Similar presentations:
LLVIP: A Visible-infrared Paired Dataset for Low-light Vision
1.
https://bupt-ai-cz.github.io/LLVIP/LLVIP: A Visible-infrared Paired Dataset for
Low-light Vision
15488 pairs
(30976 images)
41579 labels
ICCV 2021 Workshop RLQ
Xinyu Jia, Chuang Zhu*, Minzhen Li, Wenqi Tang, Wenli Zhou
Beijing University of Posts and Telecommunications
Beijing, China
2.
Why this dataset?3.
LLVIP①
④
②
③
Registration
Annotation
15488 pairs
(30976 images)
41579 labels
4.
ComparisonAdvantages:
• Large number and high resolution
• Visible and infrared images are aligned
• Low-light conditions
• A large number of pedestrian
5.
TasksTask 1: Image Fusion
Task 3: Image-to-image Translation
Task 2: Low-light Pedestrian Detection
6.
Tasks 1: Image Fusion• GTF
• FusionGAN
• DenseFuse
• IFCNN
7.
Tasks 1: Image Fusion8.
Tasks 2: Low-light Pedestrian DetectionYolov5l
Yolov3
log average miss rate
Yolov5l
Yolov3
AP50
AP75
AP
AP50
AP75
AP
visible
22.59%
37.70%
visible
0.908
0.564
0.527
0.871
0.455
0.466
infrared
10.66%
19.73%
infrared
0.965
0.764
0.670
0.940
0.661
0.582
https://github.com/bupt-ai-cz/LLVIP
9.
Tasks 3: Image-to-image Translationpix2pixGAN
Dataset
SSIM
PSNR
KAIST
0.6918
28.9935
LLVIP
0.1757
10.7688
10.
For Morepaper
homepage
github
papers with code
arxiv.org/abs/2108.10831
bupt-ai-cz.github.io/LLVIP/
github.com/bupt-ai-cz/LLVIP
paperswithcode.com/dataset/llvip
email: [email protected],
[email protected],
[email protected],
[email protected]
11.
Thanks for watching!Xinyu Jia, Chuang Zhu*, Minzhen Li, Wenqi Tang, Wenli Zhou