Similar presentations:
Faults transmissibility assessment for terrigenious reservoir of K oilfield
1. MSc REM INDIVIDUAL PROJECT
Faults transmissibilityassessment for terrigenious
reservoir of K oilfield
Andrey Shpindler
Supervisor from HW ASC Sergei
Parnachev1
2. Main aims:
• Faults transmissibility calculation bydifferent techniques.
• Choosing the most applicable
calculation technique for
transmissibility assessment.
• Recognizing dependences between
fault geometry, reservoir basic
properties and fault transmissibility
2
3. Main objects:
1. Recognizing approved techniquesfor fault transmissibility
assessment.
2. Fault throw calculation.
3. Geomodelling and transmissibility
assessment by selected
techniques.
4. Choosing the best techniques by
history matching and fluids contact 3
4. 1. Approved techniques search
SPEseal59405
Fault
mapping (Freeman et al., 2008)
4
5. 2. Fault throw calculation
1700Fault 18
Bashenov
Fm.
2100
Хline 128
5
6. 2. Fault throw calculation
Selected area tectonic map (after Kontorovich, 2003)6
7. 3. Geomodelling and transmissibility assessment
Formation
Porosity
(frac)
U11A+B
0.16
11
64.9
U12
0.14
8.8
44
U13
0.14
U13
Permeability(
Oil
mD)
Saturation(per)
4.7
50.2
fm with full set of faults
7
8.
3. Geomodelling andtransmissibility assessment
Fault 9 juxoposition area (Allan map)
Allan diagram (HWU ResConcepts Manual) 8
9.
3. Geomodelling andtransmissibility assessment
Methods
Mean Eff. K
mD
SGR
0.9
ESGR
0.9
CSP
0.16
MIX
0.79
Results of SGR technique application
9
10.
3. Analysis permeability vs.fault throw
GSL.SP.1998.127
1
11.
3. Analysis permeability vs.fault throw
-0,1
THROW
THROW
VSHALE
VSHALE
SGR
0
SGR
MIN 0,1
0.001
0
0,04
0,04
0,2
MOST
2.46
51.16
0,3
0,24
0,13
MAX
17.89
Downside
100
Upside
0.208
SGR
Input
Variabl Downsi Upsi
Downsi
e
de
de Range
de
Upside
THROW 0.24 0.04 0.20
2.10
12.64
Base
Case
6.14
1
12.
3. Analysis permeability vs.fault throw
Keff vs. SGR
Brief160summary for K field
140
• Nonsealing
fault with throw below 6.14 m;
120
100 is semipermeable (with great permeability
• Fault
Keff
80
60
variation)
if throw varies from 2.1 m to 6.14 m;
f(x) = -11,99 ln(x) - 8,01
R² = 0,51
40
• Fault
20 is highly permeable, if throw less than 2.1 m.
0
0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9
1
SGR
SPE 59405
1
13. 4. Choosing the best technique
Fault 9Fault 6
Part of simulation model U12
1
14.
4. Choosing the best technique1
15.
4. Choosing the best technique1
16.
4. Choosing the best techniqueBrief summary:
• Selection of the best technique by history
matching is not possible for present oilfield;
• Fault permeability is not influence greatly on the
oil production within 5-7 years period (at least for
Jurassic West Siberian pays);
• Longer production history and larger oilfield are
needed for effective choice of the best technique
by history matching.
1
17.
4. Choosing the best technique1
18.
4. Choosing the best techniquef(x) = NaN ln(x)
R² = NaN
12
25
10
20
8
15
DIFF.
DIFF.OWC
OWC 6
10
4
5
2
0
0
0
0
DIFF vs
vs Ksgr
Ksgr
DIFF
f(x) = -4,46 ln(x) + 4,69
R² = 0,33
0,1 0,2 0,3 0,4 0,5 0,6
0,1 0,2 0,3 0,4 0,5 0,6
0,7
0,7
0,8
0,8
Ksgr
Ksgr
1
19.
4. Choosing the best techniqueDIFF. vs DISPL
12
25
10
20
8
15
DIFF 6
10
4
5
2
0
0
f(x) = 1,86x + 2,3
R² = 0,79
f(x)
2=
R² = 0
4
6
6
8
8
10
10
12
12
14
14
DISPL
DISPL
1
20.
4. Choosing the best techniqueNew diff.
between OWC
(m)
SGR
0.6
CSF
2.25
MIX
1.16
Displ
7.7
Average
2.92
Well test manual. HWU
2
21.
4. Choosing the best techniqueDIFF.
DIFF.
DIFF vs
vs Ksgr
Kmix
Kcsf
25
25
20
20
15
15
10
10
DIFF. OWC
DIFF. OWC
5
0
0,01
f(x) = -5,93 ln(x) - 2,4
f(x)==-15,49
-6,91 ln(x)
f(x)
ln(x) -- 2,44
41,08
R²
= 0,9
R²
=
0,84
R² = 0,77
5
0
0
0,1
0,1 0,2
0,2 0,30,3 0,4 0,40,5 0,5
0,6 0,6
0,7
0,8
0,7
0,02
0,03
0,04
0,05
0,06
0,07
0,08
Kmix
Ksgr
Kcsf
2
22.
Practical summaryFault transmissibility along the fault plane is not unique value and
may be effectively modelled in geomodel scale;
No sealing fault with throw less than 6.14 m;
Fault permeability varies greatly if throw is between 2.1 and 6.14 m;
Fault is fully permeable if throw is less than 2.1m;
Fault permeability does not influence greatly on the production
during 5-7 years period or equivalent 40000tonn (at least for West
Siberian Jurassic oilfields);
The best technique of transmissibility assessment for oilfield K is
integration of SGR & CSF.
2
23.
Thank you for you attention!2
24.
Backslides2
25.
Suggestion for further
Wider range of the oilfields should
be investigated to choose main
work
criteria and universal dependences for transmissibility for West
Siberia;
• High quality 3D seismic is needed for high accuracy of
transmissibility determination;
• Cretaceous pays should be investigated for crossflow;
• Special attention should be paid on pre-Mesozoic oilfield;
• Additional investigations as repeat formation tester, good quality well
test and tracer tests are needed;
• Transmissibility assessment is needed to be checked by history
matching process, but this method may be created only on large
oilfield with long period of production.
2
26.
Fragment of West Siberian tectonic map. Kontorovich 20032
27.
FaultsFault 5
Maximum throw
(m)
26
Fault 6
≈20
Fault 9
≈20
Fault 9_1
≈20
Fault 10
50
Fault 15
43
Fault 16
≈20
Fault 17
35
Fault 18
31
Maximum throw of each fault
2
28.
229.
Relative permeabilities for U12+32
30.
331.
332.
DIFF vs Ksgr25
20
R² = 0,84
R² = 0,33
15
DIFF. OWC
10
R² = 0,09
5
0
0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
Ksgr
3
33.
DIFF. vs Kcsp25
20
15
DIFF. OWC
f(x) =
= -10,43
-15,5 ln(x)
f(x)
ln(x)- -41,11
21,63
R² =
= 0,34
0,77
R²
f(x) = 12,41 ln(x) + 45,29
R² = 0,1
10
5
0
0,01
0,02
0,03
0,04
0,05
0,06
0,07
0,08
Kcsp
3
34.
DIFF. vs Kmix25
20
R² = 0,9
f(x) = -4,06 ln(x) + 4,32
R² = 0,4
15
DIFF. OWC
10
f(x) = 4,1 ln(x) + 13,32
R² = 0,06
5
0
0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
Kmix
3