Similar presentations:
phpviFcjc_Prezentaciya--Natematicheskoe-modelirovanie
1.
2.
Задача ПуассонаСамая древняя из
задач на переливание –
задача Пуассона.
Знаменитый
французский
математик,
механик и физик Симеон
Дени Пуассон (1781 –
1840) решил эту задачу в
юности и впоследствии
говорил, что именно она
побудила
его
стать
математиком.
3.
Задача ПуассонаОдин человек имеет
в бочонке 12 пинт вина
(пинта
–
старинная
французская мера объема,
1 пинта ≈ 0,568 л) и хочет
подарить половину вина,
но у него нет сосуда в 6
пинт, однако имеются два
пустых сосуда объемом 8
пинт и 5 пинт. Как с их
помощью отлить ровно 6
пинт вина?
4.
МЕТОДЫ РЕШЕНИЯ ЗАДАЧ НАПЕРЕЛИВАНИЯ
метод рассуждений;
метод проб и ошибок;
табличный;
метод блок – схем;
метод математического бильярда.
5.
• Задача 1. Летом Винни - Пух сделал запас мёда назиму и решил разделить его пополам, чтобы
съесть половину до Нового Года, а другую
половину - после Нового Года. Весь мёд находится
в ведре, которое вмещает 6 литров.
• У него есть 2 пустые банки – 5-литровая и 1литровая.
• Может ли он разделить мёд так, как задумал?
6.
Этапрешения
задачи
До
переливания
Емкость
6
литр
ов
5
литро
в
1
литр
6
0
0
1-е
переливание
2-е
переливание
3-е
переливание
4-е
переливание
5-е
переливание
6л
5л
1 л
7.
Этапрешения
задачи
Емкость
6
литр
ов
5
литро
в
1
литр
До
переливания
6
0
0
1-е
переливание
1
5
0
2-е
переливание
3-е
переливание
4-е
переливание
5-е
переливание
5
1
0
8.
Этапрешения
задачи
Емкость
6
литр
ов
5
литро
в
1
литр
До
переливания
6
0
0
1-е
переливание
1
5
0
2-е
переливание
1
4
1
3-е
переливание
4-е
переливание
5-е
переливание
1
4
1
9.
Этапрешения
задачи
Емкость
6
литр
ов
5
литро
в
1
литр
До
переливания
6
0
0
1-е
переливание
1
5
0
2-е
переливание
1
4
1
3-е
переливание
2
4
0
4-е
переливание
5-е
переливание
2
4
0
10.
Этапрешения
задачи
Емкость
6
литр
ов
5
литро
в
1
литр
До
переливания
6
0
0
1-е
переливание
1
5
0
2-е
переливание
1
4
1
3-е
переливание
2
4
0
4-е
переливание
2
3
1
5-е
переливание
2
3
1
11.
Этапрешения
задачи
Ёмкость
6
литр
ов
5
литро
в
1
литр
До
переливания
6
0
0
1-е
переливание
1
5
0
2-е
переливание
1
4
1
3-е
переливание
2
4
0
4-е
переливание
2
3
1
5-е
переливание
3
3
0
3
3
0
12.
Вывод: за 5 переливаний Винни – Пух можетразделить 6 л мёда пополам, используя ёмкости 5 л
и 1 л.
13.
Задача 2. Имеются два сосуда - трехлитровый ипятилитровый. Нужно, пользуясь этими сосудами,
получить 4 литра воды. В нашем распоряжении
водопроводный кран и раковина, куда можно
выливать воду.
Таблица переливаний
3л
5л
Шаг
1
Шаг
2
Шаг
3
Шаг
4
Шаг
5
Шаг
6
Шаг
7
0
3
0
2
2
3
0
5
2
2
0
5
4
4
Вывод: за 6 переливаний можно получить 4 л
воды, используя сосуды 5 л и 3 л.
14.
ЗадачаВ бидоне не
менее
10
литров
молока.
Как отлить из
него ровно 6 литров
с помощью пустых
девятилитрового
и
пятилитрового
бидонов.
15.
Решение задачиОбозначим начальное количество молока
в первом бидоне через а литров. Число а
не меньше 10, поэтому разностью а - 10
пользоваться можно, а разностью а - 11
уже нельзя. Решение записывается так:
Бидон объемом а л
а
а-5 а-5 а-10 а-10 а-1 а-1 а-6 а-6
Бидон объемом 9 л
0
0
5
5
9
0
1
1
6
Бидон объемом 5 л
0
5
0
5
1
1
0
5
0