Девиз нашего урока: «Чем больше я знаю, тем больше умею.»
Математический диктант
Решить уравнения устно:
Решить уравнение:
Целое уравнение и его корни
Цели урока:
Уравнения
Целое уравнение
Степень уравнения
Какова степень уравнения?
Повторим
Уравнение первой степени
Уравнение третьей степени
Решить уравнение:
Решим биквадратное уравнение:
Решить уравнение:
Установите соответствие: Уравнение способ.
Тест
Домашнее задание:
738.50K
Category: mathematicsmathematics

Целые уравнения

1.

ГОУ РК «РЦО» структурное
подразделение ЦДОДИ в
Республике Коми
Автор: Хребтова Ольга Евгеньевна
Год создания: 2014
Место создания: ЦДОДИ
30.11.15

2. Девиз нашего урока: «Чем больше я знаю, тем больше умею.»

Эпигаф:
Кто ничего не замечает,
Тот ничего не изучает.
Кто ничего не изучает,
Тот вечно хнычет и скучает.
(поэт Р.Сеф).

3. Математический диктант

1.Вставить недостающие
слова и указать соответствия
1.Что называется
уравнением?
1. Найти все его … или
доказать, что … нет.
2.Что называется
корнем уравнения?
2. ……, содержащее
переменную.
3.Что значит решить
уравнение?
3. ……., при котором
уравнение обращается
в верное числовое
равенство.

4. Решить уравнения устно:

а) x² = 0
б) 3x – 6 = 0
в) x² – 9 = 0
г) x(x – 1)(x + 2) = 0
д) x² = – 25

5. Решить уравнение:

х⁴-6х²+5=0

6. Целое уравнение и его корни

7. Цели урока:

обобщить и углубить сведения об
уравнениях
знакомство с понятием целое
уравнение
знакомство с понятием степень
уравнения
формирование навыков решения
уравнений

8. Уравнения

x
5
2
x 1 x 1
3
x
2
x 5
x3 1 x 2 1
3x 2
4
2
( x 3 1) x 2 x 3 2( x 1)
x
2x 1
x 12
целые
уравнения
дробные
уравнения

9. Целое уравнение

Целым уравнением с одной
переменной называется уравнение,
левая и правая части которого
целые выражения.

10. Степень уравнения

Если уравнение с одной
переменной записано в виде P(x)=0,
где P(x) – многочлен стандартного
вида, то степень этого многочлена
называют степенью уравнения, т.е
наибольшая из степеней
одночленов.
Примеры: x⁵-2x³+2x-1=05-я
степень
4-я
x⁴-14x²-3=0
степень

11. Какова степень уравнения?

5
а) 2х²-6х⁵+1=0
2
г) (х+8)(х-7)=0
6
б) х⁶-4х²-3=0
1 5
х 0
7
в)
5х(х²+4)=17
д)
х х
5
2 4
5
1
3
е) 5х-

12. Повторим

линейное уравнение
aх+b=0
aх2 + bx + c = 0
множество
корней
нет корней
один корень
квадратное уравнение
D=0
один корень
D>0
два корня
D<0
нет корней

13. Уравнение первой степени

14. Уравнение третьей степени

Решить уравнение
x3 8x 2 x 8 0
Решение: разложим левую часть
уравнения 2на множители
x ( x 8) ( x 8) 0
( x 8)( x 2 1) 0
x 8 0
x2 1 0
x1 8, x2ответ
1, x3 1

15. Решить уравнение:

(8x-1)(2x-3)-(4x-1)²=38
Решение:Раскроем скобки и приведем
подобные слагаемые
16x²-24x-2x+3-16x²+8x-1-38=0
-18x-36=0
ПРОВЕРЬТЕ СЕБЯ!
x+2=0
x=-2
Ответ: x=-2

16. Решим биквадратное уравнение:

Х⁴ - 5 х² - 36 = 0
Сделаем замену: х² = а, а≥ 0
а² - 5а -36 =0
D = 169
а1= -4 (не подходит, т.к. а≥0)
а2 = 9
Х² = 9
х1 = 3 и х2 = -3
Ответ: 3 и -3.

17. Решить уравнение:

х⁴-6х²+5=0
Ответ: 1, -1, Ѵ5, - Ѵ5

18. Установите соответствие: Уравнение способ.

Образец текста
Второй уровень
Третий уровень
Четвертый уровень
Пятый уровень

19. Тест

1) Определите степень уравнения
( x 2 3) 5 x( x 1) 15
а) 2
б) 3
в) 1
2) Какие из чисел являются корнями
x( x 1)( x 2 ) 0?
уравнения
а) -1
б) 0
в) 2
3) Решите уравнение 9 x 3 27 x 2 0
а) 0;-3
б) -3;0;3
в) 0;3

20.

1)
Какое уравнение называется
целым и как его отличить от
дробного?
2)
Что такое степень уравнения?
3)
Что такое корни уравнения?
4)
5)
Сколько корней может иметь
уравнение 1 степени?
Сколько корней может иметь
уравнение 2 степени?

21. Домашнее задание:

Подумай и ответь на вопрос: «Сколько
корней может иметь целое уравнение с
одной переменной 2-ой, 3-ой, 4-ой, пой степени ?»
Реши биквадратные уравнения:
English     Русский Rules