Similar presentations:
Линейная алгебра. Метод Гаусса решения систем линейных уравнений
1. Линейная алгебра
Метод Гаусса решения систем линейныхуравнений
2. Метод Гаусса решения систем линейных уравнений
Рассмотрим задачу решения системы линейных уравненийразмерностью (m x n). Запишем систему в матричном виде: A X B
Если закрепить раз и
a11 a12 a13 a1n x1 b1 навсегда нумерацию
a 21 a22 a23 a2n x 2 b2 неизвестных, то можно
неизвестные в
опустить
системы и
записи
a a a a x b записать ее в виде
mn n
m матрицы, отделяя
m1 m 2 m3
b1
a11 a12 a13 a1n
a21 a22 a23 a2 n b2
B A B
a a a a b
m
mn
m1 m 2 m 3
столбец свободных
членов вертикальной
чертой.
Расширенная матрица
системы
3. Метод Гаусса решения систем линейных уравнений
Следующие действия над расширенной матрицей системыназываются элементарными преобразованиями.
Умножение или деление элементов строк на одно и то же
число, не равное нулю
Перестановка местами двух строк
Прибавление к элементам строки элементов другой строки,
умноженных на произвольный множитель.
Конечной целью элементарных преобразований является
получение верхнетреугольной матрицы, у которой все элементы,
стоящие под главной диагональю равны нулю. Преобразования
стараются производить так, чтобы на главной диагонали
появлялись единицы.
a11 a12
a 21 a 22
a
31 a32
a13
a 23
a33
b1
1 c 12
b2 0 1
0 0
b3
c 13
c 23
1
d1
d2
d3
4. Метод Гаусса решения систем линейных уравнений
5x 2y 4z 52x 3y z 7
3x y 2z 3
Ко второй строке
Запишем
прибавим третью строку,
расширенную
умноженную на (-5)
матрицу системы
( 2)
5 2 4 5 ( 2) 1 8 6 9 ( 3)
~
1 строке
7 прибавим
2 К3первой
~
2 3 1 7
строку,
3 1 вторую
3 1 2 3
2
3
умноженную
на (-2)
6
9 1Ко второй
8
6строке
9 ( 5)
1 8
прибавим
первую
строку,
вычтем
Из третьей строки
0 19 13на (-2),
25
~
0 19 13 25 ~ умноженную
вторую строку
строке
0 23 16 30
0 К третьей
4 первую
3 строку,
5
прибавим
умноженную на (-3).
5. Метод Гаусса решения систем линейных уравнений
( 1): 5
~
1 8 6 9 4 1 8 6 9
0
~
0 1 2
0 1 2 0
строке
0 4 3 5
0 К0третьей
прибавим
5
5
вторую строку,
умноженную на 4
1 8 6 9
Вторую строку умножим
на (-1), третью
строку
Восстановим
систему:
0 1 2 0
разделим на 5
0 0
1
1
x 8y 6z 9
x 9 8y 6z
x 9 16 6 1
y
2
z
0
y 2
y 2z 2
z 1
z 1
z
1
x 1 y 2
z 1