Similar presentations:
Задачи на построение (7 класс)
1.
2.
В геометрии выделяют задачи на построение, которыеможно решить только с помощью двух инструментов:
циркуля и линейки без масштабных делений.
Линейка позволяет провести произвольную
прямую, а также построить прямую, проходящую
через две данные точки; с помощью циркуля
можно провести окружность произвольного
радиуса, а также окружность с центром в
данной точке и радиусом, равным данному
отрезку.
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
3.
Построение угла, равного данному.Дано: угол А.
С
А
E
В
О
D
Теперь докажем, что построенный угол равен данному.
4.
Построение биссектрисы угла.5.
Построениеперпендикулярных
прямых.
P
М a
А
М
Q
В
Докажем, что а РМ
6.
Построение перпендикулярных прямых.М a
М
a
Докажем, что а MN
N
7.
Построениесередины отрезка
А
P
В
О
Q
Докажем, что О – середина отрезка АВ.
8.
Построение треугольника по двумсторонам и углу между ними.
1. Построим луч а.
Дано:
2. Отложим отрезок АВ, равный P1Q1.
3. Построим угол, равный данному.
Отрезки Р1Q1 и Р2Q2
4. Отложим отрезок АС, равный P2Q2.
P1
Q1
P2
Q2
С
h
Угол hk
а
А
D
В
Треугольник АВС искомый. Обоснуй, используя I признак.
k
9.
Построение треугольника по стороне идвум прилежащим к ней углам.
1. Построим луч а.
Дано:
2. Отложим отрезок АВ, равный P1Q1.
3. Построим угол, равный данному h1k1.
Отрезок Р1Q1
4. Построим угол, равный h2k2 .
P1
С
Q1
h1
h2
k1
а
А
N
D
В
Треугольник АВС искомый. Обоснуй, используя II признак.
Угол h1k1
k2
10.
Построение треугольника по трем сторонам.Дано:
отрезки
Р1Q1, Р2Q2, P3Q3.
P1
Q1
P2
P3
1. Построим луч а.
2. Отложим отрезок АВ, равный P1Q1.
3. Построим дугу с центром в т. А и
радиусом Р2Q2.
4. Построим дугу с центром в т.В и
радиусом P3Q3.
Q2
С
Q3
А
а
В
Треугольник АВС искомый. Обоснуй, используя III признак.