Similar presentations:
Призма. Пространственные фигуры
1.
ПРИЗМА2.
Пространственные фигуры3.
Понятие призмыМногогранник, составленный из двух равных многоугольников A1A2…An и
B1B2…Bn, расположенных в параллельных плоскостях, и n
параллелограммов, называется призмой
В5
В4
В1
В3
В2
A5
A4
A1
A3
A2
4.
Элементы многогранникаверхнее основание
вершины
боковая грань
диагональ
нижнее основание
5.
В5Многоугольники A1A2…An и B1B2…Bn
называются основаниями призмы
В4
В1
В3
В2
В5
В4
В1
A5
В3
A4
A1
A3
В2
A2
A5
A4
A1
A3
A2
а параллелограммы – боковыми
гранями призмы
6.
В5Отрезки A1B1, A2B2, … , AnBn называются
боковыми ребрами призмы
В1
В3
Боковые ребра призмы равны и
параллельны
В5
В2
A5
В4
В1
В3
A4
A1
A3
A2
A4
A1
A3
A2
В2
A5
В4
Вершины многоугольников A1, A2, …, An и
B1, B2, …, Bn называются вершинами
призмы
7.
Высота призмыВ5
В4
В1
В3
В2
A5
A1
В1Н ⊥(А1А2А3)
В3К ⊥(А1А2А3)
A4
A3
Н
К
A2
Перпендикуляр, проведенный из какой-нибудь точки одного
основания к плоскости другого основания, называется высотой
призмы
8.
Виды призмпо виду оснований:
9.
Виды призмПрямая
Наклонная
В5
В4
В5
В1
В3
В1
В3
В2
В2
A5
A4
A5
A3
A1
В4
A4
A1
A3
A2
A2
Если боковые ребра призмы
перпендикулярны к основаниям,
то призма называется прямой,
высота – боковое ребро
в противном случае –
наклонной.
10.
Правильная призмаВ5
В4
В3
В1
В2
A5
A4
A1
A3
A2
Прямая призма называется правильной, если её основания
правильные многоугольники
У правильной призмы все боковые грани – равные прямоугольники
–
11.
Площадь поверхности призмыSполн.= Sбок.+ 2Sосн.
Площадью боковой
поверхности призмы
называется сумма
площадей её боковых
граней
Площадью полной
поверхности
призмы называется
сумма площадей
всех её граней
12.
Особые сечения призмы• Диагональное сечение –
это сечение проходящее
через два боковых ребра,
не принадлежащих
одной грани.
• Перпендикулярное
сечение – это сечение,
проходящее
перпендикулярно
боковым ребрам.
13.
Теорема о площади боковой поверхностипрямой призмы
Площадь боковой поверхности прямой призмы
равна произведению периметра основания на
высоту призмы
Sбок. = Росн.· h
Доказательство.
Боковые грани прямой призмы – прямоугольники, основания которых –
стороны основания призмы, а высоты равны высоте h призмы.
Sбок. = A1A2· h + A2A3· h + A3A4· h + … + An-1An· h =
= (A1A2 + A2A3 + A3A4 + … + An-1An) · h = Pосн.· h
14.
Теорема о площади боковойповерхности наклонной призмы
Площадь боковой поверхности наклонной призмы равна
произведению периметра перпендикулярного сечения
и бокового ребра
15.
Спасибо завнимание