8.71M
Category: electronicselectronics

LLVIP: A Visible-infrared Paired Dataset for Low-light Vision

1.

https://bupt-ai-cz.github.io/LLVIP/
LLVIP: A Visible-infrared Paired Dataset for
Low-light Vision
15488 pairs
(30976 images)
41579 labels
ICCV 2021 Workshop RLQ
Xinyu Jia, Chuang Zhu*, Minzhen Li, Wenqi Tang, Wenli Zhou
Beijing University of Posts and Telecommunications
Beijing, China

2.

Why this dataset?

3.

LLVIP




Registration
Annotation
15488 pairs
(30976 images)
41579 labels

4.

Comparison
Advantages:
• Large number and high resolution
• Visible and infrared images are aligned
• Low-light conditions
• A large number of pedestrian

5.

Tasks
Task 1: Image Fusion
Task 3: Image-to-image Translation
Task 2: Low-light Pedestrian Detection

6.

Tasks 1: Image Fusion
• GTF
• FusionGAN
• DenseFuse
• IFCNN

7.

Tasks 1: Image Fusion

8.

Tasks 2: Low-light Pedestrian Detection
Yolov5l
Yolov3
log average miss rate
Yolov5l
Yolov3
AP50
AP75
AP
AP50
AP75
AP
visible
22.59%
37.70%
visible
0.908
0.564
0.527
0.871
0.455
0.466
infrared
10.66%
19.73%
infrared
0.965
0.764
0.670
0.940
0.661
0.582
https://github.com/bupt-ai-cz/LLVIP

9.

Tasks 3: Image-to-image Translation
pix2pixGAN
Dataset
SSIM
PSNR
KAIST
0.6918
28.9935
LLVIP
0.1757
10.7688

10.

For More
paper
homepage
github
papers with code
arxiv.org/abs/2108.10831
bupt-ai-cz.github.io/LLVIP/
github.com/bupt-ai-cz/LLVIP
paperswithcode.com/dataset/llvip
email: [email protected],
[email protected],
[email protected],
[email protected]

11.

Thanks for watching!
Xinyu Jia, Chuang Zhu*, Minzhen Li, Wenqi Tang, Wenli Zhou
English     Русский Rules