Similar presentations:
Basic principles of ultrasonic testing
1.
Basic Principles of Ultrasonic TestingBasic Principles of
Ultrasonic Testing
Theory and Practice
Krautkramer NDT Ultrasonic Systems
2.
Basic Principles of Ultrasonic TestingExamples of oscillation
ball on
a spring
pendulum
Krautkramer NDT Ultrasonic Systems
rotating
earth
3.
Basic Principles of Ultrasonic TestingPulse
The ball starts to oscillate as soon as it is pushed
Krautkramer NDT Ultrasonic Systems
4.
Basic Principles of Ultrasonic TestingOscillation
Krautkramer NDT Ultrasonic Systems
5.
Basic Principles of Ultrasonic TestingMovement of the ball over time
Krautkramer NDT Ultrasonic Systems
6.
Basic Principles of Ultrasonic TestingFrequency
Time
From the duration of one oscillation
T the frequency f (number of
oscillations per second) is
calculated:
T
f
One full
oscillation T
1
Krautkramer NDT Ultrasonic Systems
7.
Basic Principles of Ultrasonic TestingThe actual displacement a is
termed as:
a A sin
a
Time
0
90
180
270
360
Phase
Krautkramer NDT Ultrasonic Systems
8. Spectrum of sound
Basic Principles of Ultrasonic TestingSpectrum of sound
Description
Example
0 - 20
Infrasound
Earth quake
20 - 20.000
Audible sound
Speech, music
> 20.000
Ultrasound
Bat, Quartz crystal
Frequency range Hz
Krautkramer NDT Ultrasonic Systems
9.
Basic Principles of Ultrasonic TestingAtomic structures
gas
• low density
• weak bonding forces
liquid
• medium density
• medium bonding
forces
Krautkramer NDT Ultrasonic Systems
solid
• high density
• strong bonding forces
• crystallographic
structure
10.
Basic Principles of Ultrasonic TestingUnderstanding wave propagation:
Ball = atom
Spring = elastic bonding force
Krautkramer NDT Ultrasonic Systems
11.
Basic Principles of Ultrasonic TestingT
distance travelled
Krautkramer NDT Ultrasonic Systems
12.
Basic Principles of Ultrasonic TestingDuring one oscillation T the wave
front propagates by the distance :
T
Distance travelled
From this we derive:
c
T
or
c f
Wave equation
Krautkramer NDT Ultrasonic Systems
13. Sound propagation
Basic Principles of Ultrasonic TestingSound propagation
Longitudinal wave
Direction of propagation
Direction of oscillation
Krautkramer NDT Ultrasonic Systems
14.
Basic Principles of Ultrasonic TestingSound propagation
Transverse wave
Direction of oscillation
Direction of propagation
Krautkramer NDT Ultrasonic Systems
15. Wave propagation
Basic Principles of Ultrasonic TestingWave propagation
Longitudinal waves propagate in all kind of materials.
Transverse waves only propagate in solid bodies.
Due to the different type of oscillation, transverse waves
travel at lower speeds.
Sound velocity mainly depends on the density and Emodulus of the material.
Air
Water
Steel, long
Steel, trans
330 m/s
1480 m/s
5920 m/s
3250 m/s
Krautkramer NDT Ultrasonic Systems
16. Reflection and Transmission
Basic Principles of Ultrasonic TestingReflection and Transmission
As soon as a sound wave comes to a change in material
characteristics ,e.g. the surface of a workpiece, or an internal inclusion,
wave propagation will change too:
Krautkramer NDT Ultrasonic Systems
17.
Basic Principles of Ultrasonic TestingBehaviour at an interface
Medium 1
Medium 2
Incoming wave
Transmitted wave
Reflected wave
Interface
Krautkramer NDT Ultrasonic Systems
18.
Basic Principles of Ultrasonic TestingReflection + Transmission: Perspex - Steel
1,87
Incoming wave
1,0
0,87
Transmitted wave
Reflected wave
Perspex
Steel
Krautkramer NDT Ultrasonic Systems
19.
Basic Principles of Ultrasonic TestingReflection + Transmission: Steel - Perspex
Transmitted wave
Incoming wave
1,0
0,13
-0,87
Reflected wave
Perspex
Krautkramer NDT Ultrasonic Systems
Steel
20.
Basic Principles of Ultrasonic TestingAmplitude of sound transmissions:
Water - Steel
Copper - Steel
• Strong reflection
• No reflection
• Double transmission • Single transmission
Krautkramer NDT Ultrasonic Systems
Steel - Air
• Strong reflection
with inverted phase
• No transmission
21.
Basic Principles of Ultrasonic TestingPiezoelectric Effect
+
Battery
Piezoelectrical
Crystal (Quartz)
Krautkramer NDT Ultrasonic Systems
22.
Basic Principles of Ultrasonic TestingPiezoelectric Effect
+
The crystal gets thicker, due to a distortion of the crystal lattice
Krautkramer NDT Ultrasonic Systems
23.
Basic Principles of Ultrasonic TestingPiezoelectric Effect
+
The effect inverses with polarity change
Krautkramer NDT Ultrasonic Systems
24.
Basic Principles of Ultrasonic TestingPiezoelectric Effect
Sound wave
with
frequency f
U(f)
An alternating voltage generates crystal oscillations at the frequency f
Krautkramer NDT Ultrasonic Systems
25.
Basic Principles of Ultrasonic TestingPiezoelectric Effect
Short pulse
( < 1 µs )
A short voltage pulse generates an oscillation at the crystal‘s resonant
frequency f0
Krautkramer NDT Ultrasonic Systems
26.
Basic Principles of Ultrasonic TestingReception of ultrasonic waves
A sound wave hitting a piezoelectric crystal, induces crystal
vibration which then causes electrical voltages at the crystal
surfaces.
Electrical
energy
Piezoelectrical
crystal
Krautkramer NDT Ultrasonic Systems
Ultrasonic wave
27. Ultrasonic Probes
Basic Principles of Ultrasonic TestingUltrasonic Probes
Delay / protecting face
Electrical matching
Cable
socket
crystal
Damping
Straight beam probe
TR-probe
Krautkramer NDT Ultrasonic Systems
Angle beam probe
28.
Basic Principles of Ultrasonic TestingRF signal (short)
100 ns
Krautkramer NDT Ultrasonic Systems
29.
Basic Principles of Ultrasonic TestingRF signal (medium)
Krautkramer NDT Ultrasonic Systems
30. Sound field
Basic Principles of Ultrasonic TestingSound field
Focus
Crystal
Accoustical axis
Angle of divergence
6
D0
N
Near field
Far field
Krautkramer NDT Ultrasonic Systems
31. Ultrasonic Instrument
Basic Principles of Ultrasonic TestingUltrasonic Instrument
0
2
4
6
8
10
Krautkramer NDT Ultrasonic Systems
32. Ultrasonic Instrument
Basic Principles of Ultrasonic TestingUltrasonic Instrument
-
+
Uh
0
2
4
6
8
10
Krautkramer NDT Ultrasonic Systems
33. Ultrasonic Instrument
Basic Principles of Ultrasonic TestingUltrasonic Instrument
-
+
Uh
0
2
4
6
8
10
Krautkramer NDT Ultrasonic Systems
34. Ultrasonic Instrument
Basic Principles of Ultrasonic TestingUltrasonic Instrument
+
Uv
-
+
Uh
0
2
4
6
8
10
Krautkramer NDT Ultrasonic Systems
35.
Basic Principles of Ultrasonic TestingBlock diagram: Ultrasonic Instrument
amplifier
IP
screen
BE
horizontal
sweep
clock
pulser
probe
work piece
Krautkramer NDT Ultrasonic Systems
36.
Basic Principles of Ultrasonic TestingSound reflection at a flaw
s
Probe
Sound travel path
Work piece
Krautkramer NDT Ultrasonic Systems
Flaw
37.
Basic Principles of Ultrasonic TestingPlate testing
IP
BE
F
plate
delamination
0
2
4
6
8
IP = Initial pulse
F = Flaw
BE = Backwall echo
Krautkramer NDT Ultrasonic Systems
10
38.
Basic Principles of Ultrasonic TestingWall thickness measurement
s
s
Corrosion
0
2
Krautkramer NDT Ultrasonic Systems
4
6
8
10
39.
Basic Principles of Ultrasonic TestingThrough transmission testing
Through transmission signal
1
T
R
1
2
T
R
2
0
Flaw
Krautkramer NDT Ultrasonic Systems
2
4
6
8
10
40.
Basic Principles of Ultrasonic TestingWeld inspection
a = s sinß
F
a' = a - x
s
0
20
d' = s cosß
40
60
80
100
d = 2T - t'
ß = probe angle
s = sound path
a = surface distance
a‘ = reduced surface distance
d‘ = virtual depth
d = actual depth
T = material thickness
a
a'
x
ß
Work piece with welding
s
Lack of fusion
Krautkramer NDT Ultrasonic Systems
d
41.
Basic Principles of Ultrasonic TestingStraight beam inspection techniques:
Direct contact,
Direct contact,
single element probe
dual element probe
Through transmission
Fixed delay
Immersion testing
Krautkramer NDT Ultrasonic Systems
42.
Basic Principles of Ultrasonic TestingImmersion testing
1
2
surface =
sound entry
water delay
backwall
flaw
IP
1
IE
IP
2
IE
BE
BE
F
0
2
4
6
8
10
0
2
Krautkramer NDT Ultrasonic Systems
4
6
8
10