Степени с рациональным и действительным показателем. Их свойства.
Вспомним теорию
Тренировочный тест.
2.03M
Category: mathematicsmathematics

Степени с рациональным и действительным показателем. Их свойства

1. Степени с рациональным и действительным показателем. Их свойства.

2. Вспомним теорию

1
Вспомним теорию
Арифметическим корнем n – ой степени (n N, n 2) из
неотрицательного числа a называется такое
неотрицательное число, n – я степень которого равна а:
2 n 1
2n
nk
a
a
a
2 n 1
2n
mn
a,
n N
;
a ,
n N
;
k
a
m
,
при
a 0.

3.

2
1)
m
n
Степень с рациональным
показателем.
a a ,
m
0,
n
Если
m Z , n N , a 0;
где
m
n
то
m
n
a n am
при
a 0.
2) При a > 0, b > 0, p и q - рациональные числа:
a a a
p
q
(a ) a
p q
p
a p a
( ) p
b
b
p q
pq
p
a
p q
a
q
a
(ab) a b
p
p
p

4.

Степень с действительным показателем. Решение
задач.
Представьте
степень в
виде корня!
VN

5.

Степень с действительным показателем. Решение
задач.
VN

6.

Степень с действительным показателем. Решение
задач.
VN

7.

Степень с действительным показателем. Решение
задач.
VN

8.

Степень с действительным показателем. Решение
задач.
VN

9.

Степень с действительным показателем. Решение
задач.
Представьте
корень в виде
степени и
примените
свойства
степеней!
VN

10.

Степень с действительным показателем. Решение
задач.
Представьте
корень в виде
степени и
примените
свойства
степеней!
VN

11.

Степень с действительным показателем. Решение
задач.
VN

12.

Задания для самостоятельной работы
Вычислить: 1)
2)
3)
4)
2
3) :
3
5( 27
(( 4 2 4 8 ) 2 6)(( 4 2 4 8 ) 2 6)
64
5
6
(0,125)
1
3
4
32 2 16
1
1
2
(3 ) 4
0 4
(3 100 23 5 23 2 )( 3 10 3 4 )
Упростить:
5)
3
b b
6)
3
(
0,5а
1
4
(2 а)
3
4
b
2
4
1
4
(2 а) а
2
3
4
) : ( 2а а 2 )
3
4

13.

Проверка
1)
2)
2
5
(
3
3
3
)
3
5( 27 3 ) :
15
3
2
(( 2 8 ) 6)(( 2 8 ) 6)
4
2
4
4
4
2
( 2 8 2 2 8 6)( 2 8 2 2 8 6)
4
4
( 2 8 2)( 2 8 2) ( 2 8 ) 4
2
2 8 2 16 4 14

14.

Проверка
4)
5
6
1
3
64 (0,125) 32 2 4 16
5
6
6
(2 )
1
3 3
(0,5 )
4
1
1
2
(30 ) 4 4
3
4
2
2 2 (2 )
5
1 4
1 1
6
5
5
2 ( ) 2 2 4 2 2 2 4 2
2
5

15.

5)
Проверка
3
3
3
3
3
( 100 2 5 2 2 )( 10 4 )
(а аb b )(a b) a b следует
3
3
3
3
( 10 ) ( 4 ) 10 4 6
По формуле
b3 b 2
6)
3
b
4
2
2
2 4
1
3 3
b
3
1
3
b
3
3
b

16.

Проверка
7)
(
0,5а
1
4
(2 а)
1
4
(2 а) а
2
3
4
1
4
1)
3
4
3
4
2 0,5a (2 a) (2 a) a
2 (2 a)
3
4
2)
1
4
1 a (2 a)
3
4
a (2 a)
3
4
3
4
1
3
4
) : ( 2а а 2 )
3
4
1
3
4
a (2 a)
3
4
3
4
;
1

17. Тренировочный тест.

1
1. Найдите значение выражения: 6 8 3 .
1) 12; 2) 6; 3) 3; 4) –3.
2. Выберите верное неравенство:
1
1
1
3
1) 2 2 3 2 ; 2) 0 ,3 0 ,5 ; 3) 1,5 1; 4) 3-8 < 0.
3. Среди данных чисел выберите наибольшее:
1) 5 ;
2) 5 ;
3) 5 ;
4) 5 .
4. Представьте данное выражение в виде степени:
1,7
2,8
1,5
у у у .
1) у -3; 2) у -7,14; 3) у 3;
4) у 6.
5. Упростите выражение: b 0,2 : b 0,7 .
2
1
0,9
1) b ;
2) b ;
3) b
; 4) b 7 .
1
2
1
2
1
3
1
2
1
4

18.

Тренировочный тест (ответы).
№ 1
воп
рос
а
Отв 3
ет
2
3
4
5
1
4
3
1
English     Русский Rules