Similar presentations:
Понятие корня n – й степени из действительного числа
1.
Понятие корня n – й степенииз действительного числа.
2.
Определение 1 :Корнем n – й степени из неотрицательного числа a
(n = 2,3,4,5,…) называют такое неотрицательное
число, которое при возведении в степень n даёт
в результате число a.
Это число обозначают: n
- подкоренное выражение
a
-показатель корня
Если a 0, n = 2,3,4,5,…, то
n
n
n
1) a 0; 2) ( a ) = a;
Операцию нахождения корня из неотрицательного
числа называют извлечением корня.
3.
Операция извлечение корня является обратнойпо отношению к возведению в соответствующую
степень.
Возведение в степень
5² = 25
10³ = 1000
0,3⁴ = 0,0081
n
Извлечение корня
25
=
5
3
1000
=
10
4
0,0081 = 0,3
Иногда выражение a называют радикалом от
латинского слова radix – «корень».
Символ - это стилизованная буква r.
4.
Пример 1:3
7
4
Вычислить: а) 49; б) 0,125; в) 0 ; г) 17
Решение:
а) 49 = 7, так как 7 > 0 и 7² = 49;
3
б) 0,125 = 0,5, так как 0,5 > 0 и 0,5³ = 0,125;
4
г) 17 ≈ 2,03
в) 0 ;
Определение 2 :
Корнем нечётной степени n из отрицательного
числа a (n = 3,5,…) называют такое
отрицательное число, которое при возведении
в степень n даёт в результате число a.
5.
ИтакЕсли a < 0, n = 3,5,7,…, то
n
n
n
1) a < 0; 2) ( a ) = a;
Вывод:
Корень чётной степени имеет смысл
(т.е. определён) только для неотрицательного
подкоренного выражения; корень нечётной степени
имеет смысл для любого подкоренного выражения.
Пример 2:
Решите уравнения: 3 3x 4 2
4
3x 2 1
4
2 5 x 4
6
x 5x 68 2
2
6.
а) 3 3x 4 2Возведём обе части уравнения в куб:
3x 4 8
б) 4 3x 2 1
3x 12
x 4
Возведём обе части уравнения в четвёртую степень:
3x 2 1
в) 4 2 5 x 4
3x 3
x 1
Решений нет. Почему?
г) 6 x 2 5x 68 2
Возведём обе части уравнения в шестую степень:
x 2 5 x 68 64
x 2 5 x 4 0 x1 1, x2 4