Similar presentations:
Площадь криволинейной трапеции
1.
2.
ПОВТОРИМ!1. Функция F(х) называется первообразной функции
f(x) на некотором промежутке, если для всех Х из
этого промежутка выполняется равенство:
F ( x) f ( x)
Другими словами нахождение первообразной – это
обратное действие нахождения производной.
2. F(x)+C, где С произвольная постоянная (любое
число), называется семейством первообразных.
3. Совокупность всех первообразных данной функции
f(x) называется неопределённым интегралом и
обозначается:
f ( x)dx F ( x) C
3.
Таблица первообразныхПравила нахождения первообразных
f ( x) g ( x) F ( x) G ( x) C
kf ( x) kF ( x) C
f (kx b)
1
F (kx b) C
k
4.
Найдите первообразную функции1) F ( x) x 2 C
1) f ( x) 2 x
2) f ( x) 2 sin x e
x
2) F ( x) 2 cos x e x C
3) f ( x) 25 x 3
3) F ( x) 5x 3x
4) f ( x) x
2 3
4) F ( x )
x C
3
4
5) f ( x) (3x 1)
4
5
1
5) F ( x) (3 x 1) 5 C
15
5.
Понятие о криволинейной трапеции.Определённый интеграл
Фигура, ограниченная неотрицательной на отрезке
[a;b] функцией y=f(x) и прямыми у=0, x=a, x=b
называется
криволинейной трапецией.
6.
Криволинейная трапецияОпр. Криволинейной трапецией называется фигура,
ограниченная графиком непрерывной и не меняющей
на отрезке [а;b] знак функции f(х), прямыми х=а, x=b
и отрезком [а;b].
У
0
a
x=b
х=а
y = f(x)
b
Х
Отрезок [a;b] -основание
этой криволинейной трапеции
7.
Различные виды криволинейных трапецийУ=х²+2х
-2
0
2
у 2
-1
0 1
-1
0
х
-1
0
2
8.
Различные виды криволинейных трапеций9.
Являются ли криволинейными трапециями фигуры?да
у
нет
у
у
y = f(x)
y = f(x) 3
y = f(x)
У=1
0
х
0
0
у
у
да
y = f(x)
х
х
y = f(x)
у
y = f(x)
У=3
0
нет
0
х
0
х
х
да
нет
10.
Самостоятельно решить:ЗАДАНИЕ 1. Указать фигуры, которые являются
криволинейными трапециями
Лист 1
11.
ЗАДАНИЕ 2. Указать фигуры,которые не являютсякриволинейными трапециями
Лист 2
12.
ПЛОЩАДЬ КРИВОЛИНЕЙНОЙ ТРАПЕЦИИИ ОПРЕДЕЛЁННЫЙ ИНТЕГРАЛ
13.
Формула Ньютона - Лейбницаb
f ( x)dx F (b) F (a)
a
Таким образом:
Исаак Ньютон
1642-1727
Готфрид Лейбниц
1646-1716 гг.
b
b
a
a
S f ( x)dx F F (b) F (a)
14.
Геометрический смысл интегралаОпределённый интеграл от неотрицательной
непрерывной функции f(x) по [a, b] численно равен
площади
криволинейной
трапеции
с
основанием [a, b], ограниченной сверху графиком
функции y = f(x).
Пример
Вычислить интеграл, если график
функции y=f(x) изображён на
рисунке
Проверь себя!
x2
3 32
1
S ( x 2)dx 2 x 6 2
2
2
1 2
1
9 1
6 2 4 4 8(кв.ед)
2 2
3
15.
Физический смысл интегралаПри прямолинейном движении перемещение S
численно
равно
определённому
интегралу
зависимости скорости V от времени t
Пример
Материальная точка движется по прямой со скоростью,
определяемой формулой v=3t2-4t+1, (время измеряется в
секундах, скорость – в см/с). Какой путь пройдёт точка за
3 секунды, считая от начала движения (t=0)?
b
3
3
s v(t )dt (3t 4t 1)dt (t 2t t )
2
a
3
0
33 2 32 3 27 18 3 12(см)
2
0
16.
17.
Вычисление площадей спомощью интегралов
1. Криволинейная трапеция, ограниченная сверху
графиком функции y=f(x), снизу осью ОХ и по бокам
отрезком [a;b]
b
S f ( x)dx
a
18.
2. Фигура, ограниченная сверху только графикомфункции y=f(x) и снизу осью ОХ
b
S f ( x)dx
a
Точки а и b находим из уравнения f(x) =0
3. Криволинейная трапеция, ограниченная сверху осью
ОХ, снизу графиком функции y=f(x) и по бокам отрезком
[a;b]
b
S f ( x)dx
a
19.
4. Фигура, ограниченная сверху двумя графикамифункций y=f(x) и g(x), снизу осью ОХ и по бокам
отрезком [a;b]
с
b
a
с
S f ( x)dx g ( x)dx
Точку С находим из уравнения f(x)=g(x)
5. Фигура, ограниченная сверху графиком функции
y=f(x), снизу графиком функции y=g(x)
b
S ( f ( x) g ( x))dx
a
Точки a и b находим из уравнения
f(x)=g(x)
20.
Устная работаВыразите, с помощью интеграла площади фигур, изображённых
на рисунке
0
S
3
2
f ( x)dx
S g ( x)dx
S f ( x)dx
4
2
4
2
2
4
4
S g ( x)dx f ( x)dx
S
0
3
3
0
f ( x)dx g ( x)dx
21.
ПРАКТИКУМЗадание №1
Найти площадь криволинейной трапеции,
изображённой на рисунках
1)
Решение
Используя формулу:
Получаем:
3
3
x
S x 2 dx
3
1
3
1
33 13 27 1
1
2
9 8 (кв.ед.)
3 3
3 3
8
3
22.
Решение2)
1
S ( x 2)dx
2
x3
3
2x
2
1
2
( 2) 3
13
2
2( 2)
3
3
3)
1
8
2 4 9(кв.ед)
3
3
Решение
e
e
1
S ln x dx
x
1
1
ln e ln 1 1 0 1(кв.ед)
23.
Решение4)
2
4
x
S x 3 dx
4
1
2
1
24 1
4 4
1
3
4 3 (кв.ед)
4
4
Решение
5)
2
x 3
1 x2
S
dx
3 x
2
2 2
1
1
1 3
1 6
1 3 4
4 2
4 4
7
1
4 2 (кв.ед)
4
4
4
24.
y 4 x 2 , y 3x, y 06)
находится в I четверти
Решение
3x 2 1
x3 2
S 3 xdx (4 x )dx
4 x
2
3 1
0
0
1
3 8
1 19
1
8 4
3 (кв.ед)
2 3
3 6
6
1
2
2
Решение
7)
x2
1 x3
S ( x 2)dx x dx
2 x
2
2 3
2
2
3
1 8 3
1
6 6 3 4 (кв.ед)
2
3 3 2
2
1
1
2
1
2
25.
С помощью определённого интеграла найти площадькриволинейных трапеций, изображенных на рисунках
(образцы)
Пример 1.
Фигура ограничена линиями
у = х2 – 3х + 3, х = 1, х = 3 (рис.)
Решение.
S=
26.
Пример 2.Фигура ограничена линиями
у = 1 – х2, х = -½, х = 1 , у = 0
(рис.)
Решение.
S=
(ед.кв.)
Пример 3.
Фигура ограничена линиями
у = sin x, x = π/2, осью Ох (рис.)
Решение.
S=
(ед.кв.)
0
27. ТРЕНИНГ «От простого к сложному». По готовым рисункам найти площади фигур. (Вариант 1 – задания с нечётными номерами, Вариант 2
– с чётными)1)
4)
2)
5)
3)
6)
Лист 1
28.
7)10)
8)
9)
11)
12)
Лист 2
29.
13)15)
14)
16)
Лист 3
30.
17)20)
18)
21)
19)
22)
Лист 4
31.
23)26)
24)
27)
25)
28)
Лист 5
32.
По готовым рисункам найти площади фигур , составивкомбинации площадей криволинейных трапеций
29)
30)
32)
33)
31)
34)
Лист 6
33.
ЗАДАНИЕ №2Вычислите площадь фигуры, ограниченной линиями
(схематично изобразив графики функций).
1) y 6 x x 2 , y 6 2 x
2) y 2 x 2 , y x 1
3) y 1 x, y 3 2 x x 2
4) y x 2 , y x
Ответ: 1) 4,5 2) 9/8 3) 4,5 4)1/3
ЗАДАНИЕ №3
Вычислить площадь фигуры, ограниченной
линиями и осью ОХ, если
1) y 6 ( x x )
2
2) y 7 x x 10
2
34.
Контрольные вопросы:1. Какая функция называется первообразной для функции
f(x)?
2. Чем отличаются друг от друга различные первообразные
функции для данной функции f(x)?
3. Дайте определение неопределённого интеграла.
4. Как проверить результат Какое действие называется
интегрированием?
5. интегрирования?
6. Дайте определение определённого интеграла.
7. Сформулируйте теорему Ньютона-Лейбница.
8. Перечислите свойства интеграла.
9. Как вычислить площадь плоской фигуры с помощью
интеграла (составьте словесный алгоритм)?
10.Перечислите области применения интеграла, назовите
величины, которые можно вычислить с помощью интеграла.
35.
Домашнее заданиеВычислить площадь фигуры, ограниченной линиями,
предварительно сделав рисунок
1) y x ( x 0), y 1, y 4, x 0
2
2) y x 2 4 x 8, y 3 x 2 x 3 , если x [ 2;3]
3) y 3 x 1, y 9 x
4) y x 4 x 2 4, y 10, x 3, x 0
5) y x, y 5 x, x 1, x 2
6) y x 4 x 2, y x 2
2
7) y sin x, x
6
,x
3
36.
Подведём итоги1. Познакомились с понятиями криволинейной
трапеции и определённого интеграла.
2. Научились вычислять по формуле НьютонаЛейбница площадь криволинейной трапеции,
используя знания о первообразной и правила её
вычисления.
3. Закрепили
изученное
практических заданий.
в
ходе
выполнения
4. Проверили усвоение изученного материала
37.
Список используемыхисточников
1. Алимов Ш.А., Колягин Ю.М., Ткачёва М.В. и др. Алгебра и начала
математического
анализа.
10-11
классы.
Учебник.
/М.:
Просвещение, 2014г. – 463с.
2. Ткачёва М.В. Алгебра и начала математического анализа.
Тематические тесты. 11 класс. (базовый и профильный уровни).
/М.: Просвещение, 2010. - 64 с.
3. Федорова Н.Е., Ткачева М.В. Изучение алгебры и начал
математического анализа в 11 классе. Книга для учителя. /М.:
Просвещение, 2009 - 159 с.
4. Федорова Н.Е., Ткачева М.В. Алгебра и начала математического
анализа. Методические рекомендации. 10-11 классы. /3-е изд.,
перераб. - М.: Просвещение, 2017 - 172 с.
5. Шабунин М.И. и др. Алгебра и начала математического анализа.
Дидактические материалы. 10 класс. (Базовый и угл. уровни). /8-е
изд. - М.: Просвещение, 2017. - 208с.
38.
Список использованныхисточников иллюстраций
1. https://en.ppt-online.org
2. http://900igr.net
3. https://myslide.ru
4. http://uslide.ru/matematika
Видео создано с использованием ресурсов канала
Youtube
https://www.youtube.com/watch?v=y1B3mypflRE