Similar presentations:
3акон Био–Савара–Лапласа. Сила Лоренца. Сила Ампера
1. Лекция No. _ 3акон Био–Савара–Лапласа Сила Лоренца. Сила Ампера
2. Силовые линии магнитного поля
• Магнитной силовойлинией называют
линию, касательная к
которой в каждой точке
совпадает с
направлением
напряженности
магнитного поля.
3. Картины магнитных полей
Поле соленоидаПоле кругового
тока
4.
Магнитное поле движущегося зарядаЭлектрический ток –
упорядоченное
движение зарядов, а
магнитное поле
порождается
движущимися зарядами.
Под свободным
движением заряда
понимается его движение
с постоянной скоростью
4
5.
Магнитное поле создается проводниками с током,движущимися электрическими заряженными частицами
и телами, а также переменными электрическими
полями.
Силовой характеристикой магнитного поля служит
вектор магнитной индукции поля, созданного одним
зарядом в вакууме:
μ 0 q υ, r
B
3
4π r
5
6.
Физический смысл магнитной индукции:Вектор магнитной индукции показывает, какая сила действует
на проводник, в котором течет ток силой 1 ампер, если длина
проводника равна 1 метру
B
F
qV sin
6
7.
Направление dB связано с направлением d l«правилом буравчика»: направление вращения
головки
винта
дает
направление dB ,
поступательное
движение
винта
соответствует направлению тока в элементе.
7
8.
Правило буравчика:8
9.
3акон Био–Савара–ЛапласаВ 1820 г. французские физики Жан Батист Био и Феликс
Савар, провели исследования магнитных полей токов
различной формы. А французский математик Пьер
Лаплас обобщил эти исследования.
μ 0 4 π 10
7
Гн/м
– магнитная постоянная
9
10.
Рассмотрим малый элемент длины dl. В этом элементе содержитсяn·V=n·S·dl носителей тока
В точке А один носитель тока е
создает поле с индукцией
0 e (V U ) r
B
4
r3
V - скорость хаотического движения носителей,
U - скорость упорядоченного движения носителей
А
Значение В, усредненное по носителям тока,
заключенным в элементе dl равно:
0 e ( V U ), r 0 e U , r
B
3
4
4
r
r3
Умножив на число носителей в элементе провода dl (=n·S·dl), получим вклад в
поле, вносимый элементом dl:
0 S (n e U ), r d l
dB B n S d l
4
r3
11.
т.к.n e U j
то
плотность
тока
0 S j, r d l
dB
3
4
r
А
Введем вектор , направленный по оси элемента тока
длиной dl в сторону,
течет ток.
в которую
Т.к.направление j и d l совпадают, то:
j dl j dl
0 S j d l , r
dB
4
r3
Эта формула
получена
экспериментально
0 I d l , r
dB
4
r3
S·|j| =I
магнитная индукция поля,
создаваемого элементом
тока длиной dl
12.
Это соотношение, экспериментально установленноеБио-Саваром, и математически выведенное Лапласом,
называется законом Био-Савара-Лапласа. Согласно
этому закону вычисляется индукция магнитного поля,
создаваемого в любой точке А элементом тока I·dl.
А
13.
Вектор магнитной индукциинаправлен
перпендикулярно плоскости, проходящей через
и точку, в которой вычисляется поле.
Закон Био–Савара–Лапласа для вакуума можно
записать так:
μ Idlsin α
dB
μ 0 4 π 10 7 Гн/м
0
4π
r
2
,
– магнитная постоянная.
В общем виде
Idlsinα
dB k
,
2
r
где α - угол между d l и r ; k –
коэффициент пропорциональности.
13
14.
dLI
dB sin
sin 90 1, sin 30 0,5
sin 0 0
14
15.
Напряженность магнитного поляМагнитное поле – это одна из форм проявления
электромагнитного поля, особенностью
которого является то, что это поле действует
только на движущиеся частицы и тела,
обладающие электрическим зарядом, а
также на намагниченные тела.
15
16.
Напряженностьюмагнитного поля называют векторную
величину H ,
характеризующую
магнитное
поле
и
определяемую следующим образом:
B
H .
μ0
Напряженность магнитного поля заряда q, движущегося в
вакууме равна:
1 q υ, r
H
4π r 3
- это закон Био–Савара–Лапласа для вектора напряженности
магнитного поля
16
17. Циркуляция вектора магнитной индукции
Возьмем контур l охватывающий прямой ток I, ивычислим для
него циркуляцию вектора магнитной
индукции B
т.е.
B
d
l
=
?
l
18.
• Вначале рассмотрим случай, когда контур лежит вплоскости перпендикулярно потоку (ток I направлен за
чертеж). В каждой точке контура вектор B направлен
по касательной к окружности, проходящей через эту
точку
• Воспользуемся свойствами скалярного
произведения векторов:
Bl d l B d l B ,
• где dl B – проекция dl на вектор B,
dl B Rdα
, где R – расстояние от тока I
до dl.
• Тогда
μ I
μ Id α
Bl dl BdlB
0
2 πR
Rdα
0
2π
19.
2πμ0I
Bl d l 2 π dα μ 0 I ,
0
Теорема о циркуляции вектораB :
циркуляция вектора магнитной индукции равна
току, охваченному контуром, умноженному на
магнитную постоянную:
B
d
l
I
,
l
0
20.
если ток не охватывается контуром•В этом случае при обходе радиальная прямая
поворачивается сначала в одном направлении (1–2), а
потом в другом (2–1). Поэтому
dα , 0
и следовательно, в этом случае
B
d
l
0
21.
• Итак,B
d
l
I
,
0
l
где I – ток, охваченный контуром L.
• Эта формула справедлива и для тока
произвольной формы, и для контура
произвольной формы.
22.
• Если контур охватывает несколько токов,то
B
d
l
μμ
I
,
0
i
l
B
• т.е. циркуляция вектора
равна
алгебраической сумме токов,
охваченных контуром произвольной
формы.
23.
Магнитное поле прямого тока.Пусть точка, в которой определяется
магнитное поле, находится на расстоянии b
от провода.
Все вектора dB в данной точке имеют
одинаковое направление (за чертеж).
Поэтому сложение векторов можно заменить
сложением их модулей.
Из рисунка видно, что:
b
r
;
sin
rd
bd
dl
.
2
sin sin
Подставив найденные значения r и dl в
закон Био–Савара–Лапласа, получим:
0 b d sin 2
0 I
dB I 2
sin sin d
2
4 sin b
4 b
24.
Для конечного проводника угол α изменяется от α1до α2. Тогда:
α2
α2
μ0 I
μ0I
cosα1 cosα 2 .
B dB
sinα dα
4π b α1
4πb
α1
Для бесконечно длинного проводника α1 = 0,
а α2 = , тогда:
μ0I
B
2 πb
или
μ0 2I
B
.
4π b
25.
I0 IL
B
2 r
26.
Магнитное поле кругового токаРассмотрим поле, создаваемое током I, текущим по тонкому
проводу, имеющему форму окружности радиуса R.
dB| | dBsinβ
R
sinβ
r
27.
Rsinβ
r
т.к. угол между
sin α 1,
dB| | dBsinβ
d l и r α – прямой, то
тогда получим:
R μ 0 Idl R
dB| | dB
.
2
r 4π r r
28.
22 и,
Подставив
r R x
проинтегрировав по всему контуру l 2 π R
получим
выражение
для
нахождения
магнитной индукции кругового тока:
2 R
2 R
0 IR
0 2 R I
B dB||
dl
.
3
3
4 r 0
4 R 2 x 2 2
0
2
При х = 0, получим магнитную индукцию в
центре кругового тока:
μ0I
B
2R
28
29.
I0 I
Bo
2 r
30.
Основное свойство магнитного поля – способностьдействовать на движущиеся электрические заряды с
определенной силой.
В магнитном поле контур с током будет
ориентироваться определенным образом.
Ориентацию контура в пространстве будем характеризовать направлением нормали, которое определяется
правилом правого винта
или «правилом буравчика»:
За положительное направление
нормали принимается направление
поступательного движения винта,
головка которого вращается в
направлении тока, текущего в рамке
31.
Контур ориентируется в данной точке поля только однимспособом.
За направление магнитного поля в данной точке
принимается положительное направление нормали.
31
32.
Вращающий момент прямо пропорционален величинетока I, площади контура S и синусу угла между
направлением магнитного поля и нормали n
M ~ ISsin( n ,B),
здесь М – вращающий момент, или момент силы,
IS Pm - магнитный момент контура (аналогично
ql P – электрический момент диполя).
32
33.
Направление вектора магнитного момента совпадает сположительным направлением нормали:
Pm Pm n.
33
34.
MОтношение момента силы к магнитному моменту
Pm
для данной точки магнитного поля будет одним и
тем же и может служить характеристикой
магнитного поля, названной магнитной индукцией:
M
B
Pm sin (n, B)
M max
B ,
Pm
B – вектор магнитной индукции, совпадающий с
нормалью n
По аналогии с электрическим полем
F
E .
q
34
35.
в числителеI π R IS Pm –
2
0 2 R 2 I
B
.
3
4 R 2 x 2 2
магнитный
момент
контура. Тогда, на большом расстоянии от
контура, при R x , магнитную индукцию
можно рассчитать по формуле:
μ 0 2 Pm
B
.
3
4π x
36.
• Теорема о циркуляции вектораиндукции
магнитного поля
B, d l μ I
0
позволяет легко рассчитать величину В от
бесконечного проводника с током :
.
0 I
B
2 r
37.
Рассмотрим еще одно важное следствие из закона Био–Савара–Лапласа, котороеоблегчает расчеты магнитных полей.
Допустим, что по проводнику течет ток I. По закону Био–Савара–Лапласа
I
L
dl
r
H
М
можно рассчитать напряженность в точке М.
Idl sin
H
2
4 r
Проведем в магнитном поле замкнутую линию L и
разделим ее на участки dl. Для каждого участка
будет справедливо выражение
Hdl cos
где β – угол между H и касательной к линии.
Просуммируем вдоль всей линии эти выражения
Hdl cos I
Bdl cos I
0
Если изменить направление тока в проводнике, то в каждой точке поля вектор Н
изменит свое направление на противоположное, косинусы углов будут иметь
противоположный знак, интеграл сделается отрицательным .
Знак интеграла изменится и при изменении направления обхода по линии L.
38.
Поэтому направление обхода и напрваление тока должны быть связаныправилом знаков:
Если буравчик вращать по выбранному нами направлению обхода линии L,
то его перемещение соответствует положительному направлению тока I.
Выражение
не зависит ни от формы
Hdl cos I
контура с током, ни от формы замкнутой линии L.
Если линия охватывает несколько проводников с токами I1,I2,…
то по принципу суперпозиции , интеграл будет равен сумме этих
токов.
Если линия охватывает один и тот же проводник n раз, то
интеграл равен n·I
Если линия L не охватывает токов, то интеграл равен
нулю.
39.
ИнтегралHdl cos H dl
называется циркуляцией вектора напряженности вдоль данной
замкнутой линии обхода.
Hdl
I
i
Bdl
I
0
i
Теорема о циркуляции напряженности магнитного
поля или закон полного тока
Циркуляция вектора напряженности равна
алгебраической сумме токов
40. Магнитный поток (поток вектора магнитной индукции)
• Магнитным потоком или потокомвектора магнитной индукции
сквозь площадку S называют
величину:
Ф B S cos BnS [Вб ]
Угол между направлением нормали
к площадке S и направлением
вектора магнитной индукции B
Магнитный поток – скалярная величина.
Полный поток вектора магнитной индукции: Ф Bn dS
S
41.
Теорема Гаусса для векторамагнитной индукции
Поток вектора через замкнутую поверхность должен быть
равен нулю.
Таким образом:
(1.7.1)
ФB BdS 0
S
Это теорема Гаусса для ФВ (в интегральной форме): поток
вектора магнитной индукции через любую замкнутую
поверхность равен нулю.
42.
d BdS cos43.
В природе нет магнитных зарядов –источников магнитного поля, на которых
начинались и заканчивались бы линии
магнитной индукции.
Заменив поверхностный интеграл в (1.7.1)
объемным, получим:
B
d
V
0
(1.7.2)
V
где – оператор Лапласа.
x y z
44.
Магнитное поле обладает тем свойством, чтоего дивергенция всюду равна нулю:
div B 0
или
B 0.
Электростатического поля может быть выражено
скалярным потенциалом φ, а магнитное поле –
вихревое, или соленоидальное
45. Вихревой характер магнитного поля
• В электростатическом поле силовыелинии начинаются и заканчиваются на
электрических зарядах. Силовые линии
разомкнуты.
• В магнитном поле силовые линии
замкнуты.
• Поле, в котором силовые линии
замкнуты называется вихревым.
• Магнитное поле – вихревое поле.
Магнитных зарядов в природе не
существует.
46.
• Возникают магнитные поля в присутствии токов иявляются вихревыми полями в области, где есть токи.
• Магнитные линии образуют петли вокруг токов.
• Не имея ни конца, ни начала, линии В возвращаются в
исходную точку, образуя замкнутые петли.
• В любых, самых сложных случаях линии В не исходят
из точек.
• Утверждение, что divВ = 0 , справедливо всегда.
47.
Сравнив уравнения магнитостатикиrotВ = 0j, divВ = 0
с уравнениями электростатики
rotЕ = 0, divЕ =
0
можно заключить, что электрическое поле
всегда потенциально, а его источниками
являются электрические заряды.
48.
Поле движущегося зарядаПолагая, что в элементе тока I·dl содержится Δn электронов, имеющих
скорости упорядоченного движения V, найдем индукцию поля,
B
B
создаваемую в данной точке одним движущимся электроном.
n
0 Idl
dB
2 sin
4 r
Так как сила тока
I = Δn · e· V ·S
0 n e v S 1
0 e v S
B
sin
sin
2
2
4
n
r
4 r
49.
Напряженность магнитного поля внутри длинного соленоида стоком
Соленоид в магнетизме – аналог конденсатора в
электричестве.
Поле внутри бесконечного соленоида однородно
Выберем контур обхода так, чтобы участки 1-2
и 3-4 проходили внутри силовой линии, а 2-3 и
4-1 были перпендикулярны ей.
Участок 1-2 расположен внутри соленоида, а 3-4 вдали от соленоида, где поле
мало. Длину Δl выберем такую, чтобы на протяжении нее величину
напряженности можно было бы считать одинаковой. Для этого плотность
обмотки, т.е. число витков на единицу длины n1= Δn/Δl должна быть достаточно
большой.
Циркуляция вектора Н по контуру 1-2-3-4 равна
2
3
4
1
1
2
3
4
Hdl Hdl Hdl Hdl Hdl
50.
23
4
1
1
2
3
4
Hdl Hdl Hdl Hdl Hdl
Второй и четвертый интегралы равны нулю, т.к. , H dl а третьим интегралом
пренебрегаем, ввиду малости поля вне соленоида.
Тогда
2
Hdl Hdl H l
1
H·dl = ΣIi = Δn·I;
I n
H
n1 I
l
Результат расчета в любой
точке сечения соленоида
будет одинаковой.
Произведение n1·I называется числом ампер-витков на метр.
В величину магнитной индукции на оси соленоида симметрично
расположенные витки вносят одинаковый вклад. Поэтому у конца полу
бесконечного соленоида на его оси величина индукции равна:
В = ½ μ0·n1·I
51.
напряженность магнитного поля внутри толстых проводников стоком
Если проводник прямолинейный и бесконечно длинный, то
вдоль этой линии обхода напряженность магнитного поля
будет везде одинакова и в каждой точке направлена по
касательной (так как линия обхода совпадает с силовой
линией, cos β=1 в формуле
H dl cos
Hdl H 2 r
тогда
Эта линия охватывает площадь S = πr2. Если плотность в различных местах
проводника одинакова, то ток, проходящий через S, и охватываемый линией обхода,
I= j·S, тогда
H·2πr = j·πr2
Т.к.
j
I
R2
H=½ j·r
H
I
r
2
2 R
52.
Таким образом, на оси проводника (r=0)напряженность поля Н=0, а по мере удаления
от оси – растет прямо пропорционально
расстоянию. В точках за пределами объема
проводника напряженность магнитного поля
обратно пропорциональна расстоянию от оси
проводника
I
H
r
2
2 R
H
I
2 R
53.
Закон АмпераНа прямолинейный участок длиной dl проводника с током I, находящийся в
магнитном поле, действует сила, равная
dF I dl , B
F = I·L·B·sina
или
I - сила тока в проводнике;
B - модуль вектора индукции магнитного
поля;
L - длина проводника, находящегося в
магнитном поле;
- угол между вектором магнитного поля
и направлением тока в проводнике.
Силу, действующую на проводник с током
в магнитном поле, называют силойАмпера.
Максимальная сила Ампера равна:
Ей соответствует α = 900.
F = I·L·B
54.
Направление силы Ампера определяется по правилу левой руки:если левую руку расположить так, чтобы перпендикулярная
составляющая вектора магнитной индукции В входила в ладонь, а
четыре вытянутых пальца были направлены по направлению тока, то
отогнутый на 90 градусов большой палец покажет направление силы,
действующей на отрезок проводника с током, то есть силы Ампера.
55.
Сила ЛоренцаЗная закон Ампера, можно получить выражение для силы, с которой
магнитное поле действует на движущийся заряд.
Пусть n – число упорядоченно движущихся электронов в единице
объема проводника
V - скорость движущихся электронов
n·ΔV = N
S – площадь сечения проводника
Тогда I = n · e· V ·S = j · S,
а элемент тока I · dl = j · S = n · e· V ·S · dl = N · e· V
N - число упорядоченно движущихся электронов в объеме участка тока.
На 1 заряд действует сила
dF 1
B N e v sin
( I dl B sin )
e v B sin
N
N
N
или в векторной записи
F [e v B ]
Сила Лоренца
56.
Сила ЛоренцаНаправление силы Лоренца зависит от
знака заряда и перпендикулярна к
плоскости, в которой лежат вектора V и B
Обратите внимание, что сила Лоренца перпендикулярна скорости и поэтому
она не совершает работы, не изменяет модуль скорости заряда и его
кинетической энергии. Но направление скорости изменяется непрерывно
направление силы Лоренца определяется с
помощью того же правила левой руки, что и
направление силы Ампера: если левую руку
расположить так, чтобы составляющая
магнитной индукции В, перпендикулярная
скорости заряда, входила в ладонь, а четыре
пальца были направлены по движению
положительного заряда (против движения
отрицательного), то отогнутый на 90 градусов
большой палец покажет направление
действующей на заряд силы Лоренца F л.
57.
Если имеются одновременно электрическое и магнитное поля, то на заряддействует сила
F qE q V B
Пусть два одноименных точечных заряда q1 и q2 движутся вдоль
параллельных прямых со скоростью V<<C. Сравним силы, действующие на
заряды со стороны электрического Fэл и магнитного Fмагн полей.
q1q 2
Fэл1 Fэл 2
2
4 0 r
1
Fмагн действующая на заряд q1
0 q1q 2V 2
Fмагн q1 V B21
4
r2
0 q V r 0 q 2V
B21 3 2
4 r
4 r
58.
Отношение магнитной силы к электрической будет:0 q1q2V 2
2
2
Fм 4 r
V
2
V
Fэ
1
q1q2
4 0 r 2
0
0
C
2
то есть магнитная сила слабее кулоновской силы на множитель,
пропорциональный V2/C2
Таким образом, магнитное взаимодействие между движущимися зарядами
является релятивистским эффектом (как следствие закона Кулона). Магнетизм
исчез бы, если бы скорость света приблизилась к бесконечности. Он
отсутствует у неподвижных зарядов (V=0).
Электрическое и магнитное поля неразрывно связаны друг с другом, и
образуют единое электромагнитное поле.
59.
Значение величины μ0 содержится в определении силы Ампера :1Ампер=1А это сила неизменяющегося тока, который, проходя по двум
параллельным прямолинейным проводникам бесконечной длины и малого
кругового сечения, расположенным на расстоянии 1м друг от друга в
вакууме, вызывал бы между этими проводниками силу, равную 2*10-7 Н на
каждый метр длины.
Величину μ0 – называют магнитной постоянной, а также
магнитной проницаемостью вакуума.
Произведение μ· μ0 - абсолютная магнитная проницаемость
данной среды.
Относительной магнитной проницаемостью данной среды по
отношению к вакууму называют безразмерную величину μ,
которая показывает во сколько раз сила, действующая на
движущиеся заряды и проводники с током в данной среде
больше, чем в вакууме.
60.
Условились, за направление B принимать направление северногоконца магнитной стрелки.
Силовые линии выходят из северного полюса, а входят,
соответственно, в южный полюс магнита.
Для графического изображения полей удобно
пользоваться силовыми линиями (линиями
магнитной индукции).
Линиями магнитной индукции называются
кривые, касательные к которым в каждой
точке совпадают с направлением вектора B
в этой точке.
Земля- тоже магнит.
Ее северный магнитный
полюс находится около
южного географического
полюса, а южный
магнитный полюс- около
северного географического
60
61.
Земля – подобна огромному магниту, с полюсами в верхней инижней частях планеты и расположенных очень близко к
географическим полюсам планеты. Магнитное поле Земли
простирается на тысячи километров вокруг планеты и называется
эта область – магнитосферой.
Магнитосфера образует своего рода защитный купол, огибающий
Землю и защищающий от бомбардировки частицами солнечного
ветра, солнечной радиации.
61