Similar presentations:
Скалярное произведение векторов
1.
Тема урока:Скалярное произведение
векторов
Цели обучения:
10.4.4 знать определение и свойства скалярного произведения
векторов в пространстве;
10.4.16 знать формулу скалярного произведения векторов в
координатной форме и применять её при решении задач;
2.
Угол между векторамиb
О
a
Угол между векторами
равен .
a b =
a
и
b
3.
Найдите угол между векторамиa b = 300
a
a c = 1200
d
300
c
b
f
b c = 900
d c = 1800
d f = 00
4.
Критерии оценивания:Умеет определять скалярного
векторов в пространстве;
Знает свойства
скалярного
векторов в пространстве;
Применяет формулу скалярного
векторов в координатной форме
задач;
произведения
произведения
произведения
при решении
5.
ОпределениеСкалярным произведением двух
векторов называется произведение
их длин на косинус угла между ними.
a b = a b cos(a b )
Скалярное произведение векторов – число
(скаляр).
6.
Частный случай №1b
a b = 900
a
a b =
=0
a b cos 900 = 0
Скалярное произведение ненулевых
векторов равно нулю тогда и только тогда,
когда эти векторы перпендикулярны.
a b = 0
a b
7.
Частный случай №2a b < 900
b
a
a b =
>0
a b cos > 0
Скалярное произведение ненулевых векторов
положительно тогда и только тогда, когда угол
между векторами острый.
a b > 0 a b < 900
8.
Частный случай №3b
a b > 900
a
a b =
<0
a b cos < 0
Скалярное произведение ненулевых векторов
отрицательно тогда и только тогда, когда угол
между векторами тупой.
a b < 0 a b > 900
9.
Частный случай №4b
a b = 00
a
a b =
1
a b cos 00 = a b
b
a b = 1800
a
a b =
-1
a b cos1800 = – a b
10.
Частный случай №5a a = 00
a
a a =
1
a a cos 00 = a a
Скалярное произведение
a a
скалярным квадратом вектора
=
a
называется
a
и обозначается
a
2
2
Таким образом,
скалярный квадрат вектора равен квадрату его длины.
a
2
=
a
2
11.
Формула для нахожденияскалярного произведения
через координаты векторов
a = x1 i + y1 j + z 1 k
a b= ?
b = x2 i + y2 j + z 2 k
a b= (x1 i + y1 j + z1 k) (x2 i + y2 j + z2 k) =
= x1x2 + y1y2 + z1z2
a b = x1x2 + y1y2 + z1z2
12.
Пример №1Найти скалярное произведение векторов:
a {-6; 9; 5}
b {-1; 0; 7}
a b= x1x2 + y1y2 + z1z2
a b= -6 (-1) + 9 0 + 5 7 = 41
13.
Пример №3Найти скалярное произведение векторов:
a {1; 7; 9}
b {-2; 4; 0}
a b= x1x2 + y1y2 + z1z2
a b = 1 (-2) + 7 4 + 9 0 = 26
14.
Домашняя работаНайти скалярное произведение векторов:
1) a {7; 25; 0} b {11; 0; 54}
2) a {|-2|; 0; |3|} b {1; |-11|; 1}
3) a {-1; 2; 8}
b {5; 5; 0}