Similar presentations:
Прочность материалов при циклически меняющихся напряжениях
1.
Уфимский государственный нефтяной технический университет,каф. «Механика и конструирование машин»
Прочность материалов при
циклически меняющихся
напряжениях.
ВИБРОУДАРОЗАЩИТА
СИСТЕМЫ С КВАЗИНУЛЕВОЙ
ЖЕСТКОСТЬЮ.
Зотов Алексей Николаевич
2.
Кдинамическим
нагрузкам,
несмотря
на
отсутствие значительных инерционных сил, можно
отнести периодические многократно повторяющиеся
(циклические) нагрузки, действующие на элементы
конструкции. Такого рода нагружения характерны
для большинства машиностроительных конструкций,
таких, как оси, валы, штоки, пружины, шатуны и т. д.
Как показывает практика, нагрузки, циклически
изменяющиеся во времени по величине или по
величине и по знаку, могут привести к разрушению
конструкции
при
напряжениях,
существенно
меньших, чем предел текучести (или предел
прочности). Такое разрушение принято называть
«усталостным». Материал как бы «устает» под
действием многократных периодических нагрузок.
1
3.
Усталостное разрушение – разрушениематериала под действием повторно-переменных
напряжений.
Усталость материала – постепенное накопление
повреждений в материале под действием
переменных напряжений, приводящих к
образованию трещин в материале и разрушению.
Выносливость – способность материала
сопротивляться усталостному разрушению.
Физические причины усталостного разрушения
материалов достаточно сложны и еще не до конца
изучены. Одной из основных причин усталостного
разрушения принято считать образование и развитие
трещин.
2
4.
Механизм усталостного разрушения во многомсвязан с неоднородностью реальной структуры
материалов
(различие
размеров,
очертаний,
ориентации соседних зерен металла; наличие
различных включений – шлаков, примесей; дефекты
кристаллической решетки, дефекты поверхности
материала – царапины, коррозия и т. д.). В связи с
указанной неоднородностью при переменных
напряжениях на границах отдельных включений и
вблизи микроскопических пустот и различных
дефектов возникает концентрация напряжений,
которая
приводит
к
микропластическим
деформациям сдвига некоторых зерен металла (при
этом на поверхности зерен могут появляться
полосы скольжения) и накоплению сдвигов;
3
5.
затемпроисходит
развитие
сдвигов
в
микротрещины, их рост и слияние; на последнем
этапе
появляется
одна
или
несколько
макротрещин, которая достаточно интенсивно
развивается (растет). Края трещины под действием
переменной нагрузки притираются друг об друга, и
поэтому зона роста трещины отличается гладкой
(полированной) поверхностью. По мере роста
трещины поперечное сечение детали все больше
ослабляется, и, наконец, происходит внезапное
хрупкое разрушение детали, при этом зона
хрупкого
долома
имеет
грубозернистую
кристаллическую структуру (как при хрупком
разрушении).
4
6.
Виды циклов нагруженияУсталостная
прочность
материалов
при
повторно-переменном нагружении во многом
зависит от характера изменения напряжений во
времени. При этом далее будем изучать
периодические нагрузки.
Периодическая нагрузка – переменная нагрузка
с установившимся во времени характером
изменения, значения которой повторяются через
определенный промежуток (период) времени.
Цикл напряжений – совокупность всех
значений переменных напряжений за время одного
периода изменения нагрузки.
5
7.
Цикл напряжений.6
8.
Обычно цикл напряжений характеризуется двумяосновными параметрами цикла:
max
- максимальное напряжение цикла;
min
- минимальное напряжение цикла;
m
a
max min
2
max min
min
R
max
- амплитудное
напряжение цикла
- среднее напряжение цикла;
2
– коэффициент асимметрии цикла
напряжений
7
9.
В зависимости от величины перечисленныххарактеристик циклы напряжений могут быть
подразделены на следующие основные типы:
Симметричный цикл – максимальное и
минимальное напряжения равны по абсолютной
величине и противоположны по знаку, max min
R= –1;
Асимметричный цикл - максимальное и
минимальное напряжения не равны по
абсолютной величине ( max min
), при этом
асимметричный цикл может быть
знакопеременным или знакопостоянным;
8
10.
maxСимметричный цикл.
min
Асимметричный цикл.
9
11.
Знакопеременный цикл - максимальноеи
минимальное напряжения, не равны по абсолютной
величине и противоположны по знаку ( max min ;
R 0 ; R 1)
Знакопостоянный
цикл
максимальное
и
минимальное напряжения не равны по абсолютной
величине и имеют одинаковый знак ( max min ;
R 0 ; R 1);
Отнулевой (пульсирующий) цикл – максимальное
или минимальное напряжения равны нулю ( max 0
или min 0 , R 0 или R ).
10
12.
Знакопостоянный цикл.11
13.
Кривая усталости (кривая Веллера)Кривая
усталости
(рис.)
строится
на
основании
результатов
усталостных
испытаний при симметричном
цикле. 00
Кривая Веллера.
12
14.
Кривая усталости показывает, что с увеличениемчисла цикла максимальное напряжение, при
котором происходит разрушение материала,
значительно уменьшается. При этом для многих
материалов, например углеродистой стали, можно
установить такое наибольшее напряжение цикла,
при котором образец не разрушается после любого
числа циклов (горизонтальный участок диаграммы),
называемое пределом выносливости ( R ).
R - наиПредел выносливости (усталости)
большее (предельное) напряжение цикла, при
котором не происходит усталостного разрушения
образца
после произвольно большого числа
циклов.
13
15.
Так как испытания нельзя проводить бесконечнобольшое время, то число циклов ограничивают
некоторым пределом, который называют базовым
числом циклов. В этом случае, если образец
выдерживает базовое число циклов (для черных
металлов – N = 107), то считается, что напряжение в
нем не выше предела выносливости.
Кривые усталости для цветных металлов не
имеют горизонтальных участков, поэтому для них за
базовое число циклов увеличивается до N=108 и
устанавливается
предел
ограниченной
выносливости.
14
16.
Предел выносливости приасимметричном цикле
В реальных конструкциях подавляющее
число деталей работает при ассиметричном
нагружении.
Диаграмма предельных
напряжений (диаграмма
Смита)
Диаграмма
Смита
строится,
как
минимум, по трем
режимам нагружения
(по трем точкам), для
каждого из которых
определяют
предел
выносливости.
15
17.
Первый режим (точка 1) – обычный симметричныйцикл нагружения ( R 1, m 0, max 1 ,
min 1 );
Второй режим (точка 2) – асимметричный
цикл нагружения, как правило, отнулевой ( R 0 ,
m 0 2 , max 0 , min 0 );
Третий режим (точка 3) – простое статическое
растяжение ( R 1, max min m в ),
Полученные точки соединяют плавной линией,
ординаты точек которой соответствуют пределам
выносливости материала при различных значениях
коэффициента асимметрии цикла.
16
18.
Луч, проходящий под углом через началокоординат диаграммы предельных напряжений,
характеризует циклы с одинаковым коэффициентом
асимметрии R:
m
max
2 max
2
tg
m max min 1 R
Диаграмма предельных амплитуд
(диаграмма Хейга).
Диаграмма Хейга строится в координатах:
среднее напряжение цикла - амплитуда цикла. При
этом для ее построения необходимо провести усталостные испытания так же как минимум для трех
17
режимов:
19.
Диаграмма Хейга18
20.
1 – симметричный цикл;2 – отнулевой цикл;
3 – статическое растяжение.
Соединив полученные точки плавной кривой,
получили график, характеризующий зависимость
между значениями предельных амплитуд и
значениями предельных средних напряжений в
цикле.
Кроме свойств материала детали, на усталостную
прочность
оказывают
влияние
следующие
факторы:
- наличие концентраторов напряжений;
- масштабный фактор, то есть влияние абсолютных
размеров детали (чем больше размеры детали, тем
ниже усталостная прочность);
19
21.
качество обработки поверхности (с уменьшениемшероховатости
поверхности
детали
растет
усталостная прочность);
эксплуатационные
факторы
(температура,
коррозия, частота нагружения, радиационное
облучение и т.д.);
наличие
поверхностного
слоя,
упрочненного
различными технологическими методами.
20
22.
ВИБРОУДАРОЗАЩИТАСИСТЕМЫ С КВАЗИНУЛЕВОЙ
ЖЕСТКОСТЬЮ
23.
m y c y F cos( p t )2 / m
c/m
2
K дин. / ( p ) 4 p
2
K
Qmax
2
2 2
2
2
h F /m
Kдин. 1 4 p
2
F
2
4
21
24.
Условие эффективной работы виброизоляторов:p / 4 , при этом K дин. 1/ 15.
Для тихоходных механизмов p / 3 , , при этом
K дин. 1 / 8. [Пановко Я.Г.]
Система профессора Алабужева П.М. (1967 г.)
22
25.
ОСНОВОПОЛОЖНИКИАкадемик Петр Леонидович
Капица (1894 - 1984)
Профессор Петр
Михайлович
Алабужев
(1908 – 1995)
23
26.
Alessandro Carrella (Universityof Bristol - Великобритания)
24
27.
Отрывок из письма Юрия Лазаревича Рутмана: «Идея оприменении изогнутой пластины как амортизатора была
высказана почти полвека назад. Мы называли такие
пластины – арочными амортизаторами. Была и закрытая
диссертация на эту тему (в Военно-Морской Академии, в
Ленинграде). Когда соискатель продемонстрировал
работу арочного амортизатора, то в момент перескока
раздался очень громкий хлопок. Все члены Ученого
Совета проснулись и зааплодировали. Действительно,
вначале
эти
амортизаторы
казались
очень
привлекательными. Но потом выявился целый ряд
недостатков с точки зрения практического применения и
работа заглохла. Вся архивная информация о наших
работах в этом направлении за давностью лет была
уничтожена». Тут как нельзя лучше подходит поговорка:
«новое – это хорошо забыто старое»!
25
28.
Пневматическиесистемы НАН
НКА (Украина)
26
29. Автомобиль, имеющий подвеску с квазинулевой жесткостью
Бронеавтомобиль(Харьков, Украина)
Пневмогидравлические
подвески автомобиля
27
30.
Спектральные плотности вертикальныхвиброускорений кузова автомобиля
V=45 км/ч
По булыжноасфальтовой
дороге
S z g
V=120 км/ч
Асфальтнобетонная дорога
28
31.
1410
в атмосферу
3
9
от компрессора
6
2
13
5
A
B
S2
P1
P2
11
1
7
4
S1
C
8
12
ПНЕВМОАМОРТИЗАТОР
АВЕРЬЯНОВА Г.С.
29
32.
СИЛОВАЯ ХАРАКТЕРИСТИКА ПНЕВМАТИЧЕСКОГОАМОРТИЗАТОРА СИСТЕМЫ АВЕРЬЯНОВА Г.С.
30
33.
-210
8
Za, 10 m
w =0.3
6
4
2
w =0.7
w =0.5
0
-2
1
2
3
4
t, c
-4
-6
w =1
-8
-10
СВОБОДНЫЕ КОЛЕБАНИЯ
АМОРТИЗАТОРА АВЕРЬЯНОВА Г.С.
31
34.
Силовая характеристика с учетом сухого тренияm x cx R sign[x ]
32
35.
Гравитационный подшипник(„Earthquake Protection Systems” - California)
33
36.
Фрикционный качающийся подшипник фирмы«Earthquake Protection Systems» (слева - силовая
характеристика; справа – схема подшипника)
34
37.
Силовая характеристика фрикционного качающегося подшипника спетлей гистерезиса (тефлон), (1 in. = 25.4 mm, 1 kip = 4.46 kN)
35
38. Поглощающий аппарат ПМКП-110
Силовые характеристикиПМКП-110
36
39.
Сейсмозащита трубопроводов37
40. Примеры разработок иностранных фирм
3841.
Предложение Рутмана Ю.Л.Грузоподъемность 1500 т
39
42.
В справочнике «Вибрации в технике: Справочник. В 6-ти т. /Ред. совет: В.Н. Челомей. - М.; Машиностроение, 1979. –
Т. 2. Колебания нелинейных механических систем /
Под ред. И.И. Блехмана. 1979. 351 с.» есть такая таблица:
П ( х)
F ( x ) (
) 2 c f ( x) (2 f ( x) L0 )
х
(1)
40
43.
Возможные применения предлагаемыхвиброзащитных систем
41
44.
0 1y
2 2
0 L0
2
2b
x
c
42
45.
а)б)
43
46.
Для силовойхарактеристики а) (с. 42):
m x (t ) (q F* ) sign ( x (t ))
F* sign ( x(t )) 0
(1)
x0 0; x0 V0 ; 0 q 1
q R / F*
44
47.
Для силовой характеристики, рис. а (с. 26); а – аналитическоерешение; б – численное решение; F* 500 H ; m = 500 кг;
1 V0 3 м / c; 2 V0 2 м / c; 3 V0 1 м / c
1 q
m V0
2
1
1
Tзат
(
)
F
1 q
1 q 2 (1 q) 1 q 1 (1 q) /(1 q)
q* 0.786
45
48. ПРИМЕНЕНИЕ СИСТЕМ С КВАЗИНУЛЕВОЙ ЖЕСТКОСТЬЮ ДЛЯ СЕЙСМОЗАЩИТЫ
4649.
Силатолчка –
300 –
350 кг
Банда
попрыгунчиков
1918-1920
V 40 км / час
47
прыжки до трех метров
Расход топлива - 0,14 кг/час
50.
А что, если сделать шарниры упругими сзаданными силовыми характеристиками?
Цена
такого
костюма
сравнима
со стоимостью
авто бизнес-класса.
В ходьбе
сохраняется
до 65%
общей
энергии,
в беге – 8%;
Компания Honda
48
51.
СХЕМА УПРУГОГО ШАРНИРА ЭКЗОСКЕЛЕТОНАa ( L0 ) b
M 2N h
49
52.
Пусть радиус ролика равен нулю.Момент от одной пружины:
M ( )
П
M ( ) N h
2
с
с
2
2
П ( l ) (a L0 b )
2
2
- длина ненапряженной пружины;
а, b – постоянные величины; - var.
L0
П
d
M ( )
c (a L0 b )
d
(33)
50
53.
Киберноги HondaВремя работы на одной
зарядке – 2 часа.
Эти киберштаны компания
отдаёт в аренду за $2
тысячи в месяц.
Предназначение
киберштанов — оснащение
рабочих на конвейере.
51
54.
M ( ) ?Киберноги
пассивного
типа, на базе
упругого шарнира с заданной
силовой характеристикой M ( )
y 2 cos
| y | 2 sin
| y | /( 2 sin )
52
55.
F | y | M 2При равновесии: Q y
0
y
или
F | y | M 2(| y | /( 2 sin ))
Q y
0
y
M F sin
F - const
(35)
53
56.
Критические состояния жесткого ротора на упругих опорахПановко Я. Г.
«Основы прикладной теории колебаний и удара»
- Л.: Политехника, 1990. - 272 с, с. 140 - 142.
Ротор – полностью уравновешенный. Его моменты инерции относительно центральных осей x, y, равны: I x , I y , I z
2
2
c
a
c
b
2
кр4 кр2 ( 1
Ix Iz
c1 c2
c1 c2 l
)
0
m
m (I x I z )
2
с1 c2 0 кр 0
54