2 приведены в табл.6.1.
Таблица 6.1.
Номина Расчетная Высота Высот Разме Диамет
льный
диаметр
болта
площадь головк
сечения
и
а
р под
р
Размеры шайб
Диаметр
внут нар.
на
Толщи
гайки ключ опис.ок
по
р.
р. гайки
по телу по
16
201 резьбе
157
12
15
27
29,9
4
18
37
18
255 192
13
16
30
33,3
4
20
39
20
314 245
14
18
32
35,0
4
22
44
22
380 303
15
19
36
39,6
6
24
50
24
453 352
17
22
41
45,2
6
26
56
27
573 459
19
24
46
50,9
6
30
66

313.

30
707 560
19
24
46
50,9
6
30
66
36
1018 816
23
29
55
60,8
6
39
78
42
1386 1120
26
34
65
72,1
8
45
90
48
1810 1472
30
38
75
83,4
8
52
100
Полная длина болтов в случае использования шайб по ГОС 22355-75 назначается в соответствии с данными
табл.6.2.
Таблица 6.2.
Номинальна Длина резьбы 10
16 18 20 22
я
длина резьбы d
40
*
45
38 *
стержня
50
38 42 *
55
38 42 46 *
60
38 42 46 50
65
38 42 46 50
70
38 42 46 50
75
38 42 46 50
80
38 42 46 50
85
38 42 46 50
90
38 42 46 50
95
38 42 46 50
100
38 42 46 50
105
38 42 46 50
110
38 42 46 50
115
38 42 46 50
120
38 42 46 50
125
38 42 46 50
130
38 42 46 50
140
38 42 46 50
150
38 42 46 50
160,
170,
при номинальном диаметре
24 27 30 36 42 48
*
54
54
54
54
54
54
54
54
54
54
54
54
54
54
54
54
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
66
66
66
66
66
66
66
66
66
66
66
66
66
66
78
78
78
78
78
78
78
78
78
78
78
90
90
90
90
90
90
90
90
102
102
102
102
102
102
102

314.

190,
200, 44 48 52 56 60 66 72 84 96 108
240,260,280,
220болты с резьбой по всей длине стержня.
Примечание: знаком * отмечены
300
Для консервации контактных поверхностей стальных деталей следует применять фрикционный грунт
ВЖС 83-02-87 по ТУ. Для нанесения на опорные поверхности шайб методом плазменного напыления
антифрикционного покрытия следует применять в качестве материала подложки интерметаллид
ПН851015 по ТУ-14-1-3282-81, для несущей структуры - оловянистую бронзу БРОФ10-8 по ГОСТ, для
рабочего тела - припой ПОС-60 по ГОСТ.
Примечание: Приведенные данные действительны при сроке хранения несобранных конструкций до 1 года.
6.2. Конструктивные требования к соединениям
В конструкциях соединений должна быть обеспечена возможность свободной постановки болтов,
закручивания гаек и плотного стягивания пакета болтами во всех местах их постановки с применением
динамометрических ключей и гайковертов.
Номинальные диаметры круглых и ширина овальных отверстий в элементах для пропуска
высокопрочных болтов принимаются по табл.6.3.
Таблица 6.3.
Группа
Номинальный диаметр болта в мм.
16 18 20 22 24 27 30 36 42 48
соединений
Определяющи 17 19 21 23 25 28 32 37 44 50
х геометрию
Не
20
23
25
28
30
33
36
40
45
52
определяющи
Длины овальных отверстий в элементах для пропуска высокопрочных болтов назначают по
х геометрию
результатам вычисления максимальных абсолютных смещений соединяемых деталей для каждого ФПС

315.

по результатам предварительных расчетов при обеспечении несоприкосновения болтов о края овальных
отверстий, и назначают на 5 мм больше для каждого возможного направления смещения.
ФПС следует проектировать возможно более компактными.
Овальные отверстия одной детали пакета ФПС могут быть не сонаправлены.
Размещение болтов в овальных отверстиях при сборке ФПС устанавливают с учетом назначения ФПС
и направления смещений соединяемых элементов.
При необходимости в пределах одного овального отверстия может быть размещено более одного
болта.
Все контактные поверхности деталей ФПС, являющиеся внутренними для ФПС, должны быть
обработаны грунтовкой ВЖС 83-02-87 после дробеструйной (пескоструйной) очистки.
Не допускается осуществлять подготовку тех поверхностей деталей ФПС, которые являются
внешними поверхностями ФПС.
Диаметр болтов ФПС следует принимать не менее 0,4 от толщины соединяемых пакета соединяемых
деталей.
Во всех случаях несущая способность основных элементов конструкции, включающей ФПС, должна
быть не менее чем на 25% больше несущей способности ФПС на фрикционно-неподвижной стадии
работы ФПС.
Минимально допустимое расстояние от края овального отверстия до края детали должно составлять:
- вдоль направления смещения >= 50 мм.
- поперек направления смещения >= 100 мм.
В соединениях прокатных профилей с непараллельными поверхностями полок или при наличии
непараллельности
наружных
плоскостей
ФПС
должны
предотвращающие перекос гаек и деформацию резьбы.
применяться
клиновидные
шайбы,

316.

Конструкции ФПС и конструкции, обеспечивающие соединение ФПС с основными элементами
сооружения, должны допускать возможность ведения последовательного не нарушающего связности
сооружения ремонта ФПС.
6.3. Подготовка контактных поверхностей элементов и методы контроля.
Рабочие контактные поверхности элементов и деталей ФПС должны быть подготовлены посредством
либо пескоструйной очистки в соответствии с указаниями ВСН 163-76, либо дробеструйной очистки в
соответствии с указаниями.
Перед обработкой с контактных поверхностей должны быть удалены заусенцы, а также другие
дефекты, препятствующие плотному прилеганию элементов и деталей ФПС.
Очистка должна производиться в очистных камерах или под навесом, или на открытой площадке при
отсутствии атмосферных осадков.
Шероховатость поверхности очищенного металла должна находиться в пределах 25-50 мкм.
На очищенной поверхности не должно быть пятен масел, воды и других загрязнений.
Очищенные контактные поверхности должны соответствовать первой степени удаления окислов и
обезжиривания по ГОСТ 9022-74.
Оценка шероховатости контактных поверхностей производится визуально сравнением с эталоном
или другими апробированными способами оценки шероховатости.
Контроль степени очистки может осуществляться внешним осмотром поверхности при помощи лупы с
увеличением не менее 6-ти кратного. Окалина, ржавчина и другие загрязнения на очищенной
поверхности при этом не должны быть обнаружены.
Контроль степени обезжиривания осуществляется следующим образом: на очищенную поверхность
наносят 2-3 капли бензина и выдерживают не менее 15 секунд. К этому участку поверхности прижимают

317.

кусок чистой фильтровальной бумаги и держат до полного впитывания бензина. На другой кусок
фильтровальной бумаги наносят 2-3 капли бензина. Оба куска выдерживают до полного испарения
бензина. При дневном освещении сравнивают внешний вид обоих кусков фильтровальной бумаги.
Оценку
степени
обезжиривания
определяют
по
наличию
или
отсутствию
масляного
пятна
на
фильтровальной бумаге.
Длительность перерыва между пескоструйной очисткой поверхности и ее консервацией не должна
превышать 3 часов. Загрязнения, обнаруженные на очищенных поверхностях, перед нанесением
консервирующей грунтовки ВЖС 83-02-87 должны быть удалены жидким калиевым стеклом или
повторной очисткой. Результаты проверки качества очистки заносят в журнал.
6.4. Приготовление и нанесение протекторной грунтовки ВЖС 83 -02-87. Требования
к загрунтованной поверхности. Методы контроля
Протекторная
грунтовка
ВЖС
83-02-87
представляет
собой
двуупаковочный
лакокрасочный
материал, состоящий из алюмоцинкового сплава в виде пигментной пасты, взятой в количестве 66,7%
по весу, и связующего в виде жидкого калиевого стекла плотностью 1,25, взятого в количестве 33,3% по
весу.
Каждая партия материалов должна быть проверена по документации на соответствие ТУ. Применять
материалы, поступившие без документации завода-изготовителя, запрещается.
Перед смешиванием составляющих протекторную грунтовку ингредиентов следует довести жидкое
калиевое стекло до необходимой плотности 1,25 добавлением воды.
Для
приготовления
грунтовки
ВЖС
83-02-87
пигментная
часть
и
связующее
тщательно
перемешиваются и доводятся до рабочей вязкости 17-19 сек. при 18-20°С добавлением воды.
Рабочая вязкость грунтовки определяется вискозиметром ВЗ-4 (ГОСТ 9070-59) по методике ГОСТ
17537-72.

318.

Перед и во время нанесения следует перемешивать приготовленную грунтовку до полного поднятия
осадка.
Грунтовка ВЖС 83-02-87 сохраняет малярные свойства (жизнеспособность) в течение 48 часов.
Грунтовка ВЖС 83-02-87 наносится под навесом или в помещении. При отсутствии атмосферных
осадков нанесение грунтовки можно производить на открытых площадках.
Температура воздуха при произведении работ по нанесению грунтовки ВЖС 83-02-87 должна быть не
ниже +5°С.
Грунтовка ВЖС 83-02-87 может наноситься методами пневматического распыления, окраски кистью,
окраски терками. Предпочтение следует отдавать пневматическому распылению.
Грунтовка ВЖС 83-02-87 наносится за два раза по взаимно перпендикулярным направлениям с
промежуточной сушкой между слоями не менее 2 часов при температуре +18-20°С.
Наносить грунтовку следует равномерным сплошным слоем, добиваясь окончательной толщины
нанесенного покрытия 90-110 мкм. Время нанесения покрытия при естественной сушке при температуре
воздуха 18-20 С составляет 24 часа с момента нанесения последнего слоя.
Сушка загрунтованных элементов и деталей во избежание попадания атмосферных осадков и других
загрязнений на невысохшую поверхность должна проводится под навесом.
Потеки, пузыри, морщины, сорность, не прокрашенные места и другие дефекты не допускаются.
Высохшая грунтовка должна иметь серый матовый цвет, хорошее сцепление (адгезию) с металлом и не
должна давать отлипа.
Контроль толщины покрытия осуществляется магнитным толщиномером ИТП-1.
Адгезия определяется методом решетки в соответствии с ГОСТ 15140-69 на контрольных образцах,
окрашенных по принятой технологии одновременно с элементами и деталями конструкций.

319.

Результаты проверки качества защитного покрытия заносятся в Журнал контроля качества
подготовки контактных поверхностей ФПС.
6.4.1 Основные требования по технике безопасности при работе
с грунтовкой ВЖС 83-02-87
Для обеспечения условий труда необходимо соблюдать:
"Санитарные
правила
при
окрасочных
работах
с
применением
ручных
распылителей"
(Министерство здравоохранения СССР, № 991-72)
"Инструкцию
по
санитарному
содержанию
помещений
и
оборудования
производственных
предприятий" (Министерство здравоохранения СССР, 1967 г.).
При пневматическом методе распыления, во избежание увеличения туманообразования и расхода
лакокрасочного материала, должен строго соблюдаться режим окраски. Окраску следует производить в
респираторе и защитных очках. Во время окрашивания в закрытых помещениях маляр должен
располагаться
таким
образом,
чтобы
струя
лакокрасочного
материала
имела
направление
преимущественно в сторону воздухозаборного отверстия вытяжного зонта. При работе на открытых
площадках
маляр
должен
расположить
окрашиваемые
изделия
так,
чтобы
ветер
не
относил
распыляемый материал в его сторону и в сторону работающих вблизи людей.
Воздушная магистраль и окрасочная аппаратура должны быть оборудованы редукторами давления и
манометрами. Перед началом работы маляр должен проверить герметичность шлангов, исправность
окрасочной аппаратуры и инструмента, а также надежность присоединения воздушных шлангов к
краскораспределителю и воздушной сети. Краскораспределители, кисти и терки в конце рабочей смены
необходимо тщательно очищать и промывать от остатков грунтовки.

320.

На каждом бидоне, банке и другой таре с пигментной частью и связующим должна быть наклейка
или бирка с точным названием и обозначением этих материалов. Тара должна быть исправной с плотно
закрывающейся крышкой.
При приготовлении и нанесении грунтовки ВЖС 83-02-87 нужно соблюдать осторожность и не
допускать ее попадания на слизистые оболочки глаз и дыхательных путей.
Рабочие и ИТР, работающие на участке консервации, допускаются к работе только
после
ознакомления с настоящими рекомендациями, проведения инструктажа и проверки знаний по технике
безопасности. На участке консервации и в краскозаготовительном помещении не разрешается работать
без спецодежды.
Категорически запрещается прием пищи во время работы. При попадании составных частей
грунтовки или самой грунтовки на слизистые оболочки глаз или дыхательных путей необходимо обильно
промыть загрязненные места.

321.

6.4.2 Транспортировка и хранение элементов и деталей, законсервированных
грунтовкой
ВЖС 83-02-87
Укладывать, хранить и транспортировать законсервированные элементы и детали нужно так, чтобы
исключить возможность механического повреждения и загрязнения законсервированных поверхностей.
Собирать можно только те элементы и детали, у которых защитное покрытие контактных
поверхностей полностью высохло. Высохшее защитное покрытие контактных поверхностей не должно
иметь загрязнений, масляных пятен и механических повреждений.
При наличии загрязнений и масляных пятен контактные поверхности должны быть обезжирены.
Обезжиривание контактных поверхностей, законсервированных ВЖС 83-02-87, можно производить
водным раствором жидкого калиевого стекла с последующей промывкой водой и просушиванием. Места
механических повреждений после обезжиривания должны быть подконсервированы.
6.5. Подготовка и нанесение антифрикционного покрытия на опорные поверхности
шайб
Производится очистка только одной опорной поверхности шайб в дробеструйной камере каленой
дробью крупностью не более 0,1 мм. На отдробеструенную поверхность шайб методом плазменного
напыления наносится подложка из интерметаллида ПН851015 толщиной . …..м. На подложку из
интерметаллида ПН851015 методом плазменного напыления наносится несущий слой оловянистой
бронзы БРОФ10-8. На несущий слой оловянистой бронзы БРОФ10-8 наносится способом лужения припой
ПОС-60 до полного покрытия несущего слоя бронзы.

322.

6.6. Сборка ФПС
Сборка ФПС проводится с использованием шайб с фрикционным покрытием одной из поверхностей,
при постановке болтов следует располагать шайбы обработанными поверхностями внутрь ФПС.
Запрещается очищать внешние поверхности внешних деталей ФПС. Рекомендуется использование
неочищенных внешних поверхностей внешних деталей ФПС.
Каждый болт должен иметь две шайбы (одну под головкой, другую под гайкой). Болты и гайки
должны быть очищены от консервирующей смазки, грязи и ржавчины, например, промыты керосином и
высушены.
Резьба болтов должна быть прогнана путем провертывания гайки от руки на всю длину резьбы.
Перед навинчиванием гайки ее резьба должна быть покрыта легким слоем консистентной смазки.
Рекомендуется следующий порядок сборки:
совмещают отверстия в деталях и фиксируют их взаимное положение;
устанавливают болты и осуществляют их натяжение гайковертами на 90% от проектного усилия.
При сборке многоболтового ФПС установку болтов рекомендуется начать с болта находящегося в центре
тяжести поля установки болтов, и продолжать установку от центра к границам поля установки болтов;
после проверки плотности стягивания ФПС производят герметизацию ФПС;
болты затягиваются до нормативных усилий натяжения динамометрическим ключом.

323.

Общество с ограниченной ответственностью «С К С Т Р О Й К О М П Л Е К С - 5» СПб, ул. Бабушкина, д. 36 тел./факс 812-705-00-65 E-mail:
stanislav@stroycomplex-5. ru http://www. stroycomplex-5. ru
РЕГЛАМЕНТ
МОНТАЖА АМОРТИЗАТОРОВ СТЕРЖНЕВЫХ ДЛЯ СЕЙСМОЗАЩИТЫ МОСТОВЫХ СООРУЖЕНИЙ
1. Подготовительные работы
1.1 Очистка верхних поверхностей бетона оголовка опоры и пролетного строения от загрязнений;
1.2. Контрольная съемка положения закладных деталей (фундаментных болтов) в оголовке опоры и диафрагме железобетонного пролетного строения
или отверстий в металле металлического или сталежелезобетонного пролетного строения с составлением схемы (шаблона).
1.3. Проверка соответствия положения отверстий для крепления амортизатора к опоре и к пролетному строению в элементах амортизатора по
шаблонам и, при необходимости, райберовка или рассверловка новых отверстий.
1.4. Проверка высотных и горизонтальных параметров поступившего на монтаж амортизатора и пространства для его установки на опоре (под
диафрагмой). При необходимости, срубка выступающих частей бетона или устройство подливки на оголовке опоры.
1.5. Устройство подмостей в уровне площадки, на которую устанавливается амортизатор.
2. Установка и закрепление амортизатора
2.1. Установка амортизаторов с нижним расположением ФПС (под железобетонные пролетные строения).
2.1.1. Расположение фундаментных болтов для крепления на опоре может быть двух видов:
1) болты расположены внутри основания и при полностью смонтированном амортизаторе не видны, т.к. закрыты корпусом упора, при этом концы
фундаментных болтов выступают над поверхностью площадки, на которой монтируется амортизатор;
2) болты расположены внутри основания и оканчиваются резьбовыми втулками, верхние торцы которых расположены заподлицо с бетонной
поверхностью;
3) болты расположены у края основания, которое совмещено с корпусом упора, и после монтажа амортизатора доступ к болтам возможен, при этом
концы фундаментных болтов выступают над поверхностью площадки;

324.

4) болты расположены у края основания и оканчиваются резьбовыми втулками, как и во втором случае
2.1.2. Последовательность операций по монтажу амортизатора в первом случае приведена ниже.
а) Затяжка болтов ФПС на усилие, предусмотренное проектом.
б) Разборка соединения основания с корпусом упора, собранного на время транспортировки.
в) Подъем основания амортизатора на подмости в уровне, превышающем уровень площадки, на которой монтируется амортизатор, на высоту
выступающего конца фундаментного болта.
г) Надвижка основания в проектное положение до совпадения отверстий для крепления амортизатора с фундаментными болтами, опускание основания
на площадку, затяжка фундаментных болтов, при необходимости срезка выступающих над гайками концов фундаментных болтов.
д) Подъем сборочной единицы, включающей остальные части амортизатора, на подмости в уровне установленного основания.
е) Снятие транспортных креплений.
ж) Надвижка упомянутой сборочной единицы на основание до совпадения отверстий под штифты и резьбовые отверстия под болты в основании с
соответствующими отверстиями в упоре, забивка штифтов в отверстия, затяжка и законтривание болтов.
з) Завинчивание болтов крепления верхней плиты стержневой пружины в резьбовые отверстия втулок анкерных болтов на диафрагме пролетного
строения. Если зазор между верхней плитой и нижней плоскостью диафрагмы менее 5мм, производится затяжка болтов. Если зазор более 5 мм, устанавливается
опалубка по контуру верхней плиты, бетонируется или инъектирует- ся зазор, после набора прочности бетоном или раствором производится затяжка болтов.
и) Восстановление антикоррозийного покрытия.
2.1.3. Операции по монтажу амортизатора во втором случае отличаются от операций первого случая только тем, что основание амортизатора
поднимается на подмости в уровне площадки, на которой монтируется амортизатор и надвигается до совпадения резьбовых отверстий во втулках фундаментных
болтов с отверстиями под болты в основании.
2.1.4. Последовательность операций по монтажу амортизатора в третьем случае приведена ниже.
а) Затяжка болтов ФПС на усилие, предусмотренное проектом.
б) Подъем амортизатора на подмости в уровень, превышающий уровень площадки, на которой монтируется амортизатор, на высоту выступающего
конца фундаментного болта.

325.

в) Снятие транспортных креплений.
г) Надвижка амортизатора в проектное положение до совпадения отверстий для его крепления с фундаментными болтами, опускание амортизатора на
площадку, затяжка фундаментных болтов.
Далее выполняются операции, указанные в подпунктах 2.1.2.д...2.1.2.и.
2.1.5. Операции по монтажу амортизаторов в четвертом случае отличаются от операций для третьего случая только тем, что амортизатор поднимается
на подмости в уровень площадки, на которой он монтируется и надвигается до совпадения отверстий в амортизаторе с резьбовыми отверстиями во втулках.
2.2. Установка амортизаторов с верхним расположением ФПС (под металлические пролетные строения)
2.2.1. Последовательность и содержание операций по установке на опоры амортизаторов как с верхним, так и с нижним расположением ФПС
одинаковы.
2.2.2. К металлическому пролетному строению амортизатор прикрепляется посредством горизонтального упора. После прикрепления амортизатора к
опоре выполняются следующие операции:
1) замеряются зазоры между поверхностями примыкания горизонтального упора к конструкциям металлического пролетного строения;
2) в отверстия вставляются высокопрочные болты и на них нанизываются гайки;
3) при наличии зазоров более 2 мм в местах расположения болтов вставляются вильчатые прокладки (вилкообразные шайбы) требуемой толщины;
4) высокопрочные болты затягиваются до проектного усилия.
2.3. Подъемка амортизатора на подмости в уровне площадки, на которой он будет смонтирован.
2.4. Демонтаж транспортных креплений.
Заместитель генерального директора
Согласовано:
ОАО «Трансмост»
Главный инженер проекта ОАО «Трансмост»
Главный инженер проекта
И.В. Совершаев
И.А. Мурох
Л.А. Ушакова

326.

Главный инженер проекта
В.Л. Бобровский

327.

328.

329.

330.

331.

332.

Фрикционно демпфирующий компенсатор для трубопроводов

333.

334.

335.

336.

337.

338.

339.

340.

341.

342.

343.

344.

345.

346.

347.

348.

349.

350.

351.

352.

353.

РОССИЙСКАЯ ФЕДЕРАЦИЯ
(19)
RU 2010136746
(11)
ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ
2010 136 746
(13)
A
(51) МПК
(12)
E04C 2/00 (2006.01)
ЗАЯВКА НА ИЗОБРЕТЕНИЕ
Состояние делопроизводства: Экспертиза завершена (последнее изменение статуса: 02.10.2013)
(22) Заявка: 2010136746/03, 01.09.2010
оритет(ы):
(71) Заявитель(и):
Открытое акционерное общество "Теплант" (RU)
(72) Автор(ы):
Дата подачи заявки: 01.09.2010
Дата публикации заявки: 20.01.2013 Бюл. № 2
ес для переписки:
443004, г.Самара, ул.Заводская, 5, ОАО "Теплант"
Подгорный Олег Александрович (RU),
Акифьев Александр Анатольевич (RU),
Тихонов Вячеслав Юрьевич (RU),
Родионов Владимир Викторович (RU),
Гусев Михаил Владимирович (RU),

354.

Коваленко Александр Иванович (RU)
(54) СПОСОБ ЗАЩИТЫ ЗДАНИЯ И СООРУЖЕНИЯ ПРИ ВЗРЫВЕ С ИСПОЛЬЗОВАНИЕМ СДВИГОУСТОЙЧИВЫХ И ЛЕГКОСБРАСЫВАЕМЫХ СОЕДИНЕНИЙ, ИСПОЛЬЗУЮЩИЕ С ИСТЕМУ
ДЕМПФИРОВАНИЯ ФРИКЦИОННОСТИ И СЕЙСМОИЗОЛЯЦИЮ ДЛЯ ПОГЛОЩЕНИЯ ВЗРЫВНОЙ И СЕЙСМИЧЕСКОЙ ЭНЕРГИИ
(57) Формула изобретения
1. Способ защиты здания от разрушений при взрыве или землетрясении, включающий выполнение проема/проемов рассчитанной площади дл я снижения до
допустимой величины взрывного давления, возникающего во взрывоопасных помещениях при аварийных внутренних взрывах, о тличающийся тем, что в объеме
каждого проема организуют зону, представленную в виде одной или нескольких полостей, ограниченных эластичным огнестойким мате риалом и установленных на
легкосбрасываемых фрикционных соединениях при избыточном давлении воздухом и землетрясении, при этом обеспечивают плотную посадку полости/полостей во
всем объеме проема, а в момент взрыва и землетрясения под действием взрывного давления обеспечивают изгибающий момент полости /полостей и осуществляют их
выброс из проема и соскальзывают с болтового соединения за счет ослабленной подпиленной гайки.
2. Способ по п.1, отличающийся тем, что «сэндвич»-панели, щитовые панели смонтированы на высокоподатливых с высокой степенью подвижности фрикционных,
скользящих соединениях с сухим трением с включением в работу фрикционных гибких стальных затяжек диафрагм жесткости, состоящих из стальных регулируемых
натяжений затяжек сухим трением и повышенной подвижности, позволяющие перемещаться перекрытиям и «сэндвич» -панелям в горизонтали в районе перекрытия
115 мм, т.е. до 12 см, по максимальному отклонению от вертикали 65 мм, т.е. до 7 см (подъем пятки на уровне фундамента), не п одвергая разрушению и обрушению
конструкции при аварийных взрывах и сильных землетрясениях.
3. Способ по п.2, отличающийся тем, что каждая «сэндвич»-панель крепится на сдвигоустойчивых соединениях со свинцовой, медной или зубчатой шайбой, которая
распределяет одинаковое напряжение на все четыре-восемь гаек и способствует одновременному поглощению сейсмической и взрывной энергии, не позволяя
разрушиться основным несущим конструкциям здания, уменьшая вес здания и амплитуду колебания здания.
4. Способ по п.3, отличающийся тем, что за счет новой конструкции сдвигоустойчивого податливого соединения на шарнирных узлах и гибких диафрагмах
«сэндвич»-панели могут монтироваться как самонесущие без стального каркаса для малоэтажных зданий и сооружений.
5. Способ по п.4, отличающийся тем, что система демпфирования и фрикционности и поглощения сейсмической энергии может определ ить величину
горизонтального и вертикального перемещения «сэндвич»-панели и определить ее несущую способность при землетрясении или взрыве прямо на строительной
площадке, пригрузив «сэндвич»-панель и создавая расчетное перемещение по вертикали лебедкой с испытанием на сдв иг и перемещение до землетрясения и
аварийного взрыва прямо при монтаже здания и сооружения.
6. Способ по п.5, отличающийся тем, что расчетные опасные перемещения определяются, проверяются и затем испытываются на прогр аммном комплексе ВК SCAD
7/31 r5, ABAQUS 6.9, MONOMAX 4.2, ANSYS, PLAKSIS, STARK ES 2006, SoliddWorks 2008, Ing+2006, FondationPL 3d, SivilFem 10, STAAD.Pro, а зат ем на испытательном при
объектном строительном полигоне прямо на строительной площадке испытываются фрагменты и узлы, и проверяются экспериментальным путем допустимые
расчетные перемещения строительных конструкций (стеновых «сэндвич»-панелей, щитовых деревянных панелей, колонн, перекрытий, перегородок) на возможные
при аварийном взрыве и при землетрясении более 9 баллов перемещение по методике разработанной испытательным центром ОО «Сейсмофонд» - «Защита и
безопасность городов».

355.

Изобретение полезная модель Опора сейсмостойкая Сейсмофонд Андреев Б А Коваленко А И
Опора сейсмостойкая состоит из корпуса 1 в котором выполнено вертикальное отверстие диаметром « D», которое охватывает цилиндрическую поверхность штока 2 по
подвижной посадке, например Н9/f9. В стенке корпуса перпендикулярно его оси, выполнено два отверстия в которых установлен калиброванный болт 3.Кроме того, вдоль оси
отверстия корпуса, выполнены два паза шириной «z» и длиной «l». В штоке вдоль оси выполнен продольный (глухой) паз длиной «h» (допустимый ход штока)
соответствующий по ширине диаметру калиброванного болта 3 , проходящего через паз штока.
В нижней части корпуса 1 выполнен фланец с отверстиями для крепления на фундаменте, а в верхней части штока 2 выполнен фланец для сопряжения с защищаемым
объектом. Сборка опоры заключается в том, что шток 2 сопрягается с отверстием «D» корпуса по подвижной посадке. Паз штока совмещают с поперечными отверстиями
корпуса и соединяют калиброванным болтом 3 , с шайбами 4, на который с предварительным усилием (вручную) навинчивают гайку 5, скрепляя шток и корпус в положении
при котором нижняя поверхность паза штока контактирует с поверхностью болта (высота опоры максимальна).
После этого гайку 5 затягивают тарировочным ключом до заданного усилия. Увеличение усилия затяжки гайки (болта) приводит к уменьшению зазоров « z» корпуса и
увеличению усилия сдвига в сопряжении отверстие корпуса-цилиндр штока. Зависимость усилия трения в сопряжении корпус-шток от величины усилия затяжки гайки(болта)
определяется для каждой конкретной конструкции (компоновки, габаритов, материалов, шероховатости поверхностей и др.) экспериментально
Е04Н9/02
Опора сейсмостойкая
Предлагаемое техническое решение предназначено для защиты сооружений, объектов и оборудования от
сейсмических воздействий за счет использования фрикционно податливых соединений. Известны фрикционные
соединения для защиты объектов от динамических воздействий. Известно, например Болтовое соединение плоских
деталей встык по Патенту RU 1174616 , F15B5/02 с пр. от 11.11.1983.
Соединение содержит металлические листы, накладки и прокладки. В листах, накладках и прокладках выполнены
овальные отверстия через которые пропущены болты, объединяющие листы, прокладки и накладки в пакет. При малых
горизонтальных нагрузках силы трения между листами пакета и болтами не преодолеваются. С увеличением нагрузки
происходит взаимное проскальзывание листов или прокладок относительно накладок контакта листов с меньшей
шероховатостью.
Взаимное смещение листов происходит до упора болтов в края овальных отверстий после чего соединения работают
упруго. После того как все болты соединения дойдут до упора в края овальных отверстий, соединение начинает работать
упруго, а затем происходит разрушение соединения за счет смятия листов и среза болтов. Недостатками известного
являются: ограничение демпфирования по направлению воздействия только по горизонтали и вдоль овальных

356.

отверстий; а также неопределенности при расчетах из-за разброса по трению. Известно также Устройство для
фрикционного демпфирования антиветровых и антисейсмических воздействий по Патенту TW201400676(A)-2014-01-01.
Restraint anti-wind and anti-seismic friction damping device, E04B1/98, F16F15/10.
Устройство содержит базовое основание, поддерживающее защищаемый объект, нескольких сегментов (крыльев) и
несколько внешних пластин. В сегментах выполнены продольные пазы. Трение демпфирования создается между
пластинами и наружными поверхностями сегментов. Перпендикулярно вертикальной поверхности сегментов, через
пазы, проходят запирающие элементы-болты, которые фиксируют сегменты и пластины друг относительно друга. Кроме
того, запирающие элементы проходят через блок поддержки, две пластины, через паз сегмента и фиксируют
конструкцию в заданном положении. Таким образом получаем конструкцию опоры, которая выдерживает ветровые
нагрузки но, при возникновении сейсмических нагрузок, превышающих расчетные силы трения в сопряжениях,
смещается от своего начального положения, при этом сохраняет конструкцию без разрушения.
Недостатками указанной конструкции являются: сложность конструкции и сложность расчетов из-за наличия большого
количества сопрягаемых трущихся поверхностей.
Целью предлагаемого решения является упрощение конструкции, уменьшение количества сопрягаемых трущихся
поверхностей до одного сопряжения отверстие корпуса-цилиндр штока, а также повышение точности расчета.
Сущность предлагаемого решения заключается в том, что опора сейсмостойкая выполнена из двух частей: нижнейкорпуса, закрепленного на фундаменте и верхней-штока, установленного с возможностью перемещения вдоль общей
оси и с возможностью ограничения перемещения за счет деформации корпуса под действием запорного элемента. В
корпусе выполнено центральное отверстие, сопрягаемое с цилиндрической поверхностью штока, и поперечные
отверстия (перпендикулярные к центральной оси) в которые устанавливают запирающий элемент-болт. Кроме того в
корпусе, параллельно центральной оси, выполнены два открытых паза, которые обеспечивают корпусу возможность
деформироваться в радиальном направлении.
В теле штока, вдоль центральной оси, выполнен паз ширина которого соответствует диаметру запирающего элемента
(болта), а длина соответствует заданному перемещению штока. Запирающий элемент создает нагрузку в сопряжении

357.

шток-отверстие корпуса, а продольные пазы обеспечивают возможность деформации корпуса и «переход» сопряжения
из состояния возможного перемещения в состояние «запирания» с возможностью перемещения только под
сейсмической нагрузкой.
Сущность предлагаемой конструкции поясняется чертежами, где на фиг.1 изображен разрез А-А (фиг.2); на фиг.2
изображен поперечный разрез Б-Б (фиг.1); на фиг.3 изображен разрез В-В (фиг.1); на фиг.4 изображен выносной элемент
1 (фиг.2) в увеличенном масштабе.
Опора сейсмостойкая состоит из корпуса 1 в
котором выполнено вертикальное отверстие диаметром «D», которое охватывает цилиндрическую поверхность штока 2
предварительно по подвижной посадке, например H7/f7.
В стенке корпуса перпендикулярно его оси, выполнено два отверстия в которых установлен запирающий элементкалиброванный болт 3. Кроме того, вдоль оси отверстия корпуса, выполнены два паза шириной «Z» и длиной «l». В теле
штока вдоль оси выполнен продольный глухой паз длиной «h» (допустмый ход штока) соответствующий по ширине
диаметру калиброванного болта, проходящего через этот паз. В нижней части корпуса 1 выполнен фланец с отверстиями
для крепления на фундаменте, а в верхней части штока 2 выполнен фланец для сопряжения с защищаемым объектом.
Сборка опоры заключается в том, что шток 2 сопрягается с отверстием «D» корпуса по подвижной посадке. Паз штока
совмещают с поперечными отверстиями корпуса и соединяют калиброванным болтом 3, с шайбами 4, на с
предварительным усилием (вручную) навинчивают гайку 5, скрепляя шток и корпус в положении при котором нижняя
поверхность паза штока контактирует с поверхностью болта (высота опоры максимальна).
После этого гайку 5 затягивают тарировочным ключом до заданного усилия. Увеличение усилия затяжки гайки (болта)
приводит к деформации корпуса и уменьшению зазоров от «Z» до «Z1» в корпусе, что в свою очередь приводит к
увеличению допустимого усилия сдвига (усилия трения) в сопряжении отверстие корпуса – цилиндр штока.
Величина усилия трения в сопряжении корпус-шток зависит от величины усилия затяжки гайки (болта) и для каждой
конкретной конструкции (компоновки, габаритов, материалов, шероховатости поверхностей, направления нагрузок и др.)
определяется экспериментально. При воздействии сейсмических нагрузок превышающих силы трения в сопряжении
корпус-шток, происходит сдвиг штока, в пределах длины паза выполненного в теле штока, без разрушения конструкции.

358.

Формула (черновик) Е04Н9
Опора сейсмостойкая, содержащая корпус и сопряженный с ним подвижный узел (…) закрепленный запорным
элементом отличающийся тем, что в корпусе выполнено центральное вертикальное отверстие, сопряженное с
цилиндрической поверхностью штока, при этом шток зафиксирован запорным элементом, выполненным в виде
калиброванного болта, проходящего через поперечные отверстия корпуса и через вертикальный паз, выполненный в
теле штока и закрепленный гайкой с заданным усилием, кроме того в корпусе, параллельно центральной оси,
выполнено два открытых паза длина которых, от торца корпуса, больше расстояния до нижней точки паза штока.

359.

360.

361.

2148805
РОССИЙСКАЯ ФЕДЕРАЦИЯ
(19)
RU
(11)
2 148 805
(13)
C1
(51) МПК
ФЕДЕРАЛЬНАЯ СЛУЖБА
G01L 5/24 (2000.01)
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
(12)
ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ
Статус: не действует (последнее изменение статуса: 19.09.2011)
Пошлина: учтена за 3 год с 27.11.1999 по 26.11.2000
(22) Заявка: 97120444/28, 26.11.1997
Дата начала отсчета срока действия патента:
26.11.1997
Опубликовано: 10.05.2000 Бюл. № 13
Список документов, цитированных в отчете о поиске: Чесноков
(71) Заявитель(и):
Рабер Лев Матвеевич (UA),
Кондратов Валерий Владимирович (RU),
Хусид Раиса Григорьевна (RU),
Миролюбов Юрий Павлович (RU)
(72) Автор(ы):
А.С., Княжев А.Ф. Сдвигоустойчивые соединения на
Рабер Лев Матвеевич (UA),
высокопрочных болтах. - М.: Стройиздат, 1974, с.73-77. SU
Кондратов В.В.(RU),
763707 A, 15.09.80. SU 993062 A, 30.01.83. EP 0170068 A'',
Хусид Р.Г.(RU),
05.02.86.
Миролюбов Ю.П.(RU)
ес для переписки:
190031, Санкт-Петербург, Фонтанка 113, НИИ мостов
(73) Патентообладатель(и):
Рабер Лев Матвеевич (UA),
Кондратов Валерий Владимирович (RU),
Хусид Раиса Григорьевна (RU),
Миролюбов Юрий Павлович (RU)
(54) СПОСОБ ОПРЕДЕЛЕНИЯ КОЭФФИЦИЕНТА ЗАКРУЧИВАНИЯ РЕЗЬБОВОГО СОЕДИНЕНИЯ

362.

(57) Реферат:
Изобретение относится к области мостостроения и другим областям строительства и эксплуатации металлоконструкций для определен ия параметров
затяжки болтов. В эксплуатируемом соединении производят затягивание гайки на заданную величину угла ее поворота от исходного положения.
Предварительно ослабляют ее затягивание. Замеряют при затягивании значение момента закручивания гайки в области упругих дефор маций. Определяют
приращение момента закручивания. Приращение усилия натяжения болта определяют по рассчетной формуле. Коэффициент закручивания резьбового
соединения определяют как отношение приращения момента закручивания гайки к произведению приращения усилия натяжения болта на его диаметр.
Технический результат заключается в возможности проведения испытаний в конкретных условиях эксплуатации соединений для повышен ия точности
результатов испытаний.
Изобретение относится к технике измерения коэффициента закручивания резьбового соединения,
преимущественно высокопрочных болтов, и может быть использовано в мостостроении и других отраслях
строительства и эксплуатации металлоконструкций для определения параметров затяжки болтов.
При проверке величины натяжения N болтов, преимущественно высокопрочных, как на стадии приемки
выполненных работ (Инструкция по технологии устройства соединений на высокопрочных болтах в стальных
конструкциях мостов. ВСН 163-69. М. , 1970, с. 10-18. МПС СССР, Минтрансстрой СССР), так и в период
обследования конструкций (строительные нормы и правила СНиП 3.06.07-86. Мосты и трубы. Правила
обследований и испытаний. - М., Стройиздат, 1987, с. 25-27), используют динамометрические ключи. Этими
ключами измеряют момент закручивания M з, которым затянуты гайки.
Основой этой методики измерений является исходная формула (Вейнблат Б.М. Высокопрочные болты в
конструкциях мостов. М.,Транспорт, 1971, с. 60-64):
Mз = Ndk,
где d - номинальный диаметр болта;
k - коэффициент закручивания, зависящий от условий трения в резьбе и под опорой гайк и.
Измеряя тем или иным способом прикладываемый к гайке момент закручивания, рассчитывают при известном
коэффициенте закручивания усилие натяжения болта N.
Очевидно, что при достаточной точности регистрации моментов точность данной методики зависит от того , в
какой мере действительные коэффициенты закручивания k соответствуют расчетным величинам.
Методика обеспечивает необходимую точность проверки величины натяжения болтов, как правило, лишь на
стадии приемки выполненных работ, поскольку предусматриваемая технологией постановки болтов
стабилизация коэффициента k кратковременна.
Значения k для болтов, находящихся в эксплуатируемых конструкциях, может изменяться в широких
пределах, что вносит существенную неточность в результаты измерений. По данным Чеснокова А.С. и Княжева

363.

А.Ф. ("Сдвигоустойчивые соединения на высокопрочных болтах". М., Стройиздат, 1974, табл. 17, с. 73)
коэффициент закручивания зависит от качества смазки резьбы и может изменяться в пределах 0,12 -0,264. Таким
образом измеренные усилия в болтах с помощью динамометрических ключей могут отличаться от фактических
значений более чем в 2 раза.
Известен более прогрессивный способ непосредственного измерения усилий в болтах, где величина
коэффициента k не оказывает влияния на результаты измерений. Способ реализован с помощью устройства
(А.св. N 1139984 (СССР). Устройство для контроля усилий затяжки резьбовых соединений (Бокатов В.И.,
Вишневский И.И., Рабер Л.М., Голиков С.П. - Заявл. 08.12.83, N 3670879), опыт применения которого выявил
его надежную работу в случае сравнительно непродолжительного (до пяти лет) срока эксплуатации
конструкций. При более длительном сроке эксплуатации срабатывание предусмотренных конструкцией
устройства пружин происходит недостаточно четко, поскольку с течением времени непод вижный контакт
резьбовой пары приводит к увеличению коэффициента трения покоя. Этот коэффициент иногда достигает таких
величин, что величина момента сил трения в резьбе превосходит величину крутящего момента, создаваемого
преднапряженными пружинами. Естественно в этих условиях пружины срабатывать не могут.
Существенно ограничивает применение устройства необходимость свободно выступающей над гайкой резьбы
болта не менее, чем на 20 мм. Наличие таких болтов в узлах и прикреплениях должно специально
предусматриваться.
В целом независимо от способа измерения усилий в болтах, в случае выявления недостаточного их натяжения
необходимо назначить величину момента закручивания для подтяжки болтов. Для назначения этого момента
необходимы знания фактического значения коэффициента закручивания k.
Наиболее близким по технической сущности к предлагаемому решению (прототип) является способ измерения
коэффициента закручивания болтов с учетом влияния времени, аналогичному влиянию качества изготовления
болтов (Чесноков А. С. , Княжев А.Ф. Сдвигоустойчивые соединения на высокопрочных болтах. - М.,
Стройиздат, 1974, с. 73, последний абзац).
Способ состоит в раскручивании гайки и извлечении болта из конструкции, определении коэффициента k i в
лабораторных условиях (см. тот же источник, с. 74-77) путем одновременного обеспечения и контроля
заданного усилия N и прикладываемого к гайке момента M.
Очевидно, что столь трудоемкий способ не может быть широко использован, поскольку для статистической
оценки необходимо произвести испытания нескольких десятков или даже сотен болтов. Кроме того, при
извлечении болта из конструкции резьбу гайки прогоняют по окрашенной или загрязненной резьбе болта, а

364.

испытания в лабораторных условиях производят, как правило, не на том участке резьбы, на котором бо лт быть
сопряжен с гайкой в пакете. Все это ставит под сомнение достоверность результата испытаний.
Предложенный способ отличается от прототипа тем, что в эксплуатируемом соединении производят
затягивание гайки на заданную величину угла ее поворота от исходного положения, произведя предварительно
для этого ослабление ее затягивания. Затягивание гайки на заданную величину угла ее поворота в области
упругих деформаций производят с замером значения момента закручивания гайки и определяют приращение
момента закручивания. При этом приращение усилия натяжения болта определяют по формуле
ΔN = Ai/A22•ai/a22•α
o
i
/60o(170-0,96δ), кH, (1)
где A, A 22 - площади поперечного сечения испытываемого болта и болта диаметром 22 мм;
ai, a22 - шаг резьбы испытываемого болта и болта диаметром 22 мм;
α
o
i
- угол поворота гайки от исходного положения;
δ - толщина пакета деталей, соединенных испытываемым болтом, мм.
Коэффициент закручивания резьбового соединения определяют как отношение приращения момента
закручивания гайки к произведению приращения усилия натяжения болта на его диаметр.
Такой способ позволяет в отличие от прототипа проводить испытания болтов в эксплуатируемом соединении
и повысить точность определения величины коэффициента закручивания за счет исключения нео бходимости
прогона резьбы гайки по окрашенной или загрязненной резьбе болта. Кроме того, в отличие от прототипа
испытания проводят на том же участке резьбы, на котором болт сопряжен с гайкой постоянно. Способ
осуществляется следующим образом:
- с помощью динамометрического ключа измеряют момент закручивания гайки испытуемого болта - Mз;
- производят ослабление затягивания гайки испытуемого болта до момента (0,1 . . . 0,2) M з и измеряют
фактическую величину этого момента (исходное положение) - Mн;
- наносят, например, мелом, метки на двух точках гайки и соответственно на пакете. Угол между метками
соответствует заданному углу поворота гайки; как правило, этот угол составляет 60 o.
- поворачивают гайку на заданный угол α o и измеряют величину момента закручивания гайки по достижении
этого угла - Mк.

365.

- вычисляют приращение момента закручивания
ΔM = Mк-Mн, Hм;
- определяют соответствующее повороту гайки на угол α o приращение усилия натяжения болта ΔN по
эмпирической формуле (1);
- производят вычисление коэффициента закручивания k болта диаметром d:
k = ΔM/ΔNd.
Формула для определения ΔN получена в результате анализа специально проведенных экспериментов,
состоящих в исследовании влияния толщины пакета и уточнении влияния толщины и количества деталей,
составляющих пакет эксплуатируемого соединения, на стабильность приращения усилия натяжения болтов при
повороте гайки на угол 60 o от исходного положения.
Поворот гайки на 60 o соответствует середине области упругих деформаций болта (Вейнблат Б.М.
Высокопрочные болты в конструкциях мостов - М., Транспорт, 1974, с. 65-68). В пределах этой области,
равному приращению угла поворота гайки, соответствует равное приращение усилий натяжения болта.
Величина этого приращения в плотно стянутом болтами пакете, при постоянном диаметре б олта зависит от
толщины этого пакета. Следовательно, поворот гайки на определенный угол в области упругих деформаций
идентичен созданию в болте заданного натяжения. Этот эффект явился основой предложенного способа
определения коэффициента закручивания.
Угол поворота гайки 60 o технологически удобен, поскольку он соответствует перемещению гайки на одну
грань. Погрешность системы определения коэффициента закручивания, характеризуемая как погрешностью
выполнения отдельных операций, так и погрешностью регистрации требуемых параметров, составляет около ±
8% (см. Акт испытаний).
Таким образом, предложенный способ определения коэффициента закручивания резьбовых соединений дает
возможность проводить испытания в конкретных условиях эксплуатации соединений, что повышае т точность
полученных результатов испытаний.
Полученные с помощью предложенного способа значения коэффициента закручивания могут быть
использованы как при определении усилий натяжения болтов в период обследования конструкций, так при
назначении величины момента для подтяжки болтов, в которых по результатам обследования выявлено
недостаточное натяжение.
Эффект состоит в повышении эксплуатационной надежности конструкций различного назначения.
Формула изобретения

366.

Способ определения коэффициента закручивания резьбового соединения, заключающийся в измерении
параметров затяжки соединения, по которым вычисляют коэффициент закручивания, отличающийся тем, что в
эксплуатируемом соединении производят затягивание гайки на заданную величину угла ее поворота от
исходного положения, произведя предварительно для этого ослабление ее затягивания, с замером значения
момента закручивания гайки в области упругих деформаций и определяют приращение момента закручивания,
при этом приращение усилия натяжения болта определяют по формуле
где Ai, A22 - площади поперечного сечения испытываемого болта и болта диаметром 22 мм;
ai, a22 - шаг резьбы испытываемого болта и болта диаметром 22 мм;
α
°
i
- угол поворота гайки от исходного положения;
δ - толщина пакета деталей, соединенных испытываемым болтом, мм,
а коэффициент закручивания резьбового соединения определяют как отношение приращения момента
закручивания гайки к произведению приращения усилия натяжения болта на его диаметр.
2413098
РОССИЙСКАЯ ФЕДЕРАЦИЯ
(19)
RU
(11)
2 413 098
(13)
ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
(12)
C1
(51) МПК
F16B 31/02 (2006.01)
G01N 3/00 (2006.01)
ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ
Статус: прекратил действие, но может быть восстановлен (последнее изменение статуса:

367.

Пошлина: 07.08.2017)
учтена за 7 год с 20.11.2015 по 19.11.2016
(22) Заявка: 2009142477/11, 19.11.2009
Дата начала отсчета срока действия патента:
19.11.2009
оритет(ы):
Дата подачи заявки: 19.11.2009
Опубликовано: 27.02.2011 Бюл. № 6
(72) Автор(ы):
Кунин Симон Соломонович (RU),
Хусид Раиса Григорьевна (RU)
(73) Патентообладатель(и):
ОБЩЕСТВО С ОГРАНИЧЕННОЙ
ОТВЕТСТВЕННОСТЬЮ ПРОИЗВОДСТВЕННОИНЖИНИРИНГОВАЯ ФИРМА "ПАРТНЁР" (RU)
Список документов, цитированных в отчете о поиске: SU
1753341 A1, 07.08.1992. SU 1735631 A1, 23.05.1992. JP
2008151330 A, 03.07.2008. WO 2006028177 A1, 16.03.2006.
ес для переписки:
197374, Санкт-Петербург, ул. Беговая, 5, корп.2, кв.229, М.И.
Лифсону
(54) СПОСОБ ДЛЯ ОБЕСПЕЧЕНИЯ НЕСУЩЕЙ СПОСОБНОСТИ МЕТАЛЛОКОНСТРУКЦИЙ С ВЫСОКОПРОЧНЫМИ БОЛТАМИ
(57) Реферат:
Изобретение относится к методам диагностики фрикционных соединений металлоконструкций с высокопрочными болтами. Способ обеспе чения
несущей способности фрикционного соединения металлоконструкций с высокопрочными болтами включает приготовление образ ца-свидетеля,
содержащего элемент металлоконструкции и тестовую накладку, контактирующие поверхности которых, предварительно обработанные п о проектной
технологии, соединяют высокопрочным болтом и гайкой при проектном значении усилия натяжения болта, устана вливают на элемент
металлоконструкции устройство для определения усилия сдвига и постепенно увеличивают нагрузку на накладку до момента ее сдвиг а, фиксируют
усилие сдвига и затем сравнивают его с нормативной величиной показателя сравнения, далее в зависимо сти от величины отклонения осуществляют
коррекцию технологии монтажа. В качестве показателя сравнения используют проектное значение усилия натяжения высокопрочного б олта. Определение
усилия сдвига на образце-свидетеле осуществляют устройством, содержащим неподвижную и сдвигаемую детали, узел сжатия и узел сдвига,
выполненный в виде рычага, установленного на валу с возможностью соединения его с неподвижной частью устройства, и имеющего о тверстие под
нагрузочный болт, а между выступом рычага и тестовой накладкой помещают самоустанавливающийся сухарик, выполненный из закаленного материала.
В результате повышается надежность соединения. 1 з.п. ф-лы, 1 ил.

368.

Изобретение относится к методам диагностики фрикционных соединений металлоконструкций с
высокопрочными болтами, но может быть использовано для определения фактического напряженнодеформированного состояния болтовых соединений в различных конструкциях, в частности стальных мостовых
конструкциях, как находящихся в эксплуатации, так и при подготовке отдельных узлов к монтажу.
Мостовые пролетные металлоконструкции соединяются с помощью сварки (неразъемные), а также с помощью
болтовых фрикционных соединений, в которых передача усилия обжатия соединяемых элементов
высокопрочными метизами осуществляется только силами трения по контактным плоскостям усилием обжатия
болтов до 22 т и выше.
Расчетное предельное состояние фрикционного соединения характеризуется наступлением общего сдвига по
среднему ряду болтов. Сдвигающее усилие, отнесенное к одному высокопрочному болту и одной плоскости
трения, определяют по формуле:
где k - обобщенный коэффициент однородности, включающий также коэффициент работы
мостов m1=0,9; m2 - коэффициент условий работы соединения; Р н - нормативное усилие натяжения болта; f н нормативный коэффициент трения.
В настоящее время основным нормативными показателями несущей способности фрикционных соединений с
высокопрочными болтами, которые отражаются в проектной документации, являются усилие натяжения болта и
нормативный коэффициент трения, с учетом условий работы фрикционного соединения. Нормативное усилие

369.

натяжения болтов назначается с учетом механических характеристик материала и его определяют по
формуле:
, где Р - усилие натяжения болта (кН); М - крутящий момент, приложенный к гайке для
натяжения болта на заданное нормативное усилие, (Нм); d - диаметр болта (мм); k - коэффициент, который
должен быть в пределах 0,17-0,22 при коэффициенте трения (f≥0,55).
Как на стадии сборки соединений, так и в случае проведения ремонтных работ с разборкой р анее
выполненных соединений важными являются вопросы оценки коэффициентов трения по соприкасающимся
поверхностям соединяемых элементов. Этот вопрос приобретает особую актуальность в случае сочетания
металлических поверхностей, находящихся в эксплуатации с новыми элементами, а также для оценки
возможности повторного использования высокопрочных болтов. В качестве нормативного коэффициента трения
принимается среднестатистическое значение, определенное по возможно большему объему экспериментального
материала раздельно для различных методов подготовки контактных поверхностей.
Практикой выполнения монтажных работ установлено, что наиболее эффективно сдвигоустойчивость
контактных соединений выполняется при коэффициенте трения поверхностей f≥0,55. Это значение можно
принять в качестве основного критерия сдвигоустойчивости, и оно соответствует исходному значению Ктр. для
монтируемых стальных контактных поверхностей, обработанных непосредственно перед сборкой абразивно струйным методом с чистотой очистки до степени Sa 2,5 и шероховатостью Rz≥40 мкм. Сдвигающие усилия
определяют обычно по показаниям испытательного пресса, а обжимающие - по суммарному усилию натяжения
болтов. Отклонение усилия натяжения и возможные их изменения при эксплуатации могут приводить к тем или
иным неточностям в определении коэффициентов трения.
Частично, указанная проблема сохранения требуемой шероховатости контактных поверхностей и обеспечения
требуемой величины f≥0,55 решена применением разработанного НПЦ Мостов съемного покрытия «Контакт»
(патент РФ №2344149 на изобретение «Антикоррозионное покрытие и способ его нанесения», которое
обеспечивает временную защиту от коррозии отдробеструенных в условиях завода колотой стальной дробью
контактных поверхностей мостовых пролетных конструкций на период их транспортировки и хранения в
течение 1-1,5 лет (до начала монтажных работ на строительном объекте). Непосредственно перед монтажом
покрытие «Контакт» подрезается ножом и ручным способом легко снимается «чулком» с контактных
поверхностей, после чего сборка конструкций может производиться без проведения дополнительной абразивно струйной очистки.
Однако в связи с тем, что в обычной практике проведение монтажно-транспортных операций с пролетными
строениями осуществляется с помощью захватов, фиксируемых в отверстиях контактных поверхностей,
временное защитное покрытие «Контакт» в районе установки захватов повреждается. На строительном объекте

370.

приходится производить повторную абразивно-струйную обработку присоединительных поверхностей, т.к. они
после длительной эксплуатации на открытом воздухе обильно покрыты продуктами ржавления. Выполнение
дополнительной очистки значительно увеличивает трудоемкость монтажных работ. Кроме того, в условиях
открытой атмосферы и удаленности строительных площадок мостов от промышленных центров требуемые
показатели очистки металла труднодостижимы, что, в конечном счете, вызывает снижение фрикционных
показателей, соответственно снижение усилий обжатия высокопрочных метизов, а следовательно, приводят к
снижению качества монтажных работ.
Эксплуатация мостовых конструкций, срок службы которых составляет 80-100 лет, подразумевает постоянное
воздействие на контактные соединения климатических факторов, соответствующих в пределах Российской
Федерации умеренно-холодному климату (У1), а также циклических сдвиговых нагрузок от транспорта,
движущегося по мостам, поэтому со временем требуется замена узлов металлоконструкции. Более того, в
настоящее время обработка металлических поверхностей металлоконструкций осуществляется в заводских
условиях, и при поставке их указываются сведения об условиях обработки поверхности, усилие натяжения
высокопрочных болтов и т.п.
Однако момент поставки и монтаж металлоконструкции может разделять большой временной период, поэтому
возникает необходимость проверки фактической надежности работы фрикционного соединения с
высокопрочными болтами перед монтажом, для обеспечения надежности при их эксплуатации, причем
возможность проверки предусмотрена условиями поставки посредством приложения тестовых пластин
Анализ тенденций развития и современного состояния проблемы в целом свидетельствует о необходимости
совершенствования диагностической и инструментальной базы, способствующей повышению эффективности
реновационных и ремонтных работ конструкций различного назначения.
Качество фрикционных соединений на высокопрочных болтах, в конечном итоге, характеризуется
отсутствием сдвигов соединяемых элементов при восприятии внешней нагрузки как на срез, так и растяжение.
Сопротивление сдвигу во фрикционных соединениях можно определять по формуле:
где
Rbh - расчетное сопротивление растяжению высокопрочного болта; Y b - коэффициент условий работы
соединения, зависящий от количества (n) болтов, необходимых для восприятия расчетного усилия; A bn площадь поперечного сечения болта; f - коэффициент трения по соприкасающимся поверхностям соединенных
элементов; Y h - коэффициент надежности, зависящий от способа натяжения болтов, коэффициента трения f,
разницы между диаметрами отверстий и болтов, характера действующей нагрузки (Рабер Л.М. Соединен ия на
высокопрочных болтах, Днепропетровск: Системные технологии, 2008 г., с.8-10).

371.

Известен способ определения коэффициента закручивания резьбового соединения (патент РФ №2148805,
G01L 5/24, опубл. 10.05.2000 г.), заключающийся в отношении измеряемого мом ента закручивания гайки к
произведению определяемого усилия натяжения болта на его диаметр. Измерения проводят без извлечения
болта из конструкций, путем затягивания гайки на контролируемую величину угла ее поворота от исходного
положения с замером значения момента закручивания в области упругих деформаций и определения
приращения момента затяжки. Приращение усилия натяжения болта определяют по формуле (4):
где
А, А22 - площади поперечного сечения, мм 2; a, a 22 - шаг резьбы испытываемого болта и болта диаметром 22
мм2; αi - угол поворота гайки от исходного положения; σ - толщина пакета деталей, соединенных испытываемым
болтом, мм.
Следует отметить, что измерение значения момента закручивания гайки производятся с неизвестными
коэффициентами трения контактных поверхностей и коэффициентом закручивания, т.к. затягивание гайки на
заданную величину поворота (α=60°) от исходного положения производят после предварительного ее
ослабления, поэтому он может отличаться от расчетного (нормативного), что не позволяет определить
фактические значения усилий в болтах как при затяжке, так и при эксплуатационных нагрузках. Невозможность
точной оценки усилий приводит к необходимости выбора болтов и их количества на основании так называемого
расчета в запас.
В процессе патентного поиска выявлено много устройств, реализующих измерение усилия сдвига (силы
трения покоя), например (патенты РФ №2116614, 2155942 и др.). В них усилие в момент сдвига фиксируется с
помощью электрического сигнала или заранее оттарированной шкалы динамометрического ключа, но точность
измерения и область возможного применения их ограничена, т.к. не позволяет реализовать как при сборочном
монтаже металлоконструкций, так и в процессе их эксплуатации с целью проведения восстановительного
ремонта.
Известен способ определения деформации болтового соединения, который заключается в том, что две
пластины 1 и 2 устанавливают на накладке 3, скрепляют пластины 1 и 2 с накладкой 3 болтами 4 и 5,
расположенными на одной оси, к пластинам 1 и 2 прикладывают усилие нагружения и определяют величину
смещения между ними. О деформации судят по отношению между величиной смещения между пластинами 1 и
2 и приращением усилия нагружения, при этом величину смещения определяют между пластинами 1 и 2 вдоль
оси, на которой расположены болты 4 и 5 (Патент №1753341, опубл. 07.08. 1992 г.). На практике этого может и
не быть, если болты, например, расположены несимметрично по отношению к направлению действия

372.

продольной силы N, в силу чего часть контактных площадей будет напряжена интенсивнее других. Поэтому
сдвиг в них может произойти раньше, чем в менее напряженных. В итоге, это может привести к более раннему
разрушению всего соединения.
Наиболее близким техническим решением к заявляемому изобретению является способ определения н есущей
способности фрикционного соединения с высокопрочными болтами (Рабер Л.М. Соединения на высокопрочных
болтах, Днепропетровск: Системные технологии, 2008 г., с.35-36). Сущность способа заключается в
определении усилия сдвига посредством образцов-свидетелей, который заключается в том, что образцы
изготавливают из стали, применяемых и собираемых конструкциях. Контактные поверхности обрабатывают по
технологии, принятой в проекте конструкций. Образец состоит из основного элемента и двух накладок,
скрепленных высокопрочным болтом с шайбами и гайкой. Сдвигающие или растягивающие усилия
испытательной машины определяют по показаниям прибора. Затем определяют коэффициент трения, который
сравнивают с нормативным значением и в зависимости от величины отклонения ос уществляют меры по
повышению надежности работы металлоконструкции, в основном, путем повышения коэффициента трения.
К недостаткам способа относится то, что отклонение усилий натяжения и возможные их изменения в процессе
нагружения образцов могут приводить к тем или иным неточностям в определении коэффициента трения, т.к.
коэффициент трения может меняться и по другим причинам как климатического, так и эксплуатационного
характера. Кроме того, неизвестно при каком коэффициенте «k» определялось расчетное усилие натяжения
болтов, поэтому фактическое усилие сдвига нельзя с достаточной точностью коррелировать с усилием
натяжения. Следует отметить, что в качестве сдвигающего устройства применяются специальные средства
(пресса, испытательные машины), которых на объекте монтажа или сборки металлоконструкции может не быть,
поэтому желательно применить более точное и надежное устройство для определения усилия сдвига.
Технической задачей предполагаемого изобретения является разработка способа обеспечения несущей
способности фрикционного соединения с высокопрочными болтами, устраняющего недостатки, присущие
прототипу и позволяющие повысить надежность монтажа и эксплуатации металлоконструкций с
высокопрочными болтами.
Технический результат достигается за счет того, что в известный способ обеспечения несущей способности
фрикционного соединения с высокопрочными болтами, включающий приготовление образца -свидетеля,
содержащего основной элемент металлоконструкции и накладку, контактирующие поверхности которых
предварительно обработаны по проектной технологии, соединяют их высокопрочным болтом и гайкой при
проектном значении усилия натяжения болта, устанавливают устройство для определения усилия сдвига и
постепенно увеличивают нагрузку на накладку до момента ее сдвига, фиксируют уси лие сдвига и затем

373.

сравнивают его с нормативной величиной показателя сравнения, в зависимости от величины отклонения
осуществляют необходимые действия, внесены изменения, а именно:
- в качестве показателя сравнения используют расчетное усилие натяжения, высокопрочного болта,
полученное при заданном (проектном) значении величины k;
- в качестве устройства для определения усилия сдвига на образце-свидетеле используют устройство,
защищенное патентом РФ №88082 на полезную модель, обладающее рядом преимуществ и обеспечивающее
достоверность и точность измерения усилия сдвига.
В зависимости от отклонения отношения между усилием сдвига и усилием натяжения высокопрочного болта
от оптимального значения, для обеспечения надежности работы фрикционного соединения металло конструкции
при монтаже ее изменяют натяжение болта и/или проводят дополнительную обработку контактирующих
поверхностей.
В качестве показателя сравнения выбрано усилие натяжения болта, т.к. в процессе проведенных исследований
установлено, что оптимальным отношением усилия сдвига к усилию натяжения болта равно 0,56-0,60.
Учитывая то, что при проектировании предусмотрена возможность увеличения усилия закручивания
высокопрочных болтов на 10-20%, то это действие позволяет увеличить сопротивление сдвигу, если отношение
усилия сдвига к усилию натяжения болта отличается от оптимального в пределах 0,50 -0,54. Если же это
отношение меньше 0,5, то кроме увеличения усилия натяжения высокопрочного болта необходимо проведение
дополнительной обработки контактирующих поверхностей, т.к. при значительном увеличении момента
закручивания можно сорвать резьбу, поэтому увеличивают коэффициент трения. Если же величина отношения
усилия сдвига к усилию натяжения более 0,60, это означает, что усилие натяжения превышает нормативную
величину, и для надежности металлоконструкции натяжение можно ослабить, чтобы не сорвать резьбу.
Использование вышеуказанного устройства для определения усилия сдвига обусловлено тем, что оно является
переносным и обладает рядом преимуществ перед известными устройствами. Оно содержит неподвижную и
сдвигаемую детали, узел сжатия и узел сдвига, выполненный в виде рычага, имеющего отверстие под
нагрузочный болт, оснащенный силоизмерительным устройством, причем неподвижная деталь выполнена из
двух стоек, торцевые поверхности которых скреплены фигурной планкой, каждая из стоек снабжена
отверстиями под болтовое соединение для крепления к металлоконструкции, а также отверстием для вала, на
котором закреплен рычаг, с возможностью соединения его с фигурной планкой, а ме жду выступом рычага и
сдвигаемой деталью металлоконструкции установлен самоустанавливающийся сухарик, выполненный из
закаленного материала. В качестве силоизмерительного устройства используется динамометрический ключ с
предварительно оттарированной шкалой для фиксации момента затяжки.

374.

Ниже приводится реализация предлагаемого способа обеспечения несущей способности металлоконструкции
на примере мостового пролета.
На чертеже приведена основная часть устройства и образец-свидетель.
Устройство состоит: из корпуса 1, рычага 2, насаженного на вал 3, динамометричесого ключа 4, снабженного
шкалой 5 и накидной головкой 6, болтовое соединение, состоящее из болта 7 и гайки 8, плавающий сухарик 9,
выполненный из закаленной стали, образец-свидетель состоит из металлической накладки 10, пластины 11
обследуемой металлоконструкции, соединенные между собой высокопрочным болтовым соединением 12, а
также болтовое соединение 13, предназначенное для крепление корпуса измерительного устройства к
неподвижной металлической пластине 11.
Способ реализуется в следующей последовательности. Собирается образец-свидетель путем соединения
тестовой накладки 10 с пластиной металлоконструкции 11, если производится ремонт на обследуемом объекте,
причем контактирующая поверхность пластины обрабатывается дробепескоструйным способом, чтобы
обеспечить нормативный коэффициент трения f>0,55 или, если же осуществляется заводская поставка перед
монтажом, то берут две тестовых накладки, контактирующие поверхности которых уже обработаны в заводских
условиях. Соединение пластин 10, 11 осуществляют высокопрочным болтом и гайкой с применением шайб.
Усилие натяжения высокопрочного болта должна соответствовать проектной величине. Расчетный момент
закручивания определяют по формуле 2. Затем на неподвижную пластину 11 устанавливают устройство для
определения усилия сдвига путем закрепления корпуса 1, болтовым соединением 12 (болт, гайка, шайбы) таким
образом, чтобы сухарик 9 соприкасался с накладкой 10 и рычагом 2, размещенным на валу 3. Далее,
динамометрический ключ 4, снабженный оттарированной шкалой 5, посредством сменной головки 6 надевается
на болт 7. Устройство готово к работе.
Вращением динамометрического ключа 4 осуществляют нагрузку на болт 7. Усилие натяжения болта через
рычаг 5 передается на сухарик 9, который воздействует на сдвигаемую деталь 10 (тестовая пластина). Момент
закручивания болта 7 фиксируется на шкале 5 динамометрического ключа 4. В момент сдвига детали 10
фиксируют полученную величину. Это усилие и является усилием сдвига (силой трения покоя ). Сравнивают
полученную величину момента сдвига (М сд) с расчетной величиной - моментом закручивания болта (М р). В
зависимости от величины М сд/Мзпроизводят действия по обеспечению надежности монтажа конкретной
металлоконструкции, а именно:
- при отношении Мсд/Мз=0,54-0,60, т.е. соответствует или близко к оптимальному значению, корректировку в
технологию монтажа не вносят;

375.

- при отношении М сд/Мз=0,50-0,53, то при монтаже металлоконструкции увеличивают усилие натяжения
высокопрочного болтов примерно на 10-15%;
- при отношении М сд/Мз<0,50 необходимо кроме увеличения усилия натяжения высокопрочных болтов при
монтаже металлоконструкции дополнительно обработать контактирующие поверхности поставленных заводом
деталей металлоконструкции дробепескоструйным методом.
При отношении М сд/Мз>0,60, целесообразно уменьшить усилие натяжения болта, т.к. возможно
преждевременная порча резьбы из-за перегрузки.
Все эти действия позволят повысить надежность эксплуатации смонтированной металлоконструкции.
Преимуществом предложенного способа обеспечения несущей способности металлоконструкций заключается
в его универсальности, т.к. его можно использовать для любых болтовых соединений на высокопрочных болтах
независимо от сложности конструкции, диаметров крепежных болтов и методов обработки соприкасающихся
поверхностей, причем т.к. измерение усилия сдвига на обследуемой конструкции и образце производятся
устройством при сопоставимых условиях, оценка несущей способности является наиболее достоверной.
В настоящее время предлагаемый способ прошел испытания на нескольких строительных площадках и
выданы рекомендации к его применению в отрасли.
Формула изобретения
1. Способ обеспечения несущей способности фрикционного соединения металлоконструкций с
высокопрочными болтами, включающий приготовление образца-свидетеля, содержащего элемент
металлоконструкции и тестовую накладку, контактирующие поверхности которых предварительно обработаны
по проектной технологии, соединяют высокопрочным болтом и гайкой при проектном значении усилия
натяжения болта, устанавливают на элемент металлоконструкции устройство для определения усилия сдвига и
постепенно увеличивают нагрузку на накладку до момента ее сдвига, фиксируют усилие сдвига и затем
сравнивают его с нормативной величиной показателя сравнения, далее, в зависимости от величины отклонения,
осуществляют коррекцию технологии монтажа, отличающийся тем, что в качестве показателя сравнения
используют проектное значение усилия натяжения высокопрочного болта, а определение усилия сдвига на
образце-свидетеле осуществляют устройством, содержащим неподвижную и сдвигаемую детали, узел сжатия и
узел сдвига, выполненный в виде рычага, установленного на валу с возможностью соединения его с
неподвижной частью устройства и имеющего отверстие под нагрузочный болт, а между выступом рычага и
тестовой накладкой помещают самоустанавливающийся сухарик, выполненный из закаленного материала.
2. Способ по п.1, отличающийся тем, что при отношении усилия сдвига к проектному усилию натяжения
высокопрочного болта в диапазоне 0,54-0,60 корректировку технологии монтажа не производят, при отношении

376.

в диапазоне 0,50-0,53 при монтаже увеличивают натяжение болта, а при отношении менее 0,50, кроме
увеличения усилия натяжения, дополнительно проводят обработку контактирующих поверхностей
металлоконструкции.
2472981
РОССИЙСКАЯ ФЕДЕРАЦИЯ
(19)
RU
(11)
2 472 981
(13)
C1
(51) МПК
F16B 5/02 (2006.01)
ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ
(12)
ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ
прекратил действие, но может быть восстановлен (последнее изменение статуса:
Статус:
07.03.2017)
Пошлина:
учтена за 5 год с 18.06.2015 по 17.06.2016
(22) Заявка: 2011125214/12, 17.06.2011
Дата начала отсчета срока действия патента:
17.06.2011
(72) Автор(ы):
Андрейченко Игорь Леонардович (RU),
Полатиди Людмила Борисовна (RU),
Бурцева Ирина Валерьевна (RU),
оритет(ы):
Бугреева Светлана Ильинична (RU),
Дата подачи заявки: 17.06.2011
Красинский Леонид Григорьевич (RU),
Опубликовано: 20.01.2013 Бюл. № 2
Список документов, цитированных в отчете о поиске: SU 176199
A1, 15.09.1992. SU 1751463 A1, 30.07.1992. RU 2263828 C1,
Миллер Олег Григорьевич (RU),
Шумягин Николай Николаевич (RU)
(73) Патентообладатель(и):

377.

10.11.2005. WO 2004/099632 A1, 18.11.2004. DE 202004012044
Открытое акционерное общество "Авиадвигатель" (RU)
U1, 19.05.2005.
ес для переписки:
614990, г.Пермь, ГСП, Комсомольский пр-кт, 93, ОАО
"Авиадвигатель", отдел защиты интеллектуальной
собственности
(54) БОЛТОВОЕ СОЕДИНЕНИЕ ВРАЩАЮЩИХСЯ ДЕТАЛЕЙ
(57) Реферат:
Изобретение относится к области машиностроения и авиадвигателестроения и может быть использовано для соединения вращающихся деталей ротора
газотурбинного двигателя авиационного и наземного применения. Болтовое соединение вращающихся деталей, объединенных в пакет, с расположенными
по окружности отверстиями, внутри которых на высоту пакета деталей установлены втулки с размещенными в их центральных отверстиях стяжными
болтами. Каждое отверстие выполнено овальной формы и вытянуто в окружном направлении, а втулка - с овальным сечением, вытянутым в окружном
направлении. При этом b/a=1,36-1,5; с>(2,5-3)×b, где а - размер сечения втулки в радиальном направлении; b - размер сечения втулки в окружном
направлении; с - длина окружности между центральными отверстиями соседних втулок. Обеспечивается повышение циклического ресурса и надежности
болтового соединения вращающихся деталей при высоких параметрах работы путем разгрузки зон концентрации напряжений в указанных деталях. 1 з.п.
ф-лы, 3 ил.
Изобретение относится к области машиностроения и авиадвигателестроения, может быть использовано для
соединения вращающихся деталей ротора газотурбинного двигателя авиационного и наземного применения.
Известно болтовое соединение, включающее цилиндрическую разгрузочную втулку с круглым сечением,
которую используют для центровки и разгрузки болта, снижения напряжений среза в самом болте и исключения
сдвиговых деформаций в соединяемых деталях (Атлас. Детали машин. В.Н.Быков, С.П.Фадеев, Издательство
«Высшая школа», 1969 г., с.83, рис.3.4). При вращении деталей в районе отверстий под болты возникают
напряжения. Наличие концентратора напряжения, повышающего уровень действующих напряжений в 3-4 раза,
является основным недостатком такой конструкции, снижающим циклическую долговечность и ресурс деталей.
В авиадвигателестроении широко применяется соединение деталей с помощью стяжных болтов. Отверстия
под болты, являющиеся концентраторами напряжений, могут быть расположены в полотне дисков и на
выносных фланцах деталей. Выносные фланцы применяют для удаления концентратора в виде отверстия из
полотна диска.
Наличие концентратора напряжений - круглого отверстия под болт, которое повышает уровень действующих
напряжений в 3-4 раза и снижает ресурс деталей, является основным недостатком такой конструкции.

378.

Практически эта проблема решается путем выполнения выкружек типа «короны» во ф ланцах, что
обеспечивает достаточную разгрузку отверстий. Эффективность подобной доработки деталей подтверждена
испытаниями и широко используется, например, во фланцах под балансировочные грузики лабиринтов диска
13-ой ступени ротора компрессора высокого давления (КВД) двигателей ПС-90А, ПС-90А2 (А.А.Иноземцев,
М.А.Нихамкин, В.Л.Сандрацкий. Основы конструирования авиационных двигателей и энергетических
установок, том 4,стр.109).
Наиболее близким к заявляемой конструкции соединения является узел соединения, включающий пакет
деталей, цилиндрическую втулку и болт с гайкой. В деталях выполнены круглые отверстия (Патент РФ
№2263828, F16B 5/02, 2005 г.).
Недостатком известного узла является круглая форма отверстий под втулку, вызывающая повышенные
напряжения в болте и в соединяемых деталях, снижающие циклический ресурс и надежность болтового
соединения при вращении деталей.
Техническая задача, решаемая изобретением, заключается в повышении циклического ресурса и надежности
болтового соединения вращающихся деталей при высоких параметрах работы путем разгрузки зон
концентрации напряжений в указанных деталях.
Сущность изобретения заключается в том, что в болтовом соединении вращающихся деталей, объединенных в
пакет, с расположенными по окружности отверстиями, внутри которых на высоту пакета деталей установлены
втулки с размещенными в их центральных отверстиях стяжными болтами, согласно п.1 формулы изобретения,
каждое отверстие выполнено овальной формы и вытянуто в окружном направлении, а втулка - с овальным
сечением, вытянутым в окружном направлении, при этом
b/а=1,36-1,5; c>(2,5-3)×b,
где а - размер сечения втулки в радиальном направлении;
b - размер сечения втулки в окружном направлении;
с - длина окружности между центральными отверстиями соседних втулок.
Кроме того по п.2 формулы для обеспечения изолированности полостей ступеней компрессора и сохранения
необходимой площади контакта между деталями и болтом необходимо соблюдать следующее соотношение:
(a-d)/2>1,4 мм,
где d - диаметр отверстия втулки под болт.
Конфигурация втулки и размеры отверстия под нее выбраны на оснований анализа геометрии дисков и
расчетов напряженно-деформированного состояния.

379.

Было обнаружено, что выполнение отверстий овальной формы, вытянутых в окружном направлении, и
выполнение втулки с соответствующим овальным при соотношениях:
b/a=1,36-1,5; c>(2,5-3)×b,
позволяет эффективно разгружать зоны концентрации напряжений и повышать расчетные значения
циклического ресурса деталей, оцененного по условной кривой малоцикловой усталости для дисковых сплавов
(Технический отчет №12045, М., ЦИАМ, 1993. Развитие методики управления ресурсами авиационного ГТД с
целью повышения прочностной надежности, увеличения ресурсов и сокращения затрат при ресурсных
испытаниях (применительно к двигателю ПС-90А и его модификациям)).
Втулки с овальным сечением выполняют в заявляемой конструкции следующие функции:
- обеспечивают фиксацию деталей относительно друг друга;
- сохраняют необходимую площадь контакта между фланцами и стандартным болтом круглой формы;
- обеспечивают изолированность полостей секций (ступеней) компрессора.
Кроме того, применение втулок заявляемой конструкции упрощает процесс сборки деталей компрессора, а
при изготовлении втулок из легкого и прочного материала - позволяет снижать массу фланцев дисков и всего
ротора в целом.
Анализ результатов расчетов показывает, что заявляемое болтовое соединение имеет перспективу
использования в современных двигателях последнего поколения.
В случае если b/а<1,36, форма отверстия стремится к окружности, возрастает уровен ь окружных напряжений в
отверстиях соединяемых деталей, следовательно, снижается циклическая долговечность.
В случае если b/а>1,5, отверстие больше вытянуто в окружном направлении, при этом уменьшается площадь
цилиндрического сечения сопрягаемых деталей, что повышает риск потери несущей способности, возрастает
уровень радиальных напряжений и снижается циклическая долговечность.
В случае если с≤2,5b, расстояние между центрами отверстий уменьшается, пропорционально уменьшается и
площадь цилиндрического сечения соединяемых деталей, что повышает риск потери несущей способности.
Соотношение с>3b приводит к тому, что расстояние между центрами отверстий увеличено, линии действий
окружных напряжений при этом выравниваются, а эффект снижения концентраций напряжений уменьшается.
Кроме того, по п.2 формулы изобретения, для сохранения необходимой площади контакта между деталями и
болтом, а также из технологических соображений необходимо соблюдать следующее соотношение: (a -d)/2>1,4
мм. В противном случае возникают технологические сложности с изготовлением втулки, т.к. толщина стенки
втулки слишком мала. Кроме того, в тонкой стенке втулки возникают недопустимо высокие напряжения.

380.

Таким образом, при высоких параметрах работы использование данной конструкции болтового соедине ния
дает возможность не только выравнивать напряжения по толщине пакета деталей и в болтах, но и значительно
снижать уровень действующих напряжений в соединяемых деталях, повышая их ресурс.
На фиг.1 представлено сечение пакета соединяемых деталей с втулкой, имеющей овальное сечение, на фиг.2 разрез А-А на фиг.1. На фиг.3 показано болтовое соединение в сборке деталей ротора КВД в аксонометрии.
Болтовое соединение включает пакет вращающихся деталей газотурбинного двигателя (ГТД), например,
фланца 1 диска первой ступени (КВД), фланца 2 вала КВД и диска 3 второй ступени КВД. В деталях 1, 2, 3
выполнены овальные отверстия 4, вытянутые в окружном направлении под втулку 5 с таким же овальным
сечением и размерами а и b в радиальном и окружном направлениях, соответственно. В отверстии 4 втулка 5
размещена на всю толщину пакета деталей 1, 2, 3. Во втулке 5 имеется круглое центральное отверстие 6
диаметром d под стандартный стяжной болт 7 круглого сечения. Диаметр головки болта 7 и наружный диаметр
гайки 8 перекрывают при сборке радиальный размер а втулки 5 при соблюдении условия
(a-d)/2>1,4 мм.
Втулка 5 обеспечивает изолированность полостей ступеней компрессора, сохраняет необходимую площадь
контакта между фланцами и стяжным болтом 7.
Отверстия 6 расположены равномерно по всей длине окружности соединяемых деталей 1, 2, 3, при этом длина
окружности С между ними зависит от размера сечения b втулки 5 в окружном направлении.
Болтовое соединение собирают следующим образом.
В овальное отверстие 4 пакета вращающихся деталей 1, 2, 3 вставляют втулку 5, в которой размещают
стандартный болт 7 и закрепляют гайкой 8. В процессе работы КВД концентрация напряжений в зоне отверстий
4 в полотне и во фланцах 1, дисков будут минимальной, что позволяет работать при высоких заданных
параметрах двигателя, повышая циклический ресурс и надежность болтового соединения.
Формула изобретения
1. Болтовое соединение вращающихся деталей, объединенных в пакет, с расположенными по окружности
отверстиями, внутри которых на высоту пакета деталей установлены втулки с размещенными в их центральных
отверстиях стяжными болтами, отличающееся тем, что каждое отверстие выполнено овальной формы и
вытянуто в окружном направлении, а втулка - с овальным сечением, вытянутым в окружном направлении, при
этом b/a=1,36-1,5; c>(2,5-3)·b,
где а - размер сечения втулки в радиальном направлении;
b - размер сечения втулки в окружном направлении;
с - длина окружности между центральными отверстиями соседних втулок.

381.

2. Болтовое соединение вращающихся деталей по п.1, отличающееся тем, что (a-d)/2>1,4 мм, где d - диаметр
отверстия втулки под болт.
СТП 006-97 Устройство соединений на высокопрочных болтах в стальных конструкциях мостов
Определение коэффициента трения между контактными поверхностями соединяемых элементов
Л. 1 Несущая способность соединений на высокопрочных болтах оценивается испытанием на сдвиг при сжатии дву
хсрезны х одн оболтовы х образцов.
Отбор образцов выполняется в соответствии с пунктом 8.12.
Л. 2 Образцы изготовляют из стали, применяемой в конструкции возводимого сооружения (рис. Л.1).
Рис. Л. 1 . Образец для испытания на сдвиг при сжатии:
1 - основной элемент; 2 - накладка; 3 - высокопрочный болт с шайбами и гайкой (в скобках размеры при исполь зовании
болтов М27 )
Пластины 1 и 2 вырезают газорезкой с припуском 2 - 3 мм по контуру, а затем фрезеруют до проектных размеров в
плане. Отверстия образуются сверлением, заусенцы по кромкам и в отверстиях удаляю тся.
Пластины должны быть плоскими, не иметь грибовидности или выпуклости.
Л .3 Контактные поверхности пластин 1 и 2 обрабатываются по технологии, принятой в проекте сооружения.

382.

Используются высокопрочные болты, подготовленные к установке и натяжению в монтажных соединениях
конструкции. Натяжени е болта осуществляется динамометрическими ключами, применяемыми на строительстве при
сборке соединений на высокопрочных болтах.
Пластины перед натяжением болта устанавливаются так, чтобы был гарантирован зазор «над болтом» в отверстии
пластины 7 .
После натяжения болта опорные торцы пластин 1 и 2 должны быть параллельны, а торцы пластин 2 находиться на
одном уровне.
Сведения о сборке образцов заносятся в протокол.
Образцы испытывают на сжатие на прессе развивающем усилие не менее 50 тс. Точность испытательной машины
должна быть не ниже ±2 % .
Образец нагружается до момента сдвига средней пластины 1 о т носительно пластин 2 и при этом фиксируется
нагрузка Т, характеризующая исчерпание несущей способности образца. Испытания рекомендуется проводить с
записью диаграммы сжатия образца. Для суждения о сдвиге необходимо нанести риски на пластинах 1 и 2 .
Результаты испытания заносятся в протокол, г де отмечается дата испытания, маркировка образца, нагрузка,
соответствующая сдвигу (прик ладывается диаграмма сжатия), и фамилии лиц, проводивших испытания.
Протокол со сведениями по отбору и испытанию образцов предъявляется при приемке соединений.
Л .4 Несущая способность образца Т, полученная при испытании и расчетное усилие Q bh , принятое в проекте
сооружения, которое может быть воспринято каждой п о верхностью трения соединяемых элеме нтов, стянутых
одним высокопрочным болтом (одним болт оконт акт ом), оценивается соотношением Qbh ≤ Т/ 2 в каждом из трех
образцов.
В случае невыполнения указанного соотношения решение принимается комиссионно с участием заказчика, проектной и
научно-исследоват е льской организаций.

383.

384.

385.

386.

387.

388.

389.

390.

391.

Способ усиления основания пролетного строения мостового сооружения с
использованием подвижных треугольных балочных ферм для сейсмоопасных
районо имени В В Путина МПК E 01 D 21/06 Регистрационный 2024106154
Дата поступления 05.03.2024 Входящий № 013574

392.

393.

394.

395.

Способ усиления основания пролетного строения мостового сооружения с
использованием подвижных треугольных балочных ферм для
сейсмоопасных районов имени В.В .Путина МПК E 01 D 21/06
ФИПС ОТД №17
saw
(85) ДАТА ПЕРЕВОДА международной заявки на национальную фазу
? (86)
(регистрационный номер международной заявки и дата международной
подачи, установленные получающим ведомством)
? (87)
(номер и дата международной публикации международной заявки)
АДРЕС ДЛЯ ПЕРЕПИСКИ (полный почтовый адрес, имя или
наименование адресата) 197371, Санкт-Петербург, пр Королева 30 корп 1
кв 135
(Второй адрес 197371 СПб, а/я газета «Земля РОССИИ»)

396.

[email protected] (921)962-67-78,(981)886-57-42, (981) 276-49-92, (911) 17584-65 Телефон: Факс: E-mail: [email protected]
(921)-962-67-78, (911)175-84-65
Факс: E-mail:
Телефон: (812)694-78-10 [email protected]
В Федеральную службу по интеллектуальной собственности, патентам и
товарным знакам
Бережковская наб., 30, корп.1, Москва, Г-59, ГСП-5, 123995
(54)
НАЗВАНИЕ ПОЛЕЗНОЙ МОДЕЛИ Изобретение: «Способ усиления
основания пролетного строения мостового сооружения с использованием
подвижных треугольных балочных ферм для сейсмоопасных районов
имени В.В .Путина»
МПК E01D 21/06

397.

ФИПС Бережковская наб.
130324 Москва 125993
дом 30, корп. 1 г. Москва, 125993
РОССИЯ • RUSSIA ПОЧТА
0002900 коп
РВ 570630 -«
Форма № 94 ИЗ, ПМ, П0-2016
Федеральная служба по интеллектуальной собственности
Федеральное государственное бюджетное учреждение
I 9 «Федеральный институт промышленной собственности»
* (ФИПС)
Бережковская наб., 30, корп. 1, Москва, Г-59, ГСП-3,125993 Телефон (8499) 240-60-15 Факс (8-495) 531-63-18
УВЕДОМЛЕНИЕ О ПРИЕМЕ И РЕГИСТРАЦИИ ЗАЯВКИ
05.03.2024
013574
2024106154

398.

Дата поступления
Входящий №
Регистрационный ЛЬ Способ усиления основания пролетного строения
мостового сооружения с использованием подвижных треугольных
балочных ферм для сейсмоопасных районов имени В.В.Путина» МПК Е01
D 21/06
(21) РЕГИСТРАЦИОННЫЙ Xi
—шШГО
Д»п ПОСТУПЛЕНИЯ
«ипс отджи
входящие*(85) ДАТА ПЕРЕВОДА международной заавки гм национальную фазу
(регистрационный номер международно» заявки и дата международной
подачи, установленные получающим ведомством)
? («7)
(номер V дата международной публикации международной заявки)
0ТДЛП7 12 MAP 202< 240* 60- 15

399.

АДРЕС ДЛЯ ПЕРЕПИСКИ (колкий яочтоеый адрес, имя или
шшмемоешние адресата) 197371, Санкт-Петербург, пр Королей 30 ори 1 а
133 (Второйадрсс 197371 СПб, г/t газета «Зеила РОССИИ»)
E-mail:
IW*7H01gmailm (921) 962-67-78, (911) 886-57-42, (981) 276-49-92, (911)
175-84-65 Телефон: Факс: E-mail: 81269478ffirambler.ni (921)-962-67-78,
(911)175-84^5
: (812)694-78-10 Факс: [email protected]
В Федеральную службу во внтеллектуальнов собствен в оста, «агентам н
товарным зааш
Бережковскаа наб., 30, корп.1, Москва, Г-59, ГСП-5, 123995
(54) НАЗВАНИЕ ПОЛЕЗНОЙ МОДЕЛИ Изобретанке: «Способ усиления
основания пролетного строения мостового сооружения с использованием
подвижных треугольных балочных ферм для сейсмоопасных районов
имени В.В.Путина» МПК E01D 21/06
Mil
Общее количество документов в листах

400.

14
Лицо, зарегистрировавшее документы
Из них:
- количество листов комплекта изображений изделия
(для промышленного образца)
0
Соколова Е.А.
Количество платежных документов
0
Сведения о состоянии делопроизводства по заявкам размещаются в
Открытых реестрах на сайте ФИПС по адресу: www.fips.nf/rggisters-web
English     Русский Rules