17.20M
Category: ConstructionConstruction
Similar presentations:

Железнодорожный сборно - разборной надвижной армейский мост имени Фомина М. Ю

1.

Спец воен вестник «Армия Защитников Отечество" № 9 09.05.23 борник
тезисов докладов аннотация для Всероссийского съезда фундаментальных проблем теоретической и прикладной механике в Политехническом
Организация "Сейсмофонд" ОГРН: 1022000000824 ИНН" 2014000780 т/ф (812) 6947810 [email protected] [email protected]
Доц ПГУПС ЕГОРОВА О.А. инж. Богданова И.А. зам През ОО "Сейсмофон" .Уздин А.М., патентовед
.КОВАЛЕНКО Е. и лр Применение программного комплекса SCAD для расчет пластинчатой фермыбалки со встроенным бетонным настилом из стальных конструкций пролетами 18, 24 и 30 метров
замкнутых гнутосварных профилей прямоугольного сечения типа «Молодечно» (серия 1.460.3-14 ГПИ
«Ленпроекстальконструкция» для системы несущих элементов и элементов проезжей части
железнодорожного сборно-разборного надвижного армейского моста им Фомина М Ю

2.

Расчет в SCAD Надвижной мост дружбы между братскими славянскими напродами проф Уздина ЛИИЖТ,

3.

можно собрать за 24 часа пролетом 54 метра , ширина проезжей части 3.0 метра, Грузоподьемность
армейского автомобильного моста 3 тонн ( для машины скорой помощи) Для критических ситуаций
Мост Предложения для Минстроя ЖХХ Минобороны Минтранса по расчету в ПK SCAD 21.1.1.1
Подпрсссесор "Сталь" СП 16.1330.2011 п 7.1.1. на предельное равновесие и сдвиговую прочность , при
критических ситуациях статически неопределимых упругоплатических структурных балок стальных
ферм скрепленными сдвиговыми болтовыми соединениями, с овальными отверстиями, с большими
пермещениями по проевтироанию и строительству армейских сборно-разборных быстро собираемых
автомобильных и железнодорожных мостов с диагональными натяжными элементами верхнего и
нижнего пояса фермы со встроенным бетонным настилом . пролетом 54 метра , грузоподъемность 60
тонн, из стальных конструкций с применением замкнутых профилей прямоугольного сечения типа
"Молодечно" ( серия 1.460.3-14 ГПИ "Ленпроектстальконструкция" ) для ситсемы несущих элементов
проезжей части армейского сборно-разборное пролетное строение моста , с быстросъемными
упругоплатическими компенсаторами , со сдвиговой фрикционно-демпфирующей жесткостью в ПК SCAD
21.1.1.1 Постпроцессор "Сталь" СП 16.1330.2011, при сдвиговая прочность при действии поперечных сил
Q
Об упругопластическом анализе при воздействии сейсмических и кратковременных нагрузок в SCAD Office
Об упругопластическом анализе при воздействии сейсмических и
кратковременных нагрузок в SCAD Office
https://www.youtube.com/watch?v=o1COOdDQyuE
Фиалко Сергей Юрьевич, доктор технических наук, профессор Технического университета им. Тадеуша
Костюшки «Краковская Политехника», SCAD Soft, г. Краков (Польша) Об упругопластическом анализе
поведения зданий и сооружений при воздействии сейсмических и кратковременных нагрузок в SCAD Office

4.

Проблема с коэффициентом «Предельная гибкость стенки из условия местной
устойчивости» в SCAD https://buildsam.ru/16059 https://ppt-online.org/1289259
Специальные технические условия по изготовлению упругопластической стальной ферм пролетного строения
армейского моста, пролетами 54 метров с использованием опыта КНР, c большими перемещениями на
предельное равновесие и приспособляемость , для автомобильного моста, шириной 3,2 метра, грузоподъемностью
60 тонн , сконструированного со встроенным бетонным настилом по изобретениям : «КОНСТРУКЦИЯ
УЧАСТКА ПОСТОЯННОГО ЖЕЛЕЗОБЕТОННОГО МОСТА НЕРАЗРЕЗНОЙ СИСТЕМЫ, ВОССТАНОВЛЕННОГО
С ПРИМЕНЕНИЕМ типовых структурных серии 1.460.3-14 ГПИ "Ленпроектстальконструкция", стальные
конструкции покрытий производственных» № 2022111669 от 25.05.2022, «Сборно-разборный железнодорожный
мост» № 2022113052 от 27.05.2022, «Сборно-разборный универсальный мост» № 2022113510 от 21.06.2022,
«Антисейсмический сдвиговой компенсатор для гашения колебаний пролетного строения моста» № 2022115073
от 02.06.2022 ) на болтовых соединениях с демпфирующей способностью при импульсных растягивающих
нагрузках, при многокаскадном демпфировании из пластинчатых балок, с применением гнутосварных
прямоугольного сечения профилей многоугольного сечения типа «Молодечно» (серия 1.460.3-14 ГПИ

5.

«Ленпроектстальконструкция») с использованием изобретений №№ 2155259 , 2188287, 2136822, 2208103, 2208103,
2188915, 2136822, 2172372, 2228415, 2155259, 1143895, 1168755, 1174616, 2550777, 2010136746, 165076, 154506
Применение программного комплекса SCAD Office для расчета стержневых конструкций
Учебно-методическое пособие для студентов строительных специальностей
Общественная организация "Сейсмофонд" УДК УДК 69.059.22
А.М.Уздин О.А.Егорова А.И.Коваленко и др Применение программного комплекса SCAD Office для
расчета стержневых конструкций Учебно-методическое пособие для студентов строительных

6.

В пособие включено описание основных этапов расчета стержневых конструкций с
использованием программного комплекса SCAD Office.
Приведен справочно-методический материал по работе в среде SCAD Office.
Пособие предназначено для студентов строительных специальностей.
Рекомендовано заседанием кафедры «Строительные конструкции» Протокол № 07 от 12.05.2015
Оглавление
ТЕМА 1 ОСНОВЫ РАСЧЕТА В SCAD 4
1.1 Назначение SCAD 4
1.2 Типы конечных элементов 5
1.2.1 Библиотека конечных элементов 5
1.2.2 Описание стержневых конечных элементов. 6
1.3 Этапы выполнения расчета в SCAD 11
1.4 Запуск программы SCAD и подготовка к созданию РС 12
1.5 Создание геометрии расчетной схемы
15
1.5.1 Графическое представление расчетной схемы в общей системе координат
15
1.5.2 Проверка РС на корректность 19
1.6 Примеры создания расчетных схем 19
1.7 Назначения для элементов 22

7.

1.7.1 Назначение/изменение типа конечных элементов 22
1.7.2 Назначение жесткостей элементов 23
1.7.3 Назначение опорных связей 25
1.7.4 Назначение шарниров в узлах элементов
27
1.7.5 Печать или сохранение расчетной схемы
28
1.8 Задание нагрузок на расчетную схему
28
1.8.1 Узловые нагрузки
28
1.8.2 Нагрузки на элементы
29
1.8.3 Загружения 31
1.9 Расчет
33
1.10 Постпроцессоры 34
1.11 Документирование
36
Введение
В настоящее время при проектировании строительных конструкций в проектных организациях значительная
часть расчетов выполняется с помощью специальных проектно-вычислительных комплексов (ПВК).
Применяемые в инженерной практике проектирования строительных конструкций ПВК отличаются друг от
друга методическими и сервисными разработками, но все они включают в себя статические и динамические
расчеты конструкций и отдельных их частей, выполняемые методами строительной механики. Алгоритмы
численных расчетов в этих программах в основном строятся на методе конечных элементов (МКЭ),
реализуемом в форме метода перемещений.
Тема 1 Основы расчета в SCAD 1.1 Назначение SCAD

8.

9.

Сборно-разборный дорожный надвижной мост со сдвиговыми компенсаторами проф ден ПГУПС Уздина А.М ( изобретения №№ 1143895, 1168755, 1174616, 165076,
2010136746, 2550777, 858604 «КОНСТРУКЦИЯ УЧАСТКА ПОСТОЯННОГО ЖЕЛЕЗОБЕТОННОГО МОСТА НЕРАЗРЕЗНОЙ СИСТЕМЫ, ВОССТАНОВЛЕННОГО С ПРИМЕНЕНИЕМ
типовых структурных серии 1.460.3-14 ГПИ "Ленпроектстальконструкция", стальные конструкции покрытий производственных» № 2022111669 от 25.05.2022,
«Сборно-разборный железнодорожный мост» № 2022113052 от 27.05.2022, «Сборно-разборный универсальный мост» № 2022113510 от 21.06.2022,
«Антисейсмический сдвиговой компенсатор для гашения колебаний пролет. строения моста» № 2022115073 от 02.06.2022

10.

11.

Фонд поддержки и развития сейсмостойкого строительства «Защита и безопасность городов» «Сейсмофонд» при СПб ГАСУ ИНН : 2014000780
ОГРН : 1022000000824 [email protected]
Счет получателя СБЕР № 40817810455030402987 СБЕР 2202 2006 4085 5233
(921) 962-67-78

12.

13.

14.

Наиболее доступным для изучения считается Structure construction automatic design (SCAD). Проектновычислительный комплекс Structure CAD реализован как интегрированная система прочностного анализа и
проектирования конструкций на основе МКЭ и позволяет определить напряженно-деформированное
состояние конструкций от статических и динамических воздействий, а также выполнить ряд функций
проектирования элементов конструкций.
В основу комплекса положена система функциональных модулей, связанная между собой единой
информационной средой. Эта среда называется проектом и содержит полную информацию о расчетной

15.

схеме, сохраняется как файл с расширением SPR по умолчанию в папке SDATA. Расчетная схема (РС) - это
идеализированное описание конструкции в виде узлов, линий, связей, назначений жесткостей, нагрузок.
Функциональные модули SCAD:
1) Графический препроцессор - ввод исходных данных в интерактивном графическом режиме, и
Графический постпроцессор - графический анализ результатов расчета.
2) Процессор - выполнение статического и динамического расчетов, а также вычисления РСУ, комбинаций
загружений и т.д.
3) Документирование расчетов.
4) Проектирующие постпроцессоры - подбор арматуры, проверка сопротивлений и подбор сечений
элементов стальных конструкций.
SCAD включает большое количество постоянно развивающихся программ- сателлитов, основные из них
приведены на рисунке 1 :
Рисунок 1 - Программы-сателлиты, входящие в ПК SCAD
1.2 Типы конечных элементов
1.2.1 Библиотека конечных элементов
Все применяемые в настоящее время для расчета сооружений и конструкций программные комплексы
построены на использовании МКЭ. В МКЭ расчетная схема сооружения или конструкции представляется
как совокупность некоторых типовых конечных элементов (КЭ), соединенных между собой и с основанием
в жестких узлах. Библиотека КЭ содержит:
- различные виды стержневых систем, они характеризуются тем, что размер поперечного сечения много
больше его длины (колонны, балки, ригели), к ним относятся шарнирно-стержневые элементы, рамные,
балочного ростверка на упругом основании,
- пластинчатые (плоские), они характеризуются тем, что - их толщина много больше остальных размеров
(стена, фундаментная плита, перекрытие), к ним относятся плиты, оболочки, балки-стенки,
- объемные элементы, в которых сопоставимы геометрические размеры,

16.

- специальные - моделируют условия, а не конструкцию, например, упругую связь, упруго-податливое
соединение.
Классификация конечных элементов приведена в таблице 1.
конструкцию, например, упругую связь, упруго-податливое соединение.
Тип КЭ
Содержание

17.

Допустимые признаки еле мы
Вычисляемые усилия
1-10
Стержни
1 - плоской фермы
2 - плоским рамы
3 - Балочного ростверка
4 - пространственной фермы
5 - пространственный
6 - пространственный с учетом сдвига
7 - балочного ростверка на упругом основании
М.М(Му), Q(Gz) Мк(Мх), My, Qz N
М. Мк. My. Qz. Mz, Qy N, Мк. My, Qz. Mz, Qy MK(MX), My. Qz
10 - универсальный
1-5
в зависимости от типа схемы
11 20
Пластины
3,5
Мх, My, Мху, Qx, Qy
21-30
Элементы для решения плоско-напряженной
Для плоско-напряженной
задачи теории упругости (балка-стенка) и расчет плоского деформированного состояния 21,72. 29,30.
23,24.27

18.

1,2,4.5
4,5
задачи: Мх, Ny, Txz:
Для плоской деформации: Wx, My, Nz, Txz
31 40
Элементы для решения объемной задачи
теории упругости
4,5
Мх, My, Nz, Txy, Ткг, Tyz
41-50
Оболочки
5
Мх, My, Txy,
51-G0
Упруго-податливые связи
Мх, My, Мху, Qx, Qy
61-70
Элементы для решения осесимметричной
11
Mx(r), MyQ,Mz(z),
71-80
задачи теории упругости Элементы для расчета многослойных пологих пластин и оболочек, учитывающие
поперечный сдвиг, обжатые слоев и кривизну
S
TxzfTrz)
Mx. My, Nz, Txy, TKZ, Tyz, вертикальное перемещение на границах слоев
Э1-90

19.

Элементы для расчета многое лойных пол о гик пластин и сболочек, учитывающие межслоевые сдвиги и
кривизну
150 160
Нуль-элементы для расчета на заданные перемещения
1-5
200
Пустой элемент
любой
В МКЭ каждый КЭ рассматривается не только к общей системе координат, но и в своей собственной
(местной) системе координат. В местной системе координат выдаются результаты расчета по определению
усилий M, Q, N в узлах элементов и в его сечениях.
AZ
Y
о_
Вся стержневая система рассматривается в общей системе осей координат. Общая система используется при
назначении нагрузки на расчетную схему, и в этой системе определяются перемещения узлов расчетной
схемы. В SCAD используется правая система осей координат XYZ. Плоская стержневая система находится в
плоскости XOZ.
1.2.2 Описание стержневых конечных элементов.
Жесткостные характеристики стержневых КЭ
Для универсального пространственного конечного элемента задаются следующие жесткостные
характеристики упругой части в соответствии с типом стержневой процедуры, описанной в таблице 2:
EF - продольная жесткость (т);
Ely - изгибная жесткость относительно оси
Y1 (тм2).
EIz - изгибная жесткость относительно оси Z1 (тм2);

20.

GIk -крутильная жесткость (тм ).
GFy - сдвиговая жесткость относительно оси Y (т).

21.

GFz - сдвиговая жесткость относительно оси Z (т);
Примечание. Здесь и далее указаны базовые единицы измерения. Очевидно, что при выборе других единиц
измерения соответственно изменятся и единицы измерения используемых величин.
Таблица 2 - Типы стержневых процедур
Тип стержневой процедуры
Перечень задаваемых жесткостей
По признаку схемы Усилия в различных типах стержней
Усилия, которые могут возникать в разных типах КЭ стержней, а также возможные степени свободы их
узлов приведены в таблице 3.
Таблица 3 Усилия, возникающие в конечныхэлементах
Тип
КЭ
Краткое название
Плоскость (или параллельная
ей)
Перемещения узлов
Усилия
1
Шарнирный стержень плоской фермы
XOZ
X, Y
N
2
Стержень плоской рамы
XOZ
X, Y, UY
N, MY, QZ
3

22.

Плоская изгибаемая балка
XOY
Z, их, Y
Мкр, MY, QZ
7
То же, на упругом основании
XOY
Z, UX, UY
Мкр, MY, QZ, Rz
4
Шарнирный стержень пространственной
произвольно
X, Y, Z
N
https://topuch.com/referat-po-teme-modelirovanie-razlichnih-variantov-sterjnevih/index2.html
фермы
5,10
Пространственный рамный стержень
произвольно
X, Y, 1
N, Мкр, MY, QZ, MZ,

23.

24.

- N - продольная сила (т),
- Мкр (или Мх) - крутящий момент (т-м), вращение относительно продольной оси Х1 стержня,
- My - изгибающий момент (т-м), вращение относительно оси Y1, вызывает растяжение-сжатие нижних и
верхних (по высоте сечения, по направлению оси Z1) волокон сечения,
- Qz - перерезывающая сила в направлении оси Z1 (т) по высоте сечения и соответствующая моменту My,
- Mz - изгибающий момент (т-м), вращение относительно оси Z1. вызывает сжатие- растяжение правых и
левых (по ширине сечения, по направлению оси Y1) волокон сечения,

25.

- Qy - перерезывающая сила в направлении оси Y1 (т) по ширине сечения и соответствующая моменту Mz.
- Rz - отпор грунта (т)
https://forum.dwg.ru/showthread.php?t=41437
Единицы измерения вычисляемых усилий приведены в базовой системе единиц. Тип 1 «Стержень плоской
фермы»
Признак системы
Плоскость расположения
Степени свободы
1, 2, 4, 5
XOZ
X, Z
В пределах элемента этого типа отсутствует любая нагрузка (нагрузка на ферму приводится к ее
узлам). Элемент предназначен для расчета плоских стержневых систем с учетом только линейных
деформаций (сжатие, растяжение), расположен в плоскости XOZ, шарнирно соединен с другими КЭ. В
результате расчета определяются только продольные усилия N, постоянные по длине стержня (остальные
отсутствуют): при N>0 - растяжение, при N<0 - сжатие.
Жесткостная характеристика - только EF - продольная жесткость, где E - модуль упругости, F- площадь
поперечного сечения.
Ниже приведена расчетная схема плоской фермы, состоящая из 25 таких конечных элементов, соединенных
между собой в 14 узлах. Ферма соединена с жестким основанием тремя связями (двумя в узле 1 и одной в
узле 7).
Тип 2 «Стержень плоской рамы»
Признак системы

26.

Плоскость расположения
Степени свободы
2, 4, 5
XOZ
X, Z, Uy
Конечный элемент предназначен для расчета плоских стержневых систем без учета сдвиговых
деформаций (только сжатие и изгиб), расположен в плоскости XOZ, жѐстко соединен с другими КЭ. В
отличие от элемента фермы в поперечных сечениях КЭ типа 2 и по его концам (1 и 2) возникают не только
продольные усилия N, но и изгибающие моменты My и поперечные силы Qz.
Жесткостные характеристики:
- EF - продольная жесткость (жесткость стержня на растяжение/сжатие),
- EI - изгибная жѐсткость относительно оси OY, где I - момент инерции сечения.
В рассчитываемой плоской раме в пределах элемента типа 2 могут действовать любые сосредоточенные и
распределенные нагрузки, находящиеся в той же плоскости.

27.

Ниже элемент типа 2 показан в общем случае, когда он в расчетной схеме присоединяется к жесткому узлу
тремя жесткими связями, в которых и возникают указанные усилия. Возможно присоединение этого
элемента к узлам и меньшим числом связей, обеспечивающим его присоединение к стержневой системе.
Тогда и число ненулевых усилий по его концам будет соответствующим. Например, если в узле 1 имеется
шарнирное соединение с узлом совокупности элементов, то усилие M1 будет нулевым (в шарнире
изгибающий момент равен нулю).
Тип 3 «Стержень балочного ростверка»
Признак системы
Плоскость расположения
Степени свободы
3, 5
XOY
Z, Ux, Uy
Конечный элемент предназначен для расчета плоских стержневых систем с учетом изгибных и
крутильных деформаций и используется, если нужно учесть кручение (на сжатие, растяжение не работает),
расположен в плоскости XOY, жестко соединен с другими КЭ.
Жесткостные характеристики: EIy - изгибная жѐсткость,
Икр - крутильная жесткость, (1кр - полярный момент инерции) В результате расчета определяются My, Qz,
Мкр=Мх
Тип4 «Стержень пространственной фермы»
Признак системы
Плоскость расположения
Степени свободы
4, 5
произвольно

28.

X, Y, Z
Тип5 «Стержень пространственной рамы»
Признак системы
Плоскость расположения
Степени свободы
произвольно
X, Y, Z, Ux, Uy, Uz
Работает на сжатие, изгиб, кручение. Жесткостные характеристики EF, EIy, EIz, СТкр
В результате расчета определяются N, M^ My, Qz, Mz, Qy Тип10 «Универсальный стержень»
Признак системы
Степени свободы
1
X, Z,
2
X, Z, Uy
3
Z, Ux, Uy
4
X, Y, Z,
5
X, Y, Z, Ux, Uy, Uz
Плоскость расположения

29.

Все КЭ с 1 по 9 - частные случаи КЭ 10
Примеры других КЭ
1.3 Этапы выполнения расчета в SCAD
Работа в SCAD условно разделена на следующие этапы.
Этап 1. Запуск программы SCAD и подготовка к созданию расчетной схемы
1) Запуск программы SCAD.
2) Создание нового проекта для выполнения расчета заданной стержневой системы и его наименование.
3) Задание имени файла в директории SDATA, в котором будет сохраняться вся информация по введенным
исходным данным. Выход на схему «Дерево проекта» для начала работы.
4) Открытие окна «Расчетная схема» для формирования РС рассматриваемой стержневой системы.
Этап 2. Создание расчетной схемы стержневой системы
1) Графическое представление РС в общей системе координат для всей стержневой системы с нумерацией
узлов и элементов и местных систем координат для каждого элемента отдельно.
2) Назначение типа КЭ.
3) Назначение жесткости элементов.
4) Назначение опорных связей.
5) Назначение шарниров в узлах элементов.
6) Печать или сохранение расчетной схемы
Этап 3. Создание загружений РС
1) Задание узловой нагрузки.
2) Задание нагрузки на элемент.

30.

3) Создание и сохранение загружений.
4) Печать или сохранение РС с созданными загружениями.
Этап 4. Выполнение линейного расчета и представление его результатов
1) Выполнение линейного расчета, в котором реализуется алгоритм решения задачи МКЭ по определению
перемещений узлов (в общей для стержневой конструкции системе координат) и усилий в намеченных для
расчета сечениях элементов (в местной системе координат).
2) Представление полученных результатов расчета стержневой системы в виде эпюр усилий в ее элементах
и картины перемещений узлов. Их сохранение и печать.
3) Представление полученных результатов расчета стержневой системы в виде таблицы с усилиями в
намеченных сечениях элементов и таблицы перемещений узлов расчетной схемы. Их сохранение и печать.
1.4 Запуск программы SCAD и подготовка к созданию РС
После запуска SCAD на экране появится окно, имеющее меню из трех разделов - Проект, Опции, Справка и
инструментальную панель из 5 кнопок.
1) Для создания нового проекта нужно щелкнуть по кнопке ^ШШшИ «Создать НОВЫЙ проект», на экран
ВЫВОДИТСЯ диалоговое ок- проект Опции ^Справка но Новый проект.
Замечание. Создать проект можно также путем импорта (меню ПРОЕКТ) из текстового представления
схемы, а геометрию можно задать в AutoCAD, преобразовывая затем графический файл в файл формата
DXF.
[ Единицы измерений
2) по кнопке Единицы измерения открывается окно «Единицы измерения», в котором назначают входные
единицы измерения основных величин (кН, м, мм) и точность кнопками
Внимание! Назначение единиц измерения выполняется только при создании нового проекта и в дальнейшем
не может быть
Наименование [лаб.работа 1
Организация АптГТУ
Г Вариация моделей Единицы измерения

31.

ОК
В
Новый проект
Нормы проектирования
I СНГ"
II
Справка
Тип схемы |l - Плоская шернирно-стержневея система
3) в списке Тип схемы выбирают тип РС. Тип схемы определяет состав и максимальное количество степеней
свободы в узлах РС и характеризует особенности ее напряженно- деформируемого состояния:
- при расчете плоской фермы используется КЭ в виде стержня шарнирно соединенного по концам с узлами
фермы. Поэтому для фермы выбирают: 1. Плоская шарнирно-стержневая система.
- при расчете плоских балок и рам используется КЭ типа 2. В этом случае в окне надо выбрать: 2. Плоская
рама.
- при расчете пространственной структуры используется КЭ в виде стержня общего вида. В окне выбирается
5. Система общего вида. Она же и устанавливается по умолчанию.
Характеристика признаков типов расчетной схемы:
Признак 1 - схемы, располагаемые в плоскости XOZ; каждый узел имеет 2 степени свободы - линейные
перемещения вдоль осей X, Z или Х2, Z2. В этом признаке схемы рассчитываются плоские фермы и балкистенки.
Признак 2 - схемы, располагаемые в плоскости XOZ; каждый узел имеет 3 степени свободы - линейные
перемещения вдоль осей X, Z или Х2, Z2 и поворот вокруг оси Y или Y2. В этом признаке схемы
рассчитываются плоские рамы и допускается включение элементов ферм и балок-стенок.
Признак 3 - схемы, располагаемые в плоскости XOY; каждый узел имеет 3 степени свободы - линейное
перемещение вдоль оси, Z или Z2 и повороты вокруг осей X, Y или Х2, Y2. В этом признаке
рассчитываются балочные ростверки и плиты; допускается учет упругого основания.

32.

Признак 4 - пространственные схемы, каждый узел которых имеет 3 степени свободы - линейные
перемещения вдоль осей X, Y, Z или Х2, Y2, Z2. В этом признаке рассчитываются пространственные фермы
и объемные тела.
Признак 5 - пространственные схемы общего вида с 6 степенями свободы в узле. В этом признаке схемы
рассчитываются пространственные каркасы, оболочки и допускается включение объемных тел, учет
упругого основания и т.п.
- окно закрывают по кнопке ОК и выдается запрос о создании и сохранении проекта.
5) Проект сохраняется в папке с именем SDATA. Файл имеет расширение *.spr. Созданный файл будет
храниться в указанной папке, а затем имя файла будет присвоено всем служебным файлам и порождаемым в
процессе работы комплекса файлам с результатами. Эти рабочие файлы будут храниться в рабочей папке
SWORK.
и;
6) Проект в следующем сеансе работы можно открыть по кнопке * . Открытие этого файла приведет к
открытию схемы Дерево проекта, приведенного на рисунке 2. Дерево проекта включает четыре раздела
первого уровня: Исходные данные, Расчет, Результаты и Конструирование. Оно отображает доступность
функций SCAD, из него можно инициализировать любое действие: ввод данных, расчет, анализ результатов.
— щ) Проект Structure CAD Версия 7.29 R.3
— Ша] ферма!
ИСХОДНЫЕ ДАННЫЕ
I5J] Расчетная схема
MJj Специальные исходные данные
РАСЧЕТ РЕЗУЛЬТАТЫ КОНСТРУИРОВАНИЕ

33.

34.

Сборно-разборный дорожный надвижной мост со сдвиговыми компенсаторами проф ден ПГУПС Уздина А.М ( изобретения №№ 1143895, 1168755, 1174616, 165076,
2010136746, 2550777, 858604 «КОНСТРУКЦИЯ УЧАСТКА ПОСТОЯННОГО ЖЕЛЕЗОБЕТОННОГО МОСТА НЕРАЗРЕЗНОЙ СИСТЕМЫ, ВОССТАНОВЛЕННОГО С ПРИМЕНЕНИЕМ
типовых структурных серии 1.460.3-14 ГПИ "Ленпроектстальконструкция", стальные конструкции покрытий производственных» № 2022111669 от 25.05.2022,
«Сборно-разборный железнодорожный мост» № 2022113052 от 27.05.2022, «Сборно-разборный универсальный мост» № 2022113510 от 21.06.2022,
«Антисейсмический сдвиговой компенсатор для гашения колебаний пролет. строения моста» № 2022115073 от 02.06.2022

35.

36.

Фонд поддержки и развития сейсмостойкого строительства «Защита и безопасность городов» «Сейсмофонд» при СПб ГАСУ ИНН : 2014000780
ОГРН : 1022000000824 [email protected]
Счет получателя СБЕР № 40817810455030402987 СБЕР 2202 2006 4085 5233
(921) 962-67-78
Ответ на письмо инженерных войск от 10 октября 2022 № 567/Н/5499 на УГ -88073 от 29 сентября
2022 от ветерана боевых действий , инвалида первой группы Президента организации "Сейсмофонд" при СПб
ГАСУ Мажиевым Хасан Нажоевичем по вопросу представления предложений по описанию конструкции,
тактико-технических характеристик, схемы и анализ ранее проведенных, в том числе за рубежом,
разработок. До настоящего времени указанные материалы в УНИВ ВС не поступали. Отсутствие данной
информации не позволяет сделать вывод о целесообразности реализации Вашего предложения. Поэтому
организация "Сейсмофонд" при СПб ГАСУ и представляет опыт Университета Монтана США ,
Китайское народной Республики, Великобритании блока НАТО, по этому вопросу для разработки рабочих
чертежей с учетом опыта Университета Монтано США для отечетсвенных быстровозводимого, быстро
собираемого железнодорожного моста из стальных конструкций, с применением замкнутых гнутосварных профилей
прямоугольного сечения для системы несущих элементов и элементов проезжей части армейского сборно-разборного

37.

пролетного надвижного строения железнодорожного моста, с быстросъемными упругопластичными
компенсаторам, гасителем вибрационных напряжений от динамических нагрузок с учетом опыта наших
американских инженеров из штата Монтана ( река Суон, США) из блока НАТО, США, Канады, Великобритании
Испытательного центра СПб ГАСУ, аккредитован Федеральной службой по аккредитации (аттестат № RA.RU.21СТ39, выдан 27.05.2015),
ОО "Сейсмофонд" ОГРН:
1022000000824 [email protected] т/ф (812) 694-78-10, (921) 962-67-78 190005, СПб, 2-я Красноармейская ул д 4
ФГБОУ СПб ГАСУ № RA.RU.21СТ39 от 27.05.2015, 190005, СПб, 2-я Красноармейская ул. д 4, ФГБОУ ВПО ПГУПС № SP01.01.406.045 от
27.05.2014, 190031, Организация «Сейсмофонд» при СПб ГАСУ ИНН: 2014000780 [email protected] [email protected]
(911) 175-84-65, ( 996) 798-26-54, (951) 644-16-48 Всего 518 стр
УТВЕРЖДАЮ: Президент ОО «Сейсмофонд» при СПб ГАСУ ОГРН: 1022000000824 Мжиев Х.Н. 13.10. 2022
стр
Всего : 577
Специальные технические условия надвижки пролетного строения из стержневых пространственных структур с
использованием рамных сбороно-разборных конструкций с использованием замкнутых гнутосварных профилей прямоуголного
сечения, типа "Молодечно" (серия 1.460.3-14 ГПИ "Ленпроектстальконструция"), МАРХИ ПСПК", "Кисловодск" ( RU 80471
"Комбинированная пространсвенная структура" ) на фрикционно -подвижных соедеиний для обеспечения сейсмостойкого
строительства железнодорожных мостов в Киевской Руси https://ppt-online.org/1148335 https://disk.yandex.ru/i/z59-uU2jA_VCxA
Техническое задание на разработку быстровозводимого, быстро собираемого железнодорожного моста из
стальных конструкций, с применением замкнутых гнутосварных профилей прямоугольного сечения для системы
несущих элементов и элементов проезжей части армейского сборно-разборного пролетного надвижного строения
железнодорожного моста, с быстросъемными упругопластичными компенсаторам, гасителем вибрационных
напряжений от динамических нагрузок с учетом опыта наших американских инженеров из блока НАТО, США,
Канады, Великобритании
Стальные ферменные мосты являются эффективным и эстетичным вариантом для пересечения автомобильных дорог. Их
относительно небольшой вес по сравнению с пластинчато-балочными системами делает их желательной альтернативой как с

38.

точки зрения экономии материалов, так и с точки зрения конструктив-ности. Прототип сварной стальной фермы,
сконструированной со встроенным бетонным настилом, был предложен в качестве потенциальной альтернативы для проектов
ускоренного строительства мостов (ABC) в Монтане. Эта система состоит из сборно-разборной сварной стальной фермы,
увенчанной бетонным настилом, который может быть отлит на заводе-изготовителе (для проектов ABC) или в полевых условиях
после монтажа (для обычных проектов). Чтобы исследовать возможные решения усталостных ограничений некоторых сварных
соединений элементов в этих фермах, были оценены болтовые соединения между диагональными натяжными элементами и верхним
и нижним поясами фермы. В этом исследовании для моста со стальной фермой, скрепленной болтами /сваркой, были оценены как
обычная система настила на месте, так и ускоренная система настила моста (отлитая за одно целое с фермой). Для более точного
расчета распределения нагрузок на полосу движения и грузовые автомобили по отдельным фермам была использована 3D-модель
конечных элементов. Элементы фермы и соединения для обоих вариантов конструкции были спроектированы с использованием
нагрузок из комбинаций нагрузок AASHTO Strength I, Fatigue I и Service II. Было проведено сравнение между двумя конфигурациями ферм
и длиной 205 футов. пластинчатая балка, используемая в ранее спроектированном мосту через реку Суон. Оценки материалов и
изготовления показывают, что стоимость традиционных и ускоренных методов строительства на 10% и 26% меньше,
соответственно, чем у пластинчатых балок, предназначенных для переправы через реку Суон.
Испытательного центра СПб ГАСУ, аккредитован Федеральной службой по аккредитации (аттестат № RA.RU.21СТ39, выдан 27.05.2015),
ОО "Сейсмофонд" ОГРН:
1022000000824 [email protected] т/ф (812) 694-78-10, (921) 962-67-78 190005, СПб, 2-я Красноармейская ул д 4
ФГБОУ СПб ГАСУ № RA.RU.21СТ39 от 27.05.2015, 190005, СПб, 2-я Красноармейская ул. д 4, ФГБОУ ВПО ПГУПС № SP01.01.406.045 от
27.05.2014, 190031, Организация «Сейсмофонд» при СПб ГАСУ ИНН: 2014000780 [email protected] [email protected]
(911) 175-84-65, ( 996) 798-26-54, (951) 644-16-48 Всего 518 стр
УТВЕРЖДАЮ: Президент ОО «Сейсмофонд» при СПб ГАСУ ОГРН: 1022000000824 Мжиев Х.Н. 13.10. 2022
стр
Всего : 518
А, ИССЛЕДОВАНИя по изобртеним проф дтн ПГУПС Уздина А М проведены в СЩА СБОРНЫХ СИСТЕМ НАСТИЛА МОСТА ИЗ СТАЛЬНЫХ
ФЕРМ FHWA/MT-17-009/8226-001 Итоговый отчет подготовлен для ДЕПАРТАМЕНТА ТРАНСПОРТА ШТАТА МОНТАНА в сотрудничестве
с ИССЛЕДОВАТЕЛЬСКИМИ ПРОГРАММАМИ МИНИСТЕРСТВА ТРАНСПОРТА США ФЕДЕРАЛЬНОГО УПРАВЛЕНИЯ АВТОМОБИЛЬНЫХ ДОРОГ
MUTk Ноябрь 2017 г. подготовлен Дэймоном Фиком, доктором ФИЛОСОФИИ, ЧП Тайлером Кюлем Майклом Берри, доктором

39.

ФИЛОСОФИИ.Д Джерри Стивенс, доктор философии, ЧП "Вестерн Транспорт" в США
INVESTIGATION OF PREFABRICATED STEEL-TRUSS BRIDGE DECK SYSTEMS
fhwa/mt-17-009/8226-001 Final Report prepared for the state of montana department of transportation
in cooperation with the u.s. department of transportation federal highway administration November 2017
prepared by Damon Fick, Ph.D., PE Tyler kuehl Michael Berry, Ph.D Jerry Stephens, PhD., PE Western Transportation Institute Montana
State university - Bozeman
МИНИСТЕРСТВО ОБОРОНЫ РОССИЙСКОЙ ФЕДЕРАЦИИ (МИНОБОРОНЫ РОССИИ) Х.Н. МАЖИЕВУ 72. ф^а,/ ru
г. Москва, 119160 « /#>» октября 2022 г. № 565/Н/^-^ На №УГ-88073 от 29 сентября 2022 г. Уважаемый
Хасан Нажоевич!
В соответствии со ст. 8 Федерального закона от 2 мая 2006 г. № 59-ФЗ «О порядке рассмотрения
обращений граждан Российской Федерации» Ваше обращение по вопросу использования
быстровозводимых, автомобильных мостов из стальных конструкций покрытий производственных зданий с
пролетами 18, 24 и 30 метров с применением замкнутых гнуто-сварных профилей прямоугольного сечения
в Управлении начальника инженерных войск Вооруженных Сил Российской Федерации (далее - УНИВ ВС)
повторно рассмотрено.
На данное обращение направлен ответ за исх. 565/Н/4984 от 14 сентября 2022 г. В ответе указано, что
представленное предложение не содержит описание конструкции, тактико-технические характеристики,
схемы и анализ ранее проведенных, в том числе за рубежом, разработок. До настоящего времени
указанные материалы в УНИВ ВС не поступали. Отсутствие данной информации не позволяет сделать вывод

40.

о целесообразности реализации Вашего предложения.
Благодарю Вас за активную гражданскую позицию и желание помочь Вооруженным Силам Российской
Федерации.
Врио начальника инженерных войск Вооруженных Сил Российской Федерации А.Круглов
Kruglovu Inzh voyska Listi katalozhniei Most plasticheskix stalnix ferm shtate Montana reky Suon USA NATO 415
https://disk.yandex.ru/i/fCYvuumkKNyJ3w
Kruglovu Inzh voyska Listi katalozhniei Most plasticheskix stalnix ferm shtate
Montana reky Suon USA NATO 415
https://studylib.ru/doc/6370495/kruglovu-inzh-voyska-listi-katalozhniei-most-plasticheski...
https://mega.nz/file/7aQxzLCL#stVFq004Wk2szsYC-2PKH-4nZuTwFKeHruP_17YnLps
https://mega.nz/file/DexkTIKZ#EAIIItqkgzjmczgmhfnRngYLwzuvrn1K8sWRuBqVdPU
БЫСТРО-ВОЗВОДИМЫЕ дорожные мосты из стальных конструкций покрытий производственных здании пролетами 18, 24 и 30 м с применением замкнутых
гнутосварных профилей прямоугольного сечения типа «Молодечно» (серия 1.460.3-14 ГПИ «Ленпроектстальконструкция» ) для системы несущих элементов и элементов
проезжей части дорожного сборно-разборного пролетного надвижного строения дорожного моста, с быстросъемными упругопластичными компенсаторами со
сдвиговой фрикционно-демпфирующей жесткостью со сдвиговой фрикционно-демпфирующей прочностью, согласно заявки на изобретение
«КОНСТРУКЦИЯ УЧАСТКА ПОСТОЯННОГО ЖЕЛЕЗОБЕТОННОГО МОСТА НЕРАЗРЕЗНОЙ СИСТЕМЫ, ВОССТАНОВЛЕННОГО С ПРИМЕНЕНИЕМ типовых структурных серии 1.460.3-14
ГПИ "Ленпроектстальконструкция", стальные конструкции покрытий производственных» № 2022111669 от 25.05.2022, «Сборно-разборный железнодорожный мост» №
2022113052 от 27.05.2022, «Сборно-разборный универсальный мост» № 2022113510 от 21.06.2022, «Антисейсмический сдвиговой компенсатор для гашения колебаний
пролет. строения моста» № 2022115073 от 02.06.2022 и на осн. изобрет 1143895, 1168755, 1174616, 2550777, 2010136746, 165076.

41.

42.

43.

44.

ОРГАН ПО СЕРТИФИКАЦИИ: ФГБОУ СПб ГАСУ № RA.RU.21 СТ39 от 27.05.2015, 190005, СПб, 2-я Красноармейская ул. д 4, организация
«Сейсмофонд» при СПб ГАСУ ОГРН: 1022000000824, т/ф (812) 694-78-10, (996)798-26-54, (994) 434-44-70 [email protected]
(аттестат № RA.RU.21СТ39, выдан 27.05.2015)
Полное наименование
ФОНДА ПОДДЕРЖКИ И РАЗВИТИЯ СЕЙСМОСТОЙКОГО СТРОИТЕЛЬСТВА "ЗАЩИТА И БЕЗОПАСНОСТЬ ГОРОДОВ" "СЕЙСМОФОНД"
Сокращенное наименование
Организация «СЕЙСМОФОНД» при СПб ГАСУ
ОГРН
1022000000824
ИНН
2014000780
КПП
201401001
Юридический адрес
364024, г.Грозный, ул. им. С.Ш. Лорсанова, д.6
Фактический адрес
190005, СПб, 2-я Красноармейская ул. д 4 ( ФГБОУ СПб ГАСУ ) ОГРН: 1022000000824
Телефон и факс
т/ф (812) 694-78-10 [email protected]
Президент
Мажиев Хасан Нажоевич (921) 962-67-78, (911) 175-84-65
[email protected]

45.

ОКВЭД
21.12 Деятельность профессиональных организаций
ОКПО
45270815
ОКАТО
96401364
[email protected]
[email protected] [email protected]
Название банка
СБЕР Счет получателя 40817810555031236845 Карта СБЕР 2202 2007 8669 7605
Расчетный счет
40817810555031236845
БИК
044030653
Корреспондентский счет
30101810500000000653
http://188.254.71.82/rao_rf_pub/?show=view&id_o
bject=DCB44608D54849B2A27CFEFEBEF970D4
ИЗГОТОВИТЕЛЬ: ФГАОУ ВО «СПбПУ» № RA.RU.21ТЛ09 от 26.01.2017, 195251, СПб, ул. Политехническая, д 29,
организация
« Сейсмофонд» при СПб ГАСУ ОГРН: 1022000000824, т/ф (812) 694-78-10 https://www.spbstu.ru [email protected]
(994) 434-44-70 (аттестат № RA.RU.21ТЛ09, выдан 26.01.2017) Президент организации «Сейсмофонд» при СПб
ГАСУИНН: 2014000780 Мажиев Х.Н. https://pub.fsa.gov.ru/ral/view/26088/applicant [email protected] (921) 962-6778, (911) 175-84-65 СБЕР 2202 2006 4085 5233 Счет получателя СБЕР № 40817810455030402987

46.

47.

48.

Рисунок 2 - Дерево проекта
7) Необходимо войти в раздел Исходные данные и выбрать раздел второго уровня
Расчетная схема. В результате откроется рабочее окно, приведенное на рисунке 3, по созданию расчетной
схемы. В нем имеется шесть функциональных подразделов. Каждому подразделу соответствует своя

49.

инструментальная панель с рабочими кнопками. Сначала окно откроется с активной инструментальной
панелью раздела Управление.
Одновременно в окне появятся две подвижные инструментальные панели: Фильтры отображения и
Визуализации. Можно изменить размеры сторон этих панелей и сделать их удобными для размещения в
поле окна вместе с РС. Фильтры служат для управления отображением РС, когда отдельными кнопками
назначаются вид и правила отображения характеристик и атрибутов РС. Панели видны только в том случае,
если на инстру
ментальной панели в разделе Управление соответственно нажаты кнопки
Рисунок 3 - Окно ПК SCAD в режиме «Расчетная схема» В нижней строке имеется возможность выбора
курсора для работы в приложении.
стандартный курсор - я1!я выбора функции, режима или операции;
перекрестье с центральной мишенью - я1!я выбора одного узла или элемента;
перекрестье с изображением прямоугольника - я1!я выбора группы узлов или элементов при помощи рамки
прямоугольной формы;

50.

перекрестье с изображением произвольного многоугольника - для выбора группы узлов или элементов при
помощи рамки произвольной формы.
1.5 Создание геометрии расчетной схемы
При выборе Расчетная схема открывается рабочее окно по созданию РС, в котором по умолчанию активным
является подраздел Управление.
Наиболее часто используемые кнопки:
Выход в дерево проекта - после нажатия на эту кнопку препроцессор закрывается и управление передается
дереву проекта.
^^ Упаковка данных - исключение из проекта удаленных узлов и элементов с дальнейшей перенумерацией.
Сохранение образа экрана в файле с расширением wmf.
. Экспресс-контроль исходной схемы.
1.5.1 Графическое представление расчетной схемы в общей системе координат
Создание геометрического изображения РС плоских ферм, рам и балок может быть выполнено двумя
способами:
1) с использованием готовых типовых схем плоских стержневых систем;
2) с последовательным вводом сначала координат узлов элементов РС, а затем изображением самих
элементов между узлами (вводом элементов),
Возможна также комбинация этих способов. 1. Построение РС плоской стержневой системы с
использованием типовых схем

51.

панели, выбрать
Для создания РС этим способом необходимо войти в подраздел Схема, при этом появится соответствующая
инструментальная панель.
Для построения РС плоской фермы следует нажать кнопку
конфигурацию фермы и задать еѐ геометрические параметры, приведенные на рисунках:
, конфигурацию раДля построения PC рамы и балки следует нажать кнопку мы и задать еѐ геометрические, жесткостные
параметры, а также связи.
2. Построение РС плоской стержневой системы способом последовательного ввода узлов и элементов
В этом способе каждый узел и элемент РС вводится отдельно.
Узел - это ключевые точки РС, в которых соединяются элементы и вычисляются перемещения. Узлы
устанавливаются: по концам элемента, в местах соединений стержней, в местах установки связей и
шарниров, и в тех точках, где необходимо определить перемещения. Узлы задаются координатами в общей
системе координат.
Элемент - это стержень с определенными размерами и набором характеристик.

52.

Замечание. Предварительно рекомендуется изобразить на бумаге вид РС с указанием номеров узлов и
элементов. Затем необходимо выбрать узел, в котором будет находиться начало общей системы осей
координат и изобразить направление координатных осей. После этого можно начать процедуру ввода узлов
по их координатам в общей системе координат.
Номер узла отражает его очередность при вводе узлов. Узлы элементов балки обычно вводятся
последовательно слева направо. Поэтому первый номер будет у левого крайнего узла, а наибольший номер у крайнего правого. В ферме сначала нумеруются элементы нижнего пояса и их узлы по направлению оси X,
затем узлы верхнего пояса в направлении возрастания координат X узлов. Аналогично нумеруются узлы
рам.
В программе SCAD информация о том, где находится начало общей системы координат и как направлены ее
оси, выясняется нажатием кнопки 11на панели Фильтры
отображения.
Ввод узлов
«Узлы». Появляется инструментальная панель для работы с узлами РС, при

53.

веденная на рисунке:
«Ввод узлов». В результате откроется диалоговое окно. Первый узел обычно вводится
На панели щелкают по кнопке
с нулевыми координатами и нажимается кнопка Добавить В
результате, при нажатой на панели Фильтр кнопке поле окна для изображения РС появится изображение
узла, а
- номер узла. Затем, в соответствии с
при нажатой кнопке предварительно назначенными номерами узлов вводятся координаты последующих
узлов. Выход из окна - по кнопке
Для ввода узлов необходимо открыть подраздел Узлы и элементы и щелкнуть по
Закрыть\. Окно можно вызвать повторно. Замечание 1. Если координаты узлов вводятся с определенным
шагом, то можно
- использовать флажок «Повторить» в окне и указать приращения в виде dx, dz;
- использовать кнопку «Ввод дополнительных узлов между узлами» на панели инструментов.
на подразделе Узлы и элеменУдаленные узлы можно посмотЗамечание 2. Узлы можно удалять по кнопке ты, а впоследствии восстанавливать по кнопке
?Hi
ретъ на панели Фильтр по кнопке Ввод элементов
+/
Ввод стержневого элемента представляет собой соединение прямой линией его концевых узлов. Для этого
необходимо:

54.

На инструментальной панели подраздела Узлы и элементы нажать кнопку — 1* Появляется
инструментальная панель для работы с элементами РС, приведенная на ри сунке:
Проект Файл Опции Операции Сервис Отмена операции Справка
На появившейся инструментальной панели нажать кнопку
«Добавление
стержней». Далее следует подвести курсор к узлу, который предполагается быть узлом 1
(по нумерации в местной системе координат), нажать левую клавишу мыши и протянуть линию до узла 2
(по нумерации в местной системе координат).
Замечание 1. Ось X1 местной системы координат стержневого элемента совпадает с его осью и имеет
положительное направление от узла 1 к узлу 2 элемента. Местная и общая система координат является
правой. Это определяет направление осей Y1 и Z1 по отношению к оси X1. Для горизонтального
стержневого элемента принято направлять ось X1 вправо, т.е. левый узел элемента (начало местной системы
координат) имеет номер 1, а правый номер 2. Для вертикального стержневого элемента принято направлять

55.

ось X1 вверх. В этом случае в местной системе координат нижний узел отмечается номером 1, а верхний
номером 2.
стержня»
Замечание 2. Горизонтальные элементы надо направлять слева направо, вертикальные элементы - снизу
вверх.
Если при этом на панели Фильтр нажата кнопка kNe «Номера элементов», то поя
вится номер введенного элемента. При нажатии на Фильтре кнопки ' будет обозначена местная система
координат элемента.
Если узлы и элементы являются регулярными, то можно ввести 2 крайних узла, соединить их элементом, а
затем разбить его на N элементов и узлов кнопкой «Разбивка
У}.
Замечание 1. В подразделе Узлы и элементы можно добавить стержень с учетом
или выполнить дробление стержней с учетом промежуточпромежуточных узлов *
*
Замечание 2. Узлы можно удалять по кнопке ffl I в подразделе Узлы и элементы, а также восстанавливать по
кнопке J-5—. Удаленные узлы можно посмотреть на панели
Фильтр по кнопке "т т I. Если удаляется узел, то удаляются примыкающие к нему элементы. Свободные
узлы после удаления элемента ПОМЕЧАЮТСЯ КАК УДАЛЕННЫЕ. Впоследствии их можно восстановить.
Информацию об отдельном узле или элементе можно получить по кнопкам на панели Фильт
ры:
кнопка

Информация об элементе
Кнопка
Информация об узле

56.

После создания геометрии РС рекомендуется проверить еѐ на корректность. 1) Найти и объединить
совпадающие узлы:
- отображение совпадающих узлов: панель Фильтры, кнопка
«I
I 'L
- отображение совпадающих элементов: панель Фильтры, кнопка!
- объединить совпадающие узлы: вкладка Узлы и элементы, Узлы, кнопка
на вкладке Управление. После упаков-
1.5.2 Проверка РС на корректность
- объединить совпадающие элементы: вкладка Узлы и элементы, Элементы, кнопка
на вкладке Управление,

57.

1.6 Примеры создания расчетных схем
Пример 1 Создание расчетной схемы балки, приведенной на рисунке 4:
Рисунок 4
L=6 м, C=1.2 м, h=0.6 м P=10 кН, (у f= 1.1) q=3 кН/м, (yf=1.2) EF=5.17-105 кН EIy=388 кНм1
https://topuch.com/referat-po-teme-modelirovanie-razlichnih-variantov-sterjnevih/index5.html
1) Войти в SCAD, создать новый проект , указать идентификацию проекта, задать тип входных данных
КЭ=2, тип схемы - 2 «Плоская рама».
2) Дерево проекта - Расчетная схема - Узлы и элементы - Узлы ° Ч - Ввод узлов
м
3) Ввести координаты Узла 1 (0, 0) и Узла 2 (7.2, 0) и закрыть окно.
5) Для получения узлов и элементов с h=0.6 м разбить созданный элемент на части,
щелкнув по кнопке И Разбивка стержня. В появившемся окне выбрать «На N равных участков» и указать
количество участков 12.
+/
4) Кнопка Элементы
, Добавление стержней L_J. Провести линию (элемент) от
\
.
Узла1 к Узлу2 и подтвердить по кнопке
6) Включить нумерацию узлов, элементов и жесткости элементов. Изображение полученной схемы
приведено на рисунке 5
Рисунок 5 - Расчетная схема балки
Пример 2 Расчет фермы, заданной расчетной схемой, приведенной на рисунке:

58.

Рисунок 6 Генерация прототипа фермы
б)
Результирующее изображение схемы приведено на рисунке 7.
Проект Файл Опции Операции Сервис
Справка
Управление J[ Схема
| Назначения
J[ Узлы и Элементы J[ Загружения |
Группы
ZT
-Ь* Structure CAD (ферма 1) (C:\Program Files\SCAD Office\SDflTA\Kypc 3\30151\ф1-0102)
^[?jxj
Рисунок 7
1.7 Назначения для элементов
Назначение связей, шарниров и жесткостных характеристик выполняются в подразделе Назначения.
Проект Файл Опции Операции Сервис Справка
| Перевернуть местную ось XI стержня |
Управление Т~
1
Г
Схема
Назначения
Узлы и Элементы
Т Загружения Т Группы

59.

1.7.1 Назначение/изменение типа конечных элементов
При создании нового проекта тип рассчитываемой стержневой системы уже назначался при выборе схемы.
После построения РС в рабочем окне рекомендуется с помощью
фильтра отображения проверить тип КЭ нажатием кнопки элемента не подтвердился, например, остался
указанный по умолчанию тип 5, или на введенном элементе не указан тип, то необходимо в подразделе
Назначения на панели нажать кнопку BfL. Откроется окно с типами КЭ. В нем при расчете стержневой
системы выбрать переключатель «Стержень» и указать тип стержня.
. Если назначенный тип
Назначение типа элемента
Стержень | стерЖень плоской Фермы
С" Оболочка С" Плита С" Балка-стенка С" Объемный
2 Стержень плоской рамы
3 Стержень балочного ростверка

60.

4 Стержень пространственной Фермы
5 Пространственный стержень
6 Стержень со сдвиговой жесткостью
7 Стержень балочного ростверка 10 Универсальный стержень
С Осесимметрнчный Учет геометрической нелинейности С Многослойный
Признак системы ? 2,4,5 Положение - в плоскостиXoZ Степени свободы ? XZ,Ujj Упругое основание
2
i
Нажатие кнопки ОК приводит к закрытию окна. Теперь курсором на РС надо щелкнуть по стержню. Линия,
изображающая элемент, изменит первоначальный цвет на
красный. На инструментальной панели нажимается кнопка или Enter. При этом элементу возвращается
исходный цвет. При нажатой на панели фильтров отображения кноппоявится номер типа элемента. Если подобным образом надо отметить сразу несколько элементов, то их
можно выделить все сразу с помощью вызова правой кнопкой мыши окна Выбор узлов и элементов.
ке
1.7.2 Назначение жесткостей элементов
ку S^R, после чего появится окно, приведенное на рисунке 8. На 1-ой закладке следует выбрать способ
задания, а на последующих - конкретные значения.
При численном описании указываются заранее вычисленные жесткост- ные характеристики. Например, как
приведено на рисунке 9. Иногда, если поставлена задача определения только усилий, например, в стержнях
фермы, то жесткость может быть задана произвольно, например, EF=1 в численном описании.
г Т ип э леменга —
С Стержень плоской фермы (Тип 1)
С Стержень плоской рамы (Тип 2]
С Стержень балочного ростверка (Тип 3)
С Стержень пространственной Фермы (Тип 4)
(•" Пространственный стержень (Тип 5)

61.

^ Пространственный стержень с учетом сдвига (Тип 6)
г- Стержень балочного ростверка на упругом основании (Тип 7]
j" Сдвиг
Физико-механические характеристики элемента позволяют описать их 5 способами:
- численно,
- через геометрические характеристики параметрических (типовых) сечений,
- назначить из выбранного сортамента,
- выполнить численно-параметрическое назначение (одновременное задание параметрического сечения и
численного описания),
- назначить характеристики из программ-сателлитов, например, Конструктора сечений.
Для назначения жесткостей на вкладке Назначения следует нажать кноп
Рисунок 8 - Выбор способа назначения жесткостей элементам
Жесткости стержневым эяемеьггов
Жесткости стержней j Параметрические сечения Численное описание j Коэффициенты упругого основания |
Продольная жесткость EF 1275400 Т
Ш
Преднапряжение р
Изгибная жесткость —
Размеры ядра сечения
Ely |2065.5 Т"м"2
Y1
|0.05
м
Elz |2065.5 Т"м"2
Y2
|0.05
м

62.

Крутильная жесткость
Z1
|0.05
м
Й1кр 1388.02 TV2
22
|0.05
м
Сдвиговая жесткость -= GFy |Э1300 Т GFz |Э1800 Т
Номер типа жесткости
Заменить и выйти

Отмена
Справка
Заменить и продолжить
Рисунок 9 - Численное описание жесткости
При параметрическом задании необходимо указать тип сечения, его размеры, а также назначить материал
или модуль упругости и объемный вес, как приведено на рисунке 10.
Рисунок 10 Параметрическое описание жесткости
При выборе профиля металлопроката необходимо задать вид стали или еѐ удельный вес, выбрать вид
проката и сечение в нем. Кроме того, допускается задать составное сечение. На рисунке 11а) приведена
вкладка задания профилей металлопроката, на рисунке 11б) окно инерционных и геометрических
характеристик профиля, которое выдается после нажатия на кнопку «Характеристики сечения».

63.

а)
б)

64.

Рисунок 11 - Описание жесткости с использованием профилей металлопроката
После задания параметров диалогового окна его нужно закрыть и назначить данную жесткость элементам PC, выделяя их и нажимая кнопку Если элементы схемы имеют более одного типа
жесткости, следует зайти заново в окно, задать новые жесткостные параметры и назначить их другим
элементам. Жесткости нумеруются в порядке поступления (1, 2,...), а их описание остается в окне. Через это
же окно можно изменить параметры жѐсткости, например, выбрать другое сечение.
Номера жесткостей, назначенных элементам, можно посмотреть по кнопке
панели Фильтр. При ошибочном задании жесткостей или при появлении дублирующихся
Удаление

65.

66.

жесткостей при операциях редактирования, их можно удалить кнопкой дублирующихся типов жесткости.
Пример 3 Задать жесткость элементам балки, описанной в примере 1.
задать параметры, показанные на ри*
1) На вкладке Назначения нажать кнопку сунке 12 а) и б). Кнопка ОК.
есткости стержневых элементов
Общие данные Численное описание | Тип элемента
С Стержень плоской Фермы (Тип 1)
(• Стержень плоской рамы (Тип 2)
С Стержень балочного ростверка (Тип 3]
Г" Стержень пространственной Фермы (Тип 4)
С Пространственный стержень (Тип 5)
• Пространственный стержень с учетом сдвига (Тип 6)
Стержень балочного ростверка на упругом основании (Тип 7)
а)
Размеры ядра сечения
Y1 [0
м
Y2 [о
м
Z1 |0
Z2 [Г
Продольная жесткость EF
И згибная жесткость — Ely [388 кНхмЛ2 Elz [о кН*мл2
Кроильная жесткость Gkp[0
кН"м"2
Сдвиговая жесткость— GFy [о кН
GFz [0 кН
Номер типа жесткости 1
Рисунок 12 - Задание жесткости с использованием численного описания

67.

3_| Прямоугольник
Рисунок 13 Задание жесткостей с использованием профилей металлопроката
2) Щелкнуть правой копкой мыши и в появившемся окне выбрать _!_1
3) Обвести рамкой все элементы балки, нажать или Enter. Пример 4 Задать жесткость элементам фермы,
имеющих сечение из спаренных равнопо- лочных уголков 30x5.
1) На вкладке Назначения нажать кноп
Л\
выбрать вариант Профили металлопроката, задать
- материал - Сталь обыкновенная,
- флажок Составное сечение, g=0.8 см,
- в дереве сортаментов выбрать Сокращенный сортамент и заданный уголок, как показано на рисунке 13.
Кнопка ОК.
2) Выделить все элементы фермы, ik.
ку
1.7.3 Назначение опорных связей
Связи определяют условия закрепления узлов РС в пространстве и задаются в виде направлений,
перемещения вдоль которых для заданного узла запрещено. Для пространственного стержня имеется 6
связей: 3 линейных X, Y, Z и 3 поворота вокруг осей Ux, Uy,
Uz. В плоской стержневой системе, расчетная схема которой находится в плоскости XOZ, используются
следующие три связи:
- связь X для закрепления узла от линейных смещений в направлении оси X;
- связь Z для закрепления узла от линейных смещений в направлении оси Z;
- связь Uy для закрепления узла от поворота вокруг оси Y. Связи, накладываемые на узлы, при следующих
вариантах опор:
Жесткая заделка

68.

•J"
X, Z, Uy
Шарнирно-неподвижная
К
X, Z
Шарнирно-подвижная
XN
ZX
Скользящая
Z, Uy Для установки связей в узлах РС на закладке
Назначения щелкают по кнопке «Установка
связей в узлах». Появится диалоговое окно Связи, в котором задают выбранные направления утопленными
(активными) кнопками:
После установки связей окно закрывают по ОК, и курсором указывают на узел/узлы, для которого назначен набор этих связей, ik. При необходимости процесс назначения связей и указания узла
повторяют.
Для отображения связей на РС используется
кнопка ' на панели фильтров.
Для просмотра/изменения набора связей узла
Информация об узле на панели Фильтры. После изменения связей необходимо нажать кнопку Применить.
используют кнопку
Пример 5 Задание жѐсткой заделки и шарнирно-подвижной опоры для балки из примера 1:
2) Вновь нажать кнопку
1) На вкладке Назначения нажать кнопку В окне диалога нажать кнопки как по
казано на рисунке 14а), ОК. Выделить узел 1,
нажать кнопку Z, ОК, выделить узел 12, fo. Параметры
узла 12 показаны на рисунке 14б).

69.

а) б)
Рисунок 14 - Задание связей
1.7.4 Назначение шарниров в узлах элементов
Для стержневых элементов могут быть назначены условия примыкания элемента к узлу в виде свободы
взаимного поворота вокруг осей местной системы координат или свободы линейных смещений (ползуны). В
плоской системе шарниры означают, что в местах их установки удалена связь, мешающая сечению
элемента, соединенному с узлом, поворачиваться вокруг оси Y. Постановка одиночного шарнира должна
быть выполнена на любом одном элементе, примыкающем к указанному узлу. Установка шарниров вы«Установка шарниров». Откроется
полняется на закладке Назначения по кнопке
окно «Условия примыкания стержней», приведенное на рисунке 15.
Рисунок 15 Окно для задания условия примыкания стержней Элемент при постановке шарниров
рассматривается в местной системе координат. В плоской задаче должна быть освобождена только одна
угловая связь Uy при выборе режима «Освобождение угловых связей». При этом задается номер узла в
местной системе координат применительно к тому элементу, который будет отмечаться в графической
области. Начальный узел элемента - всегда узел 1, конечный - узел 2. SCAD определяет начальные и
конечные узлы элемента автоматически в зависимости от того, как создавался элемент в графической
области. После выхода из диалогового окна на РС необходимо

70.

щелкнуть курсором по элементу и подтвердить выбор кнопкой
на панели Фильтр появятся введенные шарниры.
ы
кнопки
Удалить шарнир можно кнопкой J—^Ц Используя кнопку I Информация об элементе и кнопку «Шарниры»,
можно как удалить, так и изменить параметры установленного шарнира.
1.7.5 Печать или сохранение расчетной схемы
Имеются различные возможности сохранения созданной РС и ее дальнейшего использования для отчета по
работе, например:
1) Самым простым и быстрым для выполнения является печать РС сразу с экрана. Для этого в меню окна с
РС необходимо войти в раздел Файл и выполнить указанные действия для печати. Эта печать будет
воспроизводить на странице не только изображение РС, но и специальный формат оформления страницы,
предложенный разработчиками программы.
2) Клавиша «Print Screen» с последующей вставкой рисунка в текстовый документ.

71.

3) Для отложенной по времени печати можно сохранить вид сформированной РС в гра
фическом файле. Необходимо перейти на вкладку Управление и нажать кнопку Образ расчетной схемы как
рисунок сохранится в файле с расширением wmf, который можно напечатать как отдельно, так и вставить в
текстовый документ.
1.8 Задание нагрузок на расчетную схему
Нагрузки на РС задаются в разделе Загружения и разделяются на узловые и местные (на элементы).
Управление 1
Схема
1 Назначения
Узлы и Элементы у
Загружения
1
Группы I
1.8.1 Узловые нагрузки
. На РС при нажатии
Для плоских систем к узловым нагрузкам относятся сосредоточенные силы в направлении осей X и Z и
момент, действующий вокруг оси Y (в диалоговом окне Uy). Нагрузки прикладываются вдоль осей общей
системы координат, направление нагрузки определяется еѐ знаком («+» - против оси, «-» - вдоль оси). На
рисунке приведены положительные направления нагрузок. Если нагрузка задана под углом, то она
раскладывается на две составляющие: вертикальную P1=P-sina и горизонтальную P2=Pcosa.
По кнопке ~|Т" Узловые нагрузки в диалоговом окне, приведенном на рисунке 16, задается направление и
величина нагрузки, затем окно закрывается, а на РС указывается узел (узлы), к которому она прилагается.
Рисунок 16 - Окно ввода узловых нагрузок 1.8.2 Нагрузки на элементы

72.

Нагрузка на элемент может задаваться как в общей, так и в местной системах координат. Рекомендуют
задавать нагрузку в общей системе координат. При задании в местной системе координат, приведенной на
рисунке 17 б), надо быть внимательным, так как знак нагрузки зависит от направления осей.
Рисунок 17 - Задание нагрузок в общей и местной системах координат На рисунке 17а) нагрузка отнесена к
общей системе координат. Поэтому горизонтальная составляющая Px соотносятся с осью X общей системы
координат, а вертикальная Pz - с осью Z. Момент действует относительно оси Y. Все указанные
составляющие положительны.
На рисунке 17б) нагрузка отнесена к осям местной системы координат: горизонтальная составляющая Pz1
является проекцией на ось Z1; вертикальная - на ось X1; момент задается действующим вокруг оси Y1. Как
видим, чтобы момент был положительным, в местной системе координат он должен иметь
противоположное направление по сравнению с его заданием в общей системе координат.

73.

Нагрузки, действующие на элементы, задаются на вкладке Загружения, кнопкой Нагрузки на стержни.
Параметры нагрузок задаются в окне диалога, приведенном на
рисунке 18.
Рисунок 18 - Окно ввода местных нагрузок Виды нагрузок на элементы
1) Сосредоточенная нагрузка. При этом указывается не только ее значение и знак, но и расстояние а1 от узла
1 до точки приложения нагрузки.
2) Нагрузка равномерно-распределенная по всей длине элемента,

74.

3) Нагрузка трапециевидная распределенная на часть элемента, при этом указываются величины Р1, А1, Р2,
А2.
4) Температурная.
Перед началом ввода нагрузок, для контроля правильности их приложения, реко
Узловые
мендуется на панели Фильтр включить отображение нагрузок кнопками
нагрузки,
Распределенные нагрузки и
Значения нагрузок.
Удаление нагрузок
Для удаления нагрузок из текущего загружения или всего загружения используется кнопка
nl
Удаление нагрузок в разделе Загружения инструментальной панели. Удаляемые нагрузки/загружения
выбираются в окне, приведенном на рисунке 19.
Для удаления загружения его необходимо выбрать в списке загружений и нажать ОК. При этом загружения
исключаются все нагрузки, а загружение формально остается. Это связано с возможными ссылками на него
из РСУ или комбинаций загружений.
Для удаления всех нагрузок с выбранных узлов и элементов необходимо:
- выбрать переключатель Указанные нагрузки с выбранных узлов или Указанные нагрузки с выбранных
элементов
- выбрать По виду, направлению,
- установить с помощью маркеров или кнопок параметры удаляемой нагрузки и
ОК,
- выбрать на РС элементы и узлы, с которых удаляются нагрузки,
- нажать кнопку ОК в разделе Загружения.

75.

Существует еще одна возможность удаления нагрузок через кнопки } м панели Фильтр. В диалоговом окне
по кнопке Нагрузка открывается окно со списком всех нагрузок. Выбранную нагрузку можно удалить, но
только из текущего загружения.

76.

1.8.3 Загружения
Можно удалить нагрузки определенного значения с переключателем «По значению» в диалоговом окне, отметив в списке значения удаляемых нагрузок.
Рисунок 19 - Окно для удаления нагрузок
Нагрузки, заданные в РС, должны быть сохранены в загружениях. Одно загружение может содержать
несколько одновременно действующих нагрузок. Если загружение не записать в явном виде, то система
ничего не узнает о нагрузках, хранящихся в буфере. РС может быть рассчитана от нескольких вариантов
загружений. Поэтому предусмотрена их нумерация и текстовое название.
Снять нагрузки.

77.

Рисунок 20 - Окно сохранения загружений
Для сохранения созданных нагрузок в конкретное за- гружение, необходимо после приложения нагрузок
нажать
кнопку й на вкладке Загружения. В диалоговом окне «Сохранить загружение», показанное на рисунке 20,
обязательно задается его имя и нажимается кнопка ОК, при этом сообщается о присвоении ему номера.
Далее система сообщает о переходе к формированию следующего загружения и очищает РС от
приложенных нагрузок. Если требуется начать создание нового загружения, а на экране отображены
нагрузки текущего загружения, то их нужно сбросить (очистить) кнопкой
Все сохраненные загружения можно посмотреть в списке загружений в конце паДля удаления загружений на закладке Назначения используется кнопка
ление загружений и групп нагрузок. После удаления загружений оставшиеся загружения не
перенумеровываются и остаются «свободные» номера загружений. Для их удаления
используется кнопка I I Упаковка загружений. Загружение Собственный вес
Функция выполняется только в том случае, если заданы жесткостные характеристики элементов. При этом
жесткости должны быть заданы в виде параметрических сечений или сортамента металлопроката.
Собственный вес вычисляется как произведение площади поперечного сечения стержня на объемный вес
материала. Нагрузка моделируется в виде местных распределенных сил, действующих по направлению Z
общей системы координат.
<8
Для задания собственного веса в одном загружении необходимо нажать кнопку «Собственный вес» только
один раз. В противном случае нагрузка будет добавлена мно гократно.
Пример 5 Приложить равномерно-распределенную нагрузку на балку из примера 1.
Узловых нагрузок,
Значений нагрузок.
1) На панели Фильтры включить отображение

78.

Распределенных нагрузок и
2) На закладке Загружения нажать кнопку 3) На закладке Загружения нажать кнопку «Нагрузки на
стержни», затем выде«Узловые нагрузки», затем указать
лить все элементы балки,
узел 2 (крайний правый)
4) Нажать кнопку 1=11 «Сохранить/добавить загружение», в окне диалога ввести имя загружения
«Нормативная нагрузка», ОК. Подтвердить номер загружения 1 - ОК.
5) аналогично, умножив на коэффициент, создать загружение с именем «Расчетная нагрузка»
6) Открыть список загружений и убедиться, что их создано два.
1.9 Расчет
1) После создания и проверки РС и загружений необходимо сохранить проект: - Переключитесь на вкладку
«Управление»;

79.

- Нажмите кнопку «Сохранить текущий проект»
2) Нажать кнопку «Выйти в экран управления проектом» I' : I ч щелкнуть в разде

80.

ле «Расчет» по пункту «Линейный». В появившемся окне, не изменяя параметры, нажать на кнопку «ОК».
Если режим расчета не доступен, на Дереве проекта будет значок . Это означает, что введены либо не все
исходные данные, либо при вводе данных допущены ошибки. Для определения, в каких разделах допущены
ошибки, следует раскрыть узел + Расчетная схема в Дереве проектов, а затем вернуться в окно Расчетная
схема для исправления ошибок.
Ёьв1 ИСХОДНЫЕ ДАННЫЕ F~l""iSi Расчетная схема |Jj Геометрия
|Ji Жесткостные характер и сгики |Jj Связи
Ц Условия примыкания |Jj Нагрузки |+|-- НЛ Специальные исходные данные
3) Ход выполнения расчета отображается в окне протокола. После окончания расчета необходимо
ознакомиться с сообщениями или предупреждениями, выданными в протоколе. Сообщения информативного
характера помечаются например
Ф13:51:10 Проверьте порядок задания ном. узлов для верт. стержня у элементов:
Ошибки помечаются 013:35:25 Много ошибок в исходных данных
. Следует обращать внимание на сообщения о геометрической изменяемости системы, например,
Ф13:28:3Ei
Геометрически изменяемая система по направлению 1 в уз.
Несмотря на то, что сообщение не помечается как ошибка, оно означает, что в расчетной схеме не все
задано правильно. В таких случаях SCAD сам добавляет «нужные» связи, чтобы задание было выполнено. В
сообщениях протокола направления помечаются следующими номерами:
- 1 - линейное по оси X,
- 2 - линейное по оси Y,
- 3 - линейное по оси Z,
- 4 - поворот вокруг оси X,

81.

- 5 - поворот вокруг оси Y,
- 6 - поворот вокруг оси Z. 4) Нажмите на кнопку «Выход»

82.

83.

84.

1.10 Постпроцессоры
Результаты расчета можно посмотреть в Дерево проектов - Результаты - Графический анализ^
Й-™В1 РЕЗУЛЬТАТЫ

85.

?? Ml) Графический анализ ?? MJj Печагтьтаблиц ? jSj^ Документирование КОНСТРУИРОВАНИЕ ?? MJ,
Бетон
„Structure CAD - [C:\Program Files\SCAD Office .SDATA .(l>0102.SPR]
Проект Файл Опции Операции Сервис Справка
Управление Деформации Эпюры усилий! J[ Поля напряжений J^ Постпроцессоры J[ Группы
1) Для просмотра усилий необходимо войти в подраздел «Эпюры усилий» - выбрать номер загружения из
списка, выбрать из списка «Выбор вида усилия» (N, М, Q) - выбрать масштабный коэффициент и щелкнуть
по кнопке «Эпюры усилий»
2) Для оцифровки эпюр используется кнопка
«Оцифровка изополей / изолиний» на панели Фильтры. Пример отображения эпюры продольных сил
представлен на рисунке 21
Проект Файл Опции Операции Сервис Справка
^J |l_1 ? "загружение"
10.500
Управление J[ Деформации|Эпюрь1_усилий| J[
Постпроцессоры
Рисунок 21 - Эпюра N
3) Подробно усилия на отдельном элементе можно посмотреть, нажав кнопку_?И панели Фильтры -выбрать
элемент в окне - кнопка «Эпюры усилий».
4) Для просмотра деформаций необходимо зайти в подраздел «Деформации», выбрать
номер загружения из списка, нажать кнопку ^ «Совместное отображение расчетной и деформированной
схемы». Пример отображения деформаций балки приведен на рисунке 22. Здесь для отображения
численных значений можно использовать кнопку
I совместно со списком направления, а также при желании посмотреть видеоролик
деформации системы по кнопке "Анимация перемещений"

86.

5) Посмотреть численные значения перемещений можно в окне при вызове отдельного
Ш
узла:
Рисунок 22 - Отображение расчетной и деформированной схем
1.11 Документирование
Получить твердую копию результатов расчета можно через Дерево проекта - Результаты - Печать таблиц - в
диалоговом окне кнопка «Параметры вывода» - «Формирование документа» - «Просмотр результатов» с
вызовом блокнота - можно затем сохранить текстовый файл. Окно задания формирования документов
расчета приведено на рисунке 23.
Оформление результатов расчета
Параметры
Формирование
Просмотр
вывода
документа
результатов Г Условные обозначения
в Информация отсутствует ilL-lj Расчет выполнен О Документ сформирован
Отмена
Справка
Рисунок 23 Окно оформления результатов расчета Для выбора параметров формирования результатов
нужно нажать кнопку «Параметры вывода» и задать список узлов или загружений, единицы измрения.
На рисунке 24 приведен фрагмент файла с инфомацией о перемещении узлов. В начале документа
приведены общие данные, далее в таблице для каждого загружения («Нормативная нагрузка»/ «расчетная

87.

нагрузка») и для каждого узла (2-11) приведено значение перемещения (Z) и угла поворота (Uy). В конце
документа показаны максимальные перемещения узлов схемы.
J Irl_k.p05 — Блокнот j
Файл Правка Формат Вид Справка Единицы измерения линейных перемещений: Единицы измерения
угловых перемещений :
Используемые обозначения для загружений: si,52, ... - расчетные значения
rad*1000
SD - амплитуда суммарной динамической составляющей нагрузки
ST - шаг нелинейного нагружения
Разработан SCAD Soft моп Jan 05 18:51:52 2015
основная схема
МАКСИМАЛЬНЫЕ Р А С Ч Е
ПЕР т н О й
Е М Е Щ Е Н И СХЕМЫ
ЯУзло
6.3129896 11 42.383505 2
1
2
-41.8936 -12.67793
29
https://annals-csis.org/proceedings/2022/drp/42.html
2I2|
Рисунок 24 - Фрагмент документа с инфомацией о перемещении узлов На рисунке 25
приведен фрагмент файла с инфомацией об усилиях в элементах схемы. В заголовке таблицы указывается
номер КЭ в РС, номера трех его сечений, а под ним номера узлов, которые связывает данный КЭ. На 2-ой
строке под заголовком показано значение усилий N, M, Q для каждого вида загружения.
В конце таблицы приводится, в каком сечении какого элемента возникают максимальные напряжения.

88.

Единицы измерения усилий: кн
Единицы измерения напряжений: кн/м**2
ЕДИНИЦЫ измерения моментов: кн*м
Единицы измерения распределенных моментов: кн*м/м
ЕДИНИЦЫ измерения распределенных перерезывающих сил: кн/м
Единицы измерения перемещений поверхностей в элементах: м
Используемые обозначения для загружений: si,52, ... - расчетные значения
SD - амплитуда суммарной динамической составляющей нагрузки
Разработан SCAD Soft Моп Jan 05 18:41:50 2015
ST - шаг нелинейного нагружения
test основная схема 6.0001
УСИЛИЯ /НАПРЯЖЕНИЯ/ В ЭЛЕМЕНТАХ
2-3 3-1 3-2 3-3 4-1
нормативная нагрузка
-6.42 -4.242 -2.334 -2.334 -0.696 0.672
7.71 6.81 5.91 5.91 5.01 4.11 "расчетная нагрузка"
-8.30399 -5.60039 -3.22079 -3.22079 -1.16519 0.5664
9.552 8.472 7.392 7.392 6.312
5.232
разработан SCAD soft Моп Dan 05 18:41:50 2015
основная схема
11
МАКСИМАЛЬНЫЕ УСИЛИЯ /НАПРЯЖЕНИЯ/ В РАСЧЕТНОЙ СХЕМЫ
ЭЛЕМЕНТАХ 1 1
11 3 2 j
Рисунок 25 - Фрагмент документа с инфомацией об усилиях в элементах Пример описания
усилий элементе №8. Конечные узлы элемента - 9 и 10.
Здесь между узлами 9 и 10 показаны значения M и Q в 3-х сечениях для загружения с именем «Общее».
- M - изгибающий момент, вращение относительно оси Y1; вызывает растяжение-сжатие нижних и верхних
(по высоте сечения, по направлению оси Z1)волокон сечения;

89.

.12112
- Q - перерезывающая сила в направлении оси Z1 по высоте сечения и соответствующая моменту M.
Замечание. В результате расчета стержневой системы в таблице усилий по умолчанию выдаются усилия в
местной системе координат в трех сечениях каждого элемента: в начале (сечение 1), в середине (сечение 2) и
в конце (сечение 3). В программе SCAD предусмотрена возможность получения усилий в любых сечениях
элемента. Для этого в окне
У|
Расчетная схема выбрать подраздел Назначения и в меню выбрать кнопку ^ I «Назначение промежуточных
сечений для расчета усилий». В окне диалога, приведенном на рисунке 26, задается 5 сечений у элемента.
Рисунок 26 - Окно задания количества сечений элемента
Используя возможность Дерево проекта - Результаты - Документирование можно сформировать большой
сводный отчет, задавая его параметры в окне, приведенном на рисунке 27.
Рисунок 27 - Окно задания параметров отчета

90.

91.

92.

Литература
1. Карпиловский В.С., Крискунов Э.З., Перельмутер А.В., Перельмутер М.А., Тро- фимчук А.Н. SCAD для
пользователя. - Киев.: ВВП «Компас», 2000. - 332 с.
2. Семенов А.,А., Габитов А.И. Проектно-вычислительный комплекс SCAD в учебном процессе. Часть 1.
Статический расчет : Учебное пособие. - М.: Издательство АСВ, 2005. 152 с.
3. Шапошников Н.Н., Кристалинский Р.Е., Дарков А.В. Строительная механика. М. 2012. - 703 с. Доступ из
ЭБС «Лань».
4. Перельмутер А.В. Расчетные модели сооружений и возможность их анализа [Электронный ресурс]/
Перельмутер А.В., Сливкер В.И.— Электрон. текстовые данные.— М.: ДМК Пресс, 2009.— 456 с.— Режим
доступа: http://www.iprbookshop.ru/7880.— ЭБС «IPRbooks».
5. SCAD Office. Вычислительный комплекс SCAD.:[учеб.пособие по направлению 653500 «Стр-во» /В.С.
Карпиловский и др.] М.: Изд-во Ассоц. Строит. Вузов,2008.
3) выполнить упаковку данных кнопка
ки удаленные узлы и элементы удаляются окончательно.
1) Войти в SCAD, создать новый проект, указать идентификацию проекта, задать тип входных данных
КЭ=1, тип схемы 1 Плоская шарнирно-стержневая система.
2) Дерево проекта - Расчетная схема - вкладка Схема - Генерация прототипа фермы - Двускатная ферма Параметры фермы приведены на рисунке 6 б).
1 выполнить экспресс-контроль РС - кнопка
Таблица 1 Типы конечных элементов УДК 69.059.22

93.

94.

95.

96.

97.

98.

99.

100.

101.

102.

103.

104.

105.

106.

107.

108.

109.

110.

111.

112.

113.

114.

115.

116.

117.

118.

119.

120.

121.

122.

123.

124.

125.

126.

127.

128.

129.

130.

131.

132.

133.

134.

135.

136.

137.

138.

139.

140.

141.

142.

143.

144.

145.

146.

147.

148.

149.

150.

151.

Аннотация китайского моста из полимерных сверхпрочных и сверхлегких
полимерных материалов изготовленных в Китайской народной республике (КНР)
сборно-разборный китайский мост для условия помощи в бедствии при
критической ситуации, разрушения старого железнодорожного моста и
происходят и в случаях , где много ограничений. В КНР разработан новый

152.

полимерный сверхлегкий и сверхпрочный гибридный материал GFRP-МЕТАЛЛ с
использованием стекловолокна, что позволило разработать быстро собираемый
мост предложить и разработать модульный чрезвычайный мост длиной
промежутка 51 м. и способности(вместимости) груза vehicular 200 kN.
Крупномасштабный мост состоял из верхней сложной связки коробки girder и более
низкого гибридного компонента вереницы (стеклонити). Продвинутый гибрид
PTTC технология наймется (использовался) для jointing трубчатые GFRP
элементы. Новый длинный - охватывают мост, который был повторно
разработан китайскими инженерами (повторно предназначен) основанным на
оптимизации оригинала, короткого промежутка, гибридная высокопрочный
полимер материал , который используется космических станций , для соединения
моделей железнодорожного моста , позволяет создать сверхлегкие фермы для
быстро собираемых мостов в чрезвычайных ситуациях в КНР показал хорошие
характеристики - sructurally. Полный вес моста был приблизительно 162 kN.
С
низким само-весом, разработанный (предназначенный) мост мог бы
удовлетворять первичные легкие требования для чрезвычайных целей в
Китайской народной Республике

153.

154.

155.

156.

157.

158.

159.

160.

161.

162.

163.

164.

165.

166.

167.

168.

169.

170.

171.

172.

173.

174.

175.

176.

177.

178.

179.

180.

181.

182.

183.

184.

185.

186.

187.

Упруго пластические балки -фермы для пролетных строений автомобильного или железнодорожного моста всегда была одним из наиболее распространённых материалов
используемых для строительства на территории нашей страны мостов и перправ . Это обусловлено не только тем, что она всегда была и остаётся самым доступным и
сравнительно недорогим материалом, но и наличием целого ряда других преимуществ по сравнению с другими традиционными материалами. Древесина имеет высокие
прочностные характеристики при достаточно небольшой плотности, а значит и небольшом собственном весе, что в свою очередь исключает необходимость сооружения
массивных и дорогостоящих мотов . Кроме того к положительным свойствам пластинчато-балочных ситем для мостов, как строительного материала относятся: большой
экономии строительных материалов, способностью противостоять сейсмическим воздействиям, воздухопроницаемость, экологическая чистота, а также природной красота
и декоративностью, что для современных строений играет немаловажную роль.
Упругопластические фермы-балки с большими премещениями, структуры обладают рядом преимуществ, правильное использование которых позволяет повысить
экономическую эффективность по сравнению с традиционными решениями. К преимуществам относятся: пространственность работы системы; повышенная надёжность от
внезапных разрушений; возможность перекрытия больших пролётов; удобство проектирования подвесных потолков; максимальная унификация узлов и элементов;
существенное снижение транспортных затрат; возможность использования совершенных методов монтажа-сборки на земле и подъёма покрытия крупными блоками;
архитектурная выразительность и возможность применения для железнодорожного моста , переправ различного назначения.
В качестве объекта исследования и компоновки структурного покрытия принята металлодеревянная блок-ферма пролетом 18 метров (рис. 1). Конструкция блок-фермы
представляет собой двускатную четырехпанельную пространственную ферму, верхний пояс которой выполнен из однотипных клеефанерных плит, пространственная решетка
регулярного типа выполнена из деревянных поставленных V-образно взаимозаменяемых раскосов, верхний пояс соединен по концам с нижним поясом раскосами через
опорные узлы. Нижние узлы крайних и средних раскосов соединены между собой металлическим элементом нижнего пояса, средний элемент нижнего пояса выполнен из
круглой стали, также в ферму введены крайние стальные стержни нижнего пояса, имеющие по концам V-образное разветвление и напрямую соединяющие опорные узлы со
средним стальным элементом нижнего пояса *1+
Рис. 1. Блок ферма пролетом 18м для сборно-разборного армейского моста, переправы за 24 часа собирается

188.

Структурное покрытие представляет собой совокупность одиночных блок-ферм связанных между собой в узлах примыкания раскосов решетки к верхнему поясу и установки
дополнительных затяжек между узлами раскосов, что позволяет комбинировать структурные покрытия различных пролетов.
С помощью программного комплекса SCAD v.11.5, реализующий конечно-элементное моделирование были проведены расчеты различных вариантов структур пролетами 6, 9,
12, и 15 метров. Расчет структурной конструкции блок-фермы проводился на основное сочетание нагрузок, состоящее из постоянных и кратковременных нагрузок. На основе
полученных результатов расчета составлена сводная таблица усилий и напряжений различных элементов структурного покрытия (таблица 1).
Таблица 1 – Таблица усилий и напряжений
Пролет
структуры
Мах.сжимающие
усилие раскоса,
кН (напряжение
МПа)
Мах.растягивающее
усилие раскоса, кН
Мах.усилие в затяжке,
кН (напряжение МПа)
Мах.перемещение, мм
6
120,15 (7,68)
99,06 (6,34)
244,58 (240,4)
46,03
9
183,95 (11,16)
159,9 (10,23)
280,36 (275,58)
57,44
12
254,1 (15,56)
215,47 (12,73)
331,54 (325,88)
73,34
15
296,77 (18,99)
264,35 (13,79)
398,92 (392,12)
98,26
(напряжение МПа)
Проведенный анализ структурных покрытия пролетами 6, 9, 12, 15 метров показывает, что более оптимально конструкция работает при относительно небольших пролетах.
Увеличение пролета структуры приводит к увеличению напряжений и деформаций конструкции. Использование структурных покрытий больших пролетов приводят к
значительному повышению собственного веса конструкции и нерациональному использованию материала. Наиболее оптимальным вариантом структурного покрытия является
пролет структуры 18 х 9 метров (рис 2.).
Предлагаемая конструкция представляет собой структуру образованную посредством соединения отдельных блок-ферм, размерами в плане 18х9м, в единый конструктивный
элемент покрытия шарнирно опертый по углам.

189.

Рис. 2 Структурное пролетное строение армейского собрно-разбороно моста размерами 18 х 9 метров
В настоящее время проводится работа по дальнейшему решению задачи применения металлодеревянных структурных покрытий в условиях повышенной сейсмической
опасности.
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ
Инжутов И.С.; Деордиев С.В.; Дмитриев П.А.; Енджиевский З.Л.; Чернышов С.А Патент на изобретение № 2136822 от 10.09.1999 г.
Испытания узлов и фрагментов компенсатора пролетного строения из упругопластических стальных ферм 6 , 9, 12, 18, 24 и 30 метров , однопутный, автомобильный , ширина
проезжей части 3 метра, грузоподъемностью 10 тонн , ускоренным способом, со встроенным бетонным настилом с пластическими шарнирами ( компенсаторами ) , системой
стальных ферм соединенных элементов на болтовых и соединений между диагональными натяжными элементами, верхним и нижним поясом фермы из пластинчатых
пролетной стальной фермы- балки с применением гнутосварных профилей прямоугольного сечения типа "Молодечно" ( серия 1.460.3-14 ГПИ " Ленпроектстальконструкция" )
для системы несущих элементов и элементов проезжей части армейского сбрно- разборного пролетного строения моста с упругопластическими коменсатора проф дтн ПГУПС
А.М.Уздина с со сдвиговыми жесткостью с использованием при испытаниях упругпластических ферм ПК SCAD и использовании при лабораторных испытаниях в СПб ГАСУ
организацией "Сейсмофонд" при СПб ГАСУ выполненный расчет американскими организациями в программе 3D - модели конечных элементов компенсатора–гасителя
напряжений для пластичных ферм американскими инженерами, при строительстве переправы , длиной 260 футов ( 60м етров ) через реку Суон в штате Монтана в 2017 году
и испозования опыта Китайских инженерорв из КНР, расчеты и испытание узлов структутрной фермы кторый прилагаются ниже организаций "Сейсмофонд" при СПб ГАСУ

190.

191.

192.

193.

194.

195.

196.

197.

198.

Прямой упругопластический расчет на напряженно деформируемое состояние (НДС) структурных стальных ферм с большими перемещениями на предельное равновесие и
приспособляемость на пример расчет китайского моста из сверхлегких, сверхпрочных полимерных гибридных материалов GFRP-MЕТАЛЛ, с использование стекловолокна для
армейского быстро собираемого моста, для чрезвычайных ситуациях , длинною 51 метра , грузоподъемностью 200 kN, из трубчатых GFRP-элементов (Полный вес быстро
собираемого китайского моста 152 kN ), для использования при чрезвычайных ситуациях для Народной Китайской Республики и на основе строительство моста для грузовых
автомобилей, из пластинчато-балочных стальных ферм при строительстве переправы ( длиной 205 футов) через реку Суон , в штате Монтана (США), со встроенным
бетонным настилом и натяжными элементами верхнего и нижнего пояса стальной фермы со значительной экономией строительных материалов.
(19)
RU
РОССИЙСКАЯ ФЕДЕРАЦИЯ
(11)
2 228 415
(13)
C2
(51) МПК
ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
E04C 3/17 (2000.01)
E04B 1/19 (2000.01)
(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ
Статус:
не действует (последнее изменение статуса: 02.07.2021)
Пошлина: Патент перешел в общественное достояние.
(21)(22) Заявка: 99123410/03, 04.11.1999
(24) Дата начала отсчета срока действия патента:
04.11.1999
(72) Автор(ы):
Дмитриев П.А.,
Инжутов И.С.,
Чернышов С.А.,
Деордиев С.В.,

199.

(43) Дата публикации заявки: 10.09.2001 Бюл. № 25
Филиппов А.П.
(45) Опубликовано: 10.05.2004 Бюл. № 13
(73) Патентообладатель(и):
Красноярская государственная
архитектурно-строительная академия
(56) Список документов, цитированных в отчете о поиске: ЕНДЖИЕВСКИЙ Л.В. и др. Трехгранная блок-ферма ТБФ 12-3Р // Информ.
листок №49-97 / ЦНТИ - Красноярск, 1997. SU 1742435 A1, 23.06.1992. SU 1310488 A1, 15.05.1987. SU 1281651 A1, 07.01.1987. RU
2117117 C1, 10.08.1998. RU 2136822 C1, 10.09.1999. RU 2102566 C1, 20.01.1998. US 4389829 A, 28.06.1983. FR 2551789 A, 15.03.1985.
Адрес для переписки:
660041, г.Красноярск, пр. Свободный, 82, КрасГАСА
(54) УЗЛОВОЕ СОПРЯЖЕНИЕ КРАЙНЕГО НИЖНЕГО УЗЛА РАСКОСОВ С НИЖНИМ ПОЯСОМ ТРЕХГРАННОЙ ПРЕДВАРИТЕЛЬНО НАПРЯЖЕННОЙ БЛОК-ФЕРМЫ ПОКРЫТИЯ
(57) Реферат:
Изобретение относится к строительству и может быть использовано для покрытий отапливаемых промышленных и сельскохозяйственных зданий и сооружений. Технический
результат - повышение прочности и жесткости за счет предварительного напряжения и создания “следящих” за деформациями ползучести усилий предварительного
напряжения. Узловое сопряжение представляет собой металлический элемент соединения раскосов, образованный трубой с приваренными сверху V-образно двумя фасонками,
раскосы, присоединенные через металлические фасонки к металлическому элементу соединения раскосов, и металлический стержень, пропущенный через металлический
элемент соединения раскосов, имеющий резьбовую нарезку на конце и закрепленный с помощью гаек. Между гайками и металлическим элементом соединения раскосов
размещены две шайбы, выполненные из швеллера, а между ними винтовая пружина. 4 ил.
Изобретение относится к строительству и может быть использовано для покрытий отапливаемых промышленных и сельскохозяйственных зданий и сооружений.
Известна преднапряженная панель покрытия, предназначенная для большепролетных зданий и сооружений, а также для несущих элементов транспортных галерей, переходов
и других аналогичных объектов. Преднапряженная панель покрытия представляет собой тонкую облегченную железобетонную плиту, выполняющую роль верхнего пояса, к
которой присоединены металлические подкрепляющие элементы в виде пространственно ориентированных шпренгелей, состоящих из стержней решетки, нижнего пояса. Она
снабжена дополнительно криволинейным поясом из пучков высокопрочной арматурной стали или тросов с подвесками или стойками, присоединенными к узлам нижнего
пояса, снабженным натяжным устройством.

200.

Недостатком этой системы является неэффективность конструкции за счет большего веса и расхода материалов в отличие от предлагаемой авторами *1+.
Более близким по техническому решению к предлагаемому изобретению (прототипом) является трехгранная деревометаллическая блок-ферма марки ТБФ 12-3Р. Верхний пояс
П-образного сечения выполнен из крупноразмерных плит, имеющих каркас из цельнодеревянных элементов и прикрепленной к нему сверху шурупами обшивки из плоских
асбестоцементных листов. Между вспомогательными дощатыми ребрами, расположенными вдоль пролета, на обшивку укладывается утеплитель из полистирольного
пенопласта. Гидроизоляция устанавливается из трех слоев рубероида по выравнивающему слою из стеклоткани. Верхний пояс объединен с нижним пространственной решеткой
регулярного типа, выполненной из деревянных раскосов квадратного сечения. Крайние раскосы соединены с нижним поясом стальными стержневыми подвесками. Нижний
пояс из стальных стержней круглого сечения имеет по концам V-образное разветвление для сопряжения с основными ребрами верхнего пояса *2+.
Недостатком прототипа является неэкономичность конструкции за счет недостаточной несущей способности, потери усилия предварительного напряжения в нижнем поясе за
счет ползучести и температурно-влажностных деформаций в древесине и температурных деформаций металла и, как следствие, снижение жесткостных характеристик.
Целью изобретения является создание экономичной конструкции за счет повышения прочности и жесткости, за счет предварительного напряжения и создания “следящих” за
деформациями ползучести усилий предварительного напряжения.
Цель достигается тем, что в узловое сопряжение крайнего нижнего узла раскосов с нижним поясом трехгранной предварительно напряженной блок-фермы покрытия,
включающее в себя металлический элемент соединения раскосов, образованный трубой с приваренными сверху V-образно двумя фасонками, раскосы, присоединенные через
металлические фасонки к металлическому элементу соединения раскосов, и металлический стержень, пропущенный через металлический элемент соединения раскосов,
имеющий резьбовую нарезку на конце и закрепленный с помощью гаек, между гайками и металлическим элементом соединения раскосов размещены две шайбы,
выполненные из швеллера, а между ними винтовая пружина.
В связи с тем, что в узловое сопряжение крайнего нижнего узла раскосов с нижним поясом трехгранной предварительно напряженной блок-фермы покрытия, включающее в
себя металлический элемент соединения раскосов, образованный трубой с приваренными сверху V-образно двумя фасонками, раскосы, присоединенные через металлические
фасонки к металлическому элементу соединения раскосов, и металлический стержень, пропущенный через металлический элемент соединения раскосов, имеющий резьбовую
нарезку на конце и закрепленный с помощью гаек, на металлический стержень между гайками и металлическим элементом соединения раскосов размещены две шайбы,
выполненные из швеллера, и между ними винтовая пружина, появляется возможность создания экономичной конструкции за счет снижения материалоемкости, создания
“следящих” за деформациями ползучести усилий предварительного напряжения. При этом в основном ребре возникает момент с обратным знаком, что в свою очередь ведет к
повышению несущей способности и жесткости.
Узловое сопряжение раскосов с нижним поясов пространственной решетчатой конструкции представлено на чертежах.
Фигура 1, 2 - общий вид трехгранной предварительно напряженной блок-фермы покрытия,
Фигура 3, 4 - узловое сопряжение крайнего нижнего узла раскосов с нижним поясом трехгранной предварительно напряженной блок-фермы покрытия.
Узловое сопряжение крайнего нижнего узла раскосов 1 с нижним поясом 2 трехгранной предварительно напряженной блок-фермы покрытия, включающее в себя
металлический элемент соединения раскосов 3, образованный трубой 4 с приваренными сверху V-образно двумя фасонками 5, раскосы 1, присоединенные через
металлические фасонки 5 к металлическому элементу соединения раскосов 3, и металлический стержень 6, пропущенный через металлический элемент соединения раскосов 3,
имеющий резьбовую нарезку на конце и закрепленный с помощью гаек 7. На металлический стержень между гайками 7 и металлическим элементом соединения раскосов 3
размещены две шайбы 9, выполненные из швеллера, и между ними винтовая пружина 8.

201.

Сборка конструкции производится следующим образом: к металлическому элементу соединения раскосов 3, образованному трубой 4 с приваренными сверху V-образно двумя
фасонками 5, присоединяются раскосы 1, затем через 3 пропускается металлический стержень 6, имеющий резьбовую нарезку на конце. Далее стержень пропускается через
шайбу 9, винтовую пружину 8, шайбу 9 и закрепляется с помощью гаек 7.
В процессе эксплуатации пружина будет регулировать усилие предварительного напряжения, сохраняя его несмотря на ползучие и температурно-влажностные деформации в
древесине и температурные деформации металла.
Применение предлагаемого технического решения по сравнению с прототипом создает усилие предварительного напряжения и сохраняет его в процессе эксплуатации, что в
свою очередь позволяет создать экономичную конструкцию за счет повышения несущей способности и жесткости пространственной решетчатой конструкции.
Источники информации
1. RU, авторское свидетельство 2117117, 1998.
2. Л.В.Енджиевский, О.В.Князев, И.С.Инжутов, С.В.Деордиев. Трехгранная блок-ферма ТБФ 12-3Р // Информ. Листок №49-97/ ЦНТИ. - Красноярск, 1997.
Формула изобретения
Узловое сопряжение крайнего нижнего узла раскосов с нижним поясом трехгранной предварительно напряженной блок-фермы покрытия, включающее в себя металлический
элемент соединения раскосов, образованный трубой с приваренными сверху V-образно двумя фасонками, раскосы, присоединенные через металлические фасонки к
металлическому элементу соединения раскосов, и металлический стержень, пропущенный через металлический элемент соединения раскосов, имеющий резьбовую нарезку на
конце и закрепленный с помощью гаек, отличающееся тем, что на металлический стержень между гайками и металлическим элементом соединения раскосов размещены две

202.

шайбы, выполненные из швеллера, и между ними винтовая пружина.

203.

204.

205.

206.

(21) Регистрационный номер заявки: 0099123410 Извещение опубликовано: 27.10.2006БИ: 30/2006
ПОКРЫТИЕ ИЗ ТРЕХГРАННЫХ ФЕРМ 2188287

207.

РОССИЙСКАЯ ФЕДЕРАЦИЯ
(19)
RU
ФЕДЕРАЛЬНАЯ СЛУЖБА
(11)
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
2 188 287
(13)
C2
(51) МПК
E04C 3/04 (2000.01)
(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ
Статус:
не действует (последнее изменение статуса: 02.07.2021)
Пошлина:
учтена за 4 год с 28.06.2003 по 27.06.2004. Патент перешел в общественное
достояние.
(21)(22) Заявка: 2000117116/03, 27.06.2000
(24) Дата начала отсчета срока действия патента:
27.06.2000
(45) Опубликовано: 27.08.2002 Бюл. № 24
(56) Список документов, цитированных в отчете о поиске: RU 8716 U1, 16.12.1998. SU 727790 А,
29.04.1980. SU 1255697 А1, 07.09.1986. US 1959756 А, 22.06.1934. GB 898605 А, 14.06.1962.
(71) Заявитель(и):
Томский государственный архитектурно-строительный университет
(72) Автор(ы):
Копытов М.М.,
Ерохин К.А.,
Матвеев А.В.,
Мелехин Е.А.

208.

Адрес для переписки:
634003, г.Томск, 3, пл. Соляная, 2, ТГАСУ, патентный отдел
(73) Патентообладатель(и):
Томский государственный архитектурно-строительный университет
(54) ПОКРЫТИЕ ИЗ ТРЕХГРАННЫХ ФЕРМ
(57) Реферат:
Изобретение относится к области строительства, а более конкретно к несущим металлическим конструкциям покрытия производственных и общественных зданий. Каждая
отдельная трехгранная ферма покрытия состоит из двух верхних коробчатых поясов и одного нижнего, также коробчатого пояса, соединенных между собой раскосной
решеткой. Все коробчатые пояса имеют пентагональное сечение и выполнены каждый из жестко соединенных между собой швеллера и уголка. Раскосная решетка выполнена
из одиночных уголков, прикрепленных полками к полкам поясных уголков. Стенки швеллеров верхних поясов расположены вертикально, а стенка нижнего швеллера
горизонтально. Верхние пояса объединены по полкам швеллеров профнастилом. За счет вертикальной ориентации стенок швеллеров верхних поясов повышается значение
момента сопротивления и радиуса инерции пентагонального сечения. Технический результат изобретения заключается в повышении несущей способности трехгранной фермы
и сокращение количества элементов в покрытии. 3 ил.
Изобретение относится к строительным металлическим конструкциям, а более конкретно к несущим конструкциям покрытия производственных и общественных зданий, и
может быть использовано для подвески технологических устройств, а также в качестве перекрытий, элементов комбинированных систем.
Известны устройства бесфасоночных покрытий из трехгранных ферм с поясами и наклонной решеткой из круглых труб *1+. По верхним поясам этих ферм уложены прогоны, на
которые опираются ограждающие конструкции. Недостатком таких покрытий является большое количество прогонов и сложность выполнения пространственных узлов
сопряжении труб, что ведет к повышенному расходу металла и трудоемкости изготовления. Известны также устройства беспрогонных покрытий из трехгранных ферм *2+ с
коробчатым сечением двух верхних поясов, образованных из состыкованных уголков и нижним поясом из одиночного уголка, к которым с помощью фасонок прикреплены
раскосы. Недостатком таких покрытий является большое количество фасонок, необходимость делать вырезы в полках уголков для пропуска фасонок, что также ведет к
повышенному расходу металла и трудоемкости изготовления.
Наиболее близким к заявляемому покрытию является складчатое покрытие из наклонных ферм *3+. Оно состоит из непрерывной системы плоских ферм, наклоненных под углом
45o к вертикальной плоскости. Каждая смежная ферма имеет общий пояс: либо верхний, представляющий собой пятигранный профиль сечения, образованный из
состыкованного швеллера и уголка; либо нижний, образованный из одиночного уголка, ориентированного обушком вверх. К поясам торцами приварены раскосы из одиночных
уголков. Это позволяет реализовать беспрогонное и бесфасоночное решение кровельного покрытия и является экономичней аналогов. Однако конструкция такого покрытия

209.

вынуждает ориентировать пятигранный профиль сечения с горизонтально расположенной стенкой швеллера, что необходимо для образования складчатой системы. Анализ
показывает, что при такой ориентации поясов на 25...45% снижается прочность сжато-изогнутого стержня верхнего пояса, т.к. момент сопротивления и радиус инерции сечения
оказываются меньше, чем при ортогональной ориентации этого же сечения. Кроме того, непрерывная система складчатого покрытия требует большого количества наклонных
ферм и необходимость выполнения вручную большого объема работ на строительной площадке по укрупнительной сборке конструкции. Раскосная решетка таких ферм слабо
нагружена и имеет большой запас несущей способности, но без нее невозможно образовать конструктивную форму складчатого покрытия. Все это сопровождается
повышенным расходом металла и большой трудоемкостью изготовления.
Задача изобретения состоит в том, чтобы снизить металлоемкость и трудоемкость изготовления покрытия при сохранении его несущей способности.
Задача решается следующим образом. В покрытии из трехгранных ферм, объединенных профнастилом, каждая из которых включает верхние коробчатые пояса пентагонального
сечения из жестко соединенных между собой швеллеров и уголков, нижний пояс, содержащий уголок, направленный обушком вверх, и раскосную решетку, прикрепленную к
полкам поясных уголков, согласно изобретению нижний пояс снабжен швеллером, жестко соединенным с уголком и образующий с ним пентагональное сечение; при этом
стенки швеллеров верхних и нижнего пояса ориентированы ортогонально.
Таким образом, заявляемое устройство отличается от прототипа тем, что:
- нижний пояс снабжен швеллером, жестко соединенным с уголком и образующим с ним пентагональное сечение;
- стенки швеллеров верхних и нижнего поясов распложены ортогонально.
Это говорит о "новизне" заявляемого устройства.
Так как нижний пояс выполнен из пентагонального сечения, а полки швеллеров верхних и нижнего пояса ориентированы ортогонально, это позволило увеличить площадь
растянутого нижнего пояса с одновременным увеличением моментов сопротивления и радиусов инерции сжато-изогнутых верхних поясов, т.е. повысить несущую способность
отдельной фермы. При этом большой запас несущей способности раскосной решетки уменьшится и она станет работать эффективней, что и позволило дискретизировать
систему несущих конструкций покрытия из наклонных ферм. Благодаря качественному изменению конструктивной формы непрерывная складчатая система покрытия
превратилась в блочную, состоящую из трехгранных ферм со свободным пространством между ними. Это позволяет существенно сократить количество элементов в покрытии,
повысить несущую способность поясов конструкции за счет оптимальной ориентации их сечений и в совокупности существенно снизить трудоемкость изготовления,
металлоемкость и стоимость.
Предлагаемая конструкция позволяет осуществить полное заводское изготовление и сборку трехгранной фермы, удобна при транспортировке и монтаже. Таким образом, при
сохранении и соблюдении всех необходимых рабочих параметров заявляемая конструкция требует в сравнении с прототипом меньше металла, меньшего количества
элементов, что в итоге приводит к снижению металлоемкости, трудоемкости и стоимости при сохранении несущей способности покрытия.
На фигуре 1 изображен общий вид покрытия из трехгранных ферм; на фигуре 2 изображен общий вид наклонной плоскости трехгранной фермы; на фигуре 3 - поперечный
разрез трехгранной фермы.
Трехгранная ферма содержит два верхних пояса 1, нижний пояс 2 и раскосы 3. Верхний пояс 1 состоит из состыкованного швеллера и уголка при вертикальной ориентации
стенки швеллера; нижний пояс 2 - то же при горизонтальной ориентации стенки швеллера; раскосы 3 - из одиночных уголков. Стержни раскосов 3 прикреплены торцами к
полкам поясных уголков (фиг.3) посредством сварки. Верхние пояса трехгранных ферм в горизонтальной плоскости связаны сплошным профнастилом 4 (фиг.1), который
завершает формирование покрытия из трехгранных ферм. Между смежными трехгранными фермами не требуется размещения элементов 2 и 3 (фиг.1); достаточно перекрыть
это свободное пространство настилом 4.

210.

Изготовление покрытия из трехгранных ферм производят следующим образом: швеллер и уголок стыкуют между собой продольными сварными швами и образуют элементы
поясов 1 и 2 пятигранного профиля сечения. Два верхних пояса 1 устанавливают с вертикальной ориентацией стенки швеллера (как показано на фиг. 3); нижний пояс 2 - с
горизонтальной ориентацией стенки швеллера. При этом полки швеллеров верхних поясов служат опорами для настила, а наклон плоскостей поясных уголков пятигранных
профилей 1 и 2 соответствует требуемым плоскостям элементов раскосной решетки 3. Элементы раскосной решетки 3, выполненные из одиночных уголков, торцами
приваривают к полкам поясных уголков соответственно верхнего 1 и нижнего 2 поясов. Образуется бесфасоночная пространственная трехгранная ферма полной заводской
готовности. Эта ферма удобна при транспортировке: ее габариты и устройство позволяют перевозить одновременно несколько ферм за счет их укладки "елочкой" в
транспортное средство. На монтажной площадке к верхним поясам пространственной фермы без прогонов устанавливается и крепится профнастил 4 и образуется трехгранный
блок покрытия. Он устанавливается в проектное положение.
Следующий блок покрытия устанавливается так, что между ними образуется свободное пространство, не заполненное стержневыми элементами: достаточно перекрыть его
лишь профнастилом 4, который одновременно совмещает несущие и ограждающие функции. Это позволяет сократить количество элементов в покрытии из трехгранных ферм,
снизить металлоемкость, трудоемкость и стоимость. Конвейерная сборка и блочный монтаж дополнительно упрощают процесс изготовления и монтажа, делают его
технологичным и менее трудоемким.
Покрытие из трехгранных ферм работает как пространственная стержневая система с неразрезными поясами и примыкающими раскосами. Верхний пояс 1 работает как сжатоизогнутый стержень. Максимальное значение изгибающего момента и радиуса инерции соответствует вертикальной плоскости, поэтому вертикальной ориентацией стенки
швеллера достигается максимальное значение момента сопротивления и радиус инерции, которые определяют прочность при сжатии с изгибом, т.е. достигается максимальная
несущая способность сжато-изогнутого пятигранного сечения, и оно работает с максимальной эффективностью. Нижний пояс 2 работает как растянутый стержень;
примыкающие раскосы работают в условиях растяжения или сжатия. Профнастил работает на изгиб как однопролетная или многопролетная гофрированная пластина. Покрытие
из трехгранных ферм отличается повышенной пространственной жесткостью как на стадии монтажа, так и в условиях эксплуатации и является индустриальной и технологичной
конструктивной формой.
Источники информации
1. Беленя Е.И. и др. Металлические конструкции. Специальный курс. - М.: 1982, с. 57...60.
2. Авт. св. СССР 1544921, М.кл. Е 04 С 3/04.
3. Свид. на полез модель 8716, МПК Е 04 С 3/04.
Формула изобретения
Покрытие из трехгранных ферм, объединенных профнастилом, каждая из которых включает верхние коробчатые пояса пентагонального сечения, из жестко соединенных между
собой швеллеров и уголков, нижний пояс, содержащий уголок, направленный обушком вверх, и раскосную решетку, прикрепленную к полкам поясных уголков, отличающееся
тем, что нижний пояс снабжен швеллером, жестко соединенным с уголком и образующим с ним пентагональное сечение, при этом стенки швеллеров верхних и нижнего поясов
размещены ортогонально.

211.

ТРЕХГРАННАЯ БЛОК-ФЕРМА 2 136822 ТРЕХГРАННАЯ БЛОК-ФЕРМА Красноярская государственная архитектурно строительная академия
РОССИЙСКАЯ ФЕДЕРАЦИЯ
(19)
RU

212.

(11)
2 136 822
(13)
ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ
СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
C1
(51) МПК
E04C 3/17 (1995.01)
E04B 1/19 (1995.01)
(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ
Статус:
не действует (последнее изменение статуса: 02.07.2021)
Пошлина:
учтена за 3 год с 10.09.1999 по 09.09.2000. Патент перешел в общественное
достояние.
(21)(22) Заявка: 97115691/03,
09.09.1997
(71) Заявитель(и):
Красноярская государственная архитектурно-строительная академия
(24) Дата начала отсчета срока
действия патента:
09.09.1997
(72) Автор(ы):
Инжутов И.С.,
Деордиев С.В.,
Дмитриев П.А.,
Енджиевский З.Л.,
Чернышов С.А.
(45) Опубликовано: 10.09.1999
(56) Список документов,
цитированных в отчете о
поиске: Дмитриев П.А. и др.
Индустриальные
пространственные деревянные
(73) Патентообладатель(и):
Красноярская государственная архитектурно-строительная академия

213.

конструкции. - НИСИ
им.В.В.Куйбышева, 1981, с. 88. SU
1281651 A, 07.01.87. FR 2551789 A,
15.03.85. SU 65455 A, 31.12.45. US
4389829 A, 28.06.83.
Адрес для переписки:
660041, Красноярск,
пр.Свободный 82, Ректору
КрасГАСА Наделяеву В.Д.
(54) ТРЕХГРАННАЯ БЛОК-ФЕРМА
(57) Реферат:
Трехгранная блок-ферма покрытия относится к строительству и может быть использована для соединения стержней пространственных конструкций зданий и сооружений.
Технический результат изобретения заключается в достижении наиболее эффективной работы верхнего пояса с нижним, экономии материалов. Блок-ферма покрытия,
представляет собой двухскатную четырехпанельную пространственную ферму, верхний пояс которой выполнен из однотипных клеефанерных плит, пространственная решетка
регулярного типа выполнена из деревянных поставленных V-образно взаимозаменяемых раскосов, верхний пояс соединен по концам с нижним поясом раскосами через
опорные узлы. Нижние узлы крайних и средних раскосов соединены между собой деревянным элементом нижнего пояса, а средний элемент нижнего пояса выполнен из
круглой стали, в ферму введены крайние стальные стержни нижнего пояса, имеющие по концам V-образное разветвление и напрямую соединяющие опорные узлы со средним
стальным элементом нижнего пояса, 3 ил.

214.

Изобретение относится к области строительства, а именно к конструкциям покрытия.
Известна панель покрытия треугольного очертания, образованная двумя плитами, шарнирно соединенными между собой в коньке и затяжкой с V-образными разветвлениями
по концам в уровне опорных узлов. Плиты подкреплены двумя сжатыми раскосами и двумя растянутыми (с V-образным планом) раскосами. Поперечное сечение панели треугольное. Плиты состоят из нижних (основных несущих) ребер, фанерной обшивки, поперечных ребер, размещенных на обшивке сверху, продольных элементов обрамления
(см. SU 1281651 A, 07.01.87).
Недостатком этой конструкции является большая материалоемкость плит, обусловленная развитой свободной длиной нижних ребер.
Наиболее близкой по техническому решению к предлагаемому изобретению (прототипом) является блок-ферма покрытия, представляющая собой двухскатную
четырехпанельную пространственную ферму, верхний пояс которой выполнен из однотипных взаимозаменяемых клеефанерных плит, пространственная решетка регулярного
типа выполнена из деревянных поставленных V-образно взаимозаменяемых раскосов, верхний пояс соединен по концам с нижним поясом раскосами через опорные узлы.
Нижние узлы крайних и средних раскосов соединены между собой деревянным элементом нижнего пояса, а средний элемент нижнего пояса выполнен из круглой стали (см.
Дмитриев П.А. и др. "Индустриальные пространственные деревянные конструкции", НИСИ им. В.В. Куйбышева, 1981, с. 88).
Недостатком конструкции прототипа является неэффективная работа верхнего пояса с нижним, т.к. передача усилий с верхнего пояса на нижний передается под большим углом
к направлению волокон древесины, что определяет значительные деформации в узловом сопряжении. Прочность древесины вдоль волокон существенно выше, чем поперек.
Работа крайних раскосов на растяжение не позволяет выполнить элементы решетки взаимозаменяемыми, что является причиной повышенной материалоемкости конструкции.
Целью изобретения является эффективная работа блок-фермы, экономия материалов.
Цель достигается тем, что в блок-ферме покрытия, представляющем собой двухскатную четырехпанельную пространственную ферму, верхний пояс которой выполнен из
однотипных взаимозаменяемых клеефанерных плит, пространственная решетка регулярного типа выполнена из деревянных поставленных V-образно взаимозаменяемых
раскосов, верхний пояс соединен по концам с нижним поясом раскосами через опорные узлы. Нижние узлы крайних и средних раскосов соединены между собой деревянным
элементом нижнего пояса, а средний элемент нижнего пояса выполнен из круглой стали, введены крайние стальные стержни нижнего пояса, имеющие по концам V-образное
разветвление и соединяющие напрямую опорные узлы со средним стальным элементом нижнего пояса.
Благодаря введению крайних стальных стержней нижнего пояса, имеющих по концам V-образное разветвление, улучшилась работы блок-фермы за счет того, что усилие с
нижнего на основные ребра верхнего пояса передается под небольшим углом к направлению волокон древесины, что определяет незначительные деформации в узловом
сопряжении, в связи с этим обусловлена возможность уменьшить размеры поперечных сечений раскосов, а следовательно, достичь экономии древесины.
На фиг. 1 изображена блок-ферма покрытия; на фиг. 2 - совмещенные вид и разрез в плане; на фиг. 3 - совмещенный поперечный разрез.
Блок-ферма покрытия включает верхний пояс, состоящий из однотипных клеефанерных плит 1, имеющих каркас из основных нижних ребер 2, и прикрепленной к нему сверху
шурупами обшивки 3 из плоских асбестоцементных листов. Между вспомогательными дощатыми ребрами 4, расположенными вдоль пролета, на обшивку укладывается
утеплитель 5 из полистирольного пенопласта марки ПСБ. Гидроизоляция устраивается из трех слоев рубероида по выравнивающему слою из стеклоткани. Диафрагмы 7
находятся между основными нижними ребрами 2 в сечениях, совпадающих с узлами сопряжения верхнего пояса 1 конструкции с раскосами 8. Верхний пояс объединен с
нижним пространственной решеткой регулярного типа, выполненной из деревянных поставленных V-образно взаимозаменяемых раскосов 8 квадратного сечения. Нижние узлы
9 крайних и средних раскосов соединены между собой деревянным элементом 10 нижнего пояса. Средний элемент 11 нижнего пояса выполнен из круглой стали. Крайние

215.

стальные стержни 13 нижнего пояса имеют по концам V-образное разветвление и напрямую соединяют опорные узлы со средним стальным элементом нижнего пояса 11.
Разветвление расперто стержнем 12.
Сборка блок-фермы осуществляется на строительной площадке. В начале собирается верхний пояс из однотипных клеефанерных плит 1, затем плиты стыкуются в коньковом
узле. Дальше к плитам навешиваются деревянные взаимозаменяемые раскосы 8. После этого следует выполнение узлов 9 нижнего пояса и в конце производится крепление
крайних стальных стержней 13, имеющих по концам V-образное разветвление и соединяющих напрямую опорные узлы со средним стальным элементом нижнего пояса 11.
Положительные свойства разработанного технического решения заключаются в эффективной работе блок-фермы за счет введения крайних стальных стержней нижнего пояса,
которые напрямую соединяют опорные узлы со средними стальными элементами нижнего пояса. Вследствие этого при нагружениях по всему пролету возникают сжимающие
усилия во всех раскосах. Усилие с нижнего пояса на основные ребра верхнего пояса передается под небольшим углом к направлению волокон древесины, что определяет
незначительные деформации в узловом сопряжении. В связи с этим обусловлена возможность сделать раскосы взаимозаменяемыми, уменьшить размер поперечного сечения,
а следовательно, достичь экономии древесины.
В сравнении с прототипом, данное техническое решение позволяет снизить расход материалов на 12 - 15%, улучшить условия работы верхнего пояса благодаря снижению
величин изгибающих моментов и уменьшению угла между осью передачи продольного усилия и направлением волокон древесины с нижнего пояса на основные работы
верхнего.
Формула изобретения
Блок-ферма покрытия представляет собой двухскатную четырехпанельную пространственную ферму, верхний пояс которой выполнен из однотипных клеефанерных плит,
пространственная решетка регулярного типа выполнена из деревянных поставленных V-образно взаимозаменяемых раскосов, верхний пояс соединен по концам с нижним
поясом раскосами через опорные узлы, нижние узлы крайних и средних раскосов соединены между собой деревянным элементом нижнего пояса, а средний элемент нижнего
пояса выполнен из круглой стали, отличающаяся тем, что в ферму введены крайние стальные стержни нижнего пояса, имеющие по концам V-образное разветвление и
напрямую соединяющие опорные узлы со средним стальным элементом нижнего пояса.

216.

СПОСОБ ИЗГОТОВЛЕНИЯ ФЕРМЫ С НИСХОДЯЩИМИ РАСКОСАМИ 2503783
РОССИЙСКАЯ ФЕДЕРАЦИЯ
(19)

217.

RU
(11)
ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ
СОБСТВЕННОСТИ
2 503 783
(13)
C1
(51) МПК
E04C 3/11 (2006.01)
(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ
Статус:
не действует (последнее изменение статуса: 26.12.2021)
Пошлина:
учтена за 6 год с 26.06.2017 по 25.06.2018. Возможность восстановления: нет.
(21)(22) Заявка: 2012126474/03,
25.06.2012
(24) Дата начала отсчета срока
действия патента:
25.06.2012
Приоритет(ы):
(22) Дата подачи
заявки: 25.06.2012
(45)
Опубликовано: 10.01.2014 Бюл.
(72) Автор(ы):
Хисамов Рафаиль Ибрагимович (RU),
Шакиров Руслан Анфрузович (RU)
(73) Патентообладатель(и):
Федеральное государственное бюджетное образовательное
учреждение высшего профессионального образования
"Казанский государственный архитектурно-строительный
университет" (КГАСУ) (RU),
Закрытое акционерное общество "Казанский
Гипронииавиапром" (ЗАО "Казанский Гипронииавиапром") (RU)

218.

№1
(56) Список документов,
цитированных в отчете о
поиске: RU 103115 U1, 27.03.2011.
RU 2354789 C1, 10.05.2009. AU
568956 B2, 14.01.1988.
Адрес для переписки:
420043, РТ, г.Казань, ул. Зеленая,
1, КГАСУ, Ф.И. Давлетбаевой
(54) СПОСОБ ИЗГОТОВЛЕНИЯ ФЕРМЫ С НИСХОДЯЩИМИ РАСКОСАМИ
(57) Реферат:
Изобретение относится к области строительства, в частности к способу изготовления фермы с нисходящими раскосами. Технический результат заключается в снижении
трудоемкости изготовления. Ферму выполняют из прямых коробчатых поясов с треугольной или раскосной решеткой. Односрезные концы раскосов соединяют сваркой с
поясами. Сначала по проекту изготавливают полуфермы. Укладывают верхний пояс, содержащий фланцевый монтажный стык пояса и опорный узел полуфермы. Опорный узел
состоит из двух фасонок, приваренных к поясу в продолжении плоскости стенок верхнего пояса. Перпендикулярно фасонкам приваривают опорную плиту полуфермы. Затем
укладывают нижний пояс фермы с шириной, равной верхнему поясу, который содержит фланцевый монтажный стык нижнего пояса полуфермы. После чего к поясам встык
приваривают стержни решетки восходящего направления полуфермы, выполняя их коробчатыми и равными по ширине поясам полуферм. Затем на узлы полуфермы
накладывают внахлест стержни решетки нисходящего направления, выполняя их из двух параллельных неравнобоких уголков или полос. Полосы преднапрягают, стягивая их в
середине болтом. 4 ил.
Изобретение относится к строительству и касается способа изготовления решетчатых ферм из прокатных профилей, выполняемых на сварке.
Известен способ изготовления фермы с нисходящими раскосами, выполняемой из прямых поясов и треугольной решетки с сечением из коробчатых профилей, заключающийся
в соединении сваркой односрезных концов раскосов с поясами в притык (см. Справочник проектировщика. Металлические конструкции, М. 1998, стр.175, 181. Рис.7.16, 7.17).
Недостатком способа является расцентровка в узле осей соединяемых раскосов с поясами, что требует повышенного расхода металла на стержни ферм.
Прототипом изобретения является способ изготовления треугольной подстропилььной фермы с нисходящими раскосами, выполняемой из прямого коробчатого пояса,
заключающийся в соединении сваркой односрезных концов двух нисходящих раскосов с верхним поясом (см. Альбом типовой серии на фермы из гнутосварных профилей.
Серия 1.460.3-23.98.1 - 27КМ, лист подстропильная ферма). Такой способ не может быть применен вцелом для изготовления ферм с треугольной или раскосной решеткой, т.к.
ширина сходящихся в узлах стержней решетки ферм и поясов выполняется различной, что требует применения в узлах ферм фасонок и ведет к трудоемкости изготовления
фермы.

219.

Изобретение направлено на снижение трудоемкости изготовления фермы с обеспечением выполнения центрирования осей сходящихся в узлах раскосов.
Результат достигается тем, что в способе изготовления фермы с нисходящими раскосами, выполняемой из прямых коробчатых поясов с треугольной или раскосной решеткой,
заключающийся в соединении сваркой односрезных концов раскосов с поясами, согласно изобретению, сначала по проекту изготавливают полуфермы: укладывают верхний
пояс из коробчачатого профиля, содержащий фланцевый монтажный стык пояса и опорный узел полуфермы, состоящий из двух фасонок, приваренных к поясу в продолжении
плоскости стенок верхнего пояса и приваренную перпендикулярно фасонкам опорную плиту полуфермы; затем укладывют нижний пояс фермы с шириной равной верхнему
поясу, который содержит фланцевый монтажный стык нижнего пояса полуфермы; после чего к поясам встык приваривают стержни решетки восходящего направления
полуфермы, выполняя их коробчатыми и равными по ширине поясам полуферм; затем на узлы полуфермы накладывают внахлест стержни решетки нисходящего направления,
выполняя их из двух параллельных неравнобоких уголков или полос, при этом полосы преднапрягают стягивая их в середине болтом.
На Фиг.1 изображена двускатнвя ферма с треугольной решеткой. На Фиг.2,3 и 4 - последовательности изготовления фермы.
Ферма с треугольной или раскосной решеткой состоит из верхнего пояса 1 и нижнего пояса 2, выполняемых из коробчатых профилей равной ширины «b» (Фиг.1). Все
восходящие раскосы фермы с треугольной или раскосой решеткой выполняют из коробчатых профилей 3 с шириной профиля равного щирине поясов (при этом толщина
профилей принимается по расчету). Нисходящий приопорный раскос 4 выполняют из двух неравнобоких уголков или полос (Фиг.1). Остальные раскосы 5 фермы нисходящего
направления изготавливают из двух полос, которые накладывают на узлы фермы и приваривают (Фиг.1). Ферму в заводских условиях собирают в следующей
последовательности. Сначала по проекту изготавливают полуфермы, для чего: укладывают верхний пояс 1 из коробчатого профиля (Фиг.2), который содержет фланцевый
монтажный стык 6, и опорный узел полуфермы (Фиг.2), состоящий из двух фасонок 7, приваренных к поясу 1 в продолжении плоскости стенок верхнего пояса 1 и приваренную
перпендикулярно фасонкам 7 опорную плиту 8 полуфермы; затем укладывют нижний пояс 2 фермы с шириной пояса 2 равного ширине верхнего пояса 1, который содержит
фланцевый монтажный стык 9 нижнего пояса 2 полуфермы; после чего к поясам 1 и 2 встык приваривают односрезные раскосы решетки восходящего направления 3, выполняя
их коробчатыми и равными по ширине поясам полуферм 1 и 2 (Фиг.3); затем на узлы полуфермы накладывают внахлест раскосы 4 и 5 решетки нисходящего направления
(Фиг.4), выполняя их из двух параллельных неравнобоких уголков 4 или полос 5, при этом полосы 5 преднапрягают в середине стягивая их болтом 10.
Задаваемое полосам 5 преднапряжение позволяет исключить податливость в их работе, что полезно для работы фермы по деформативности.
Способ позволяет все стержни фермы выполнить односрезными с обеспечением центрирования осей сходящихся в узле раскосов, кроме того при изготовлении нисходящих
раскосов нахлестом на узлы полуферм происходит усиление стенок коробчатых профилей поясов и раскосов, что также является полезным для работы узлов фермы.
Наиболее эффективно изобретение может быть использовано при проектировании и изготовлении ферм из коробчатых и открытых профилей пролетами до 36 метров и более.
Формула изобретения
Способ изготовления фермы с нисходящими раскосами, выполняемой из прямых коробчатых поясов с треугольной или раскосной решеткой, заключающийся в соединении
сваркой односрезных концов раскосов с поясами, отличающийся тем, что сначала по проекту изготавливают полуфермы: укладывают верхний пояс из коробчатого профиля,
содержащий фланцевый монтажный стык пояса и опорный узел полуфермы, состоящий из двух фасонок, приваренных к поясу в продолжении плоскости стенок верхнего пояса,
и приваренную перпендикулярно фасонкам опорную плиту полуфермы; затем укладывают нижний пояс фермы с шириной, равной верхнему поясу, который содержит
фланцевый монтажный стык нижнего пояса полуфермы; после чего к поясам встык приваривают стержни решетки восходящего направления полуфермы, выполняя их
коробчатыми и равными по ширине поясам полуферм; затем на узлы полуфермы накладывают внахлест стержни решетки нисходящего направления, выполняя их из двух
параллельных неравнобоких уголков или полос, при этом полосы преднапрягают, стягивая их в середине болтом.

220.

221.

222.

223.

УЗЛОВОЕ СОПРЯЖЕНИЕ КРАЙНЕГО НИЖНЕГО УЗЛА РАСКОСОВ С НИЖНИМ ПОЯСОМ ТРЕХГРАННОЙ ПРЕДВАРИТЕЛЬНО НАПРЯЖЕННОЙ БЛОК-ФЕРМЫ ПОКРЫТИЯ 2228415
РОССИЙСКАЯ ФЕДЕРАЦИЯ
ФЕДЕРАЛЬНАЯ СЛУЖБА
(19)
RU
(11)
2 228 415
(13)
C2

224.

ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
(51) МПК
E04C 3/17 (2000.01)
E04B 1/19 (2000.01)
(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ
Статус:
не действует (последнее изменение статуса: 02.07.2021)
Пошлина: Патент перешел в общественное достояние.
(21)(22) Заявка: 99123410/03, 04.11.1999
(24) Дата начала отсчета срока действия патента:
04.11.1999
(43) Дата публикации заявки: 10.09.2001 Бюл. № 25
(45) Опубликовано: 10.05.2004 Бюл. № 13
(56) Список документов, цитированных в отчете о поиске: ЕНДЖИЕВСКИЙ Л.В. и др. Трехгранная блок-ферма ТБФ 12-3Р // Информ.
листок №49-97 / ЦНТИ - Красноярск, 1997. SU 1742435 A1, 23.06.1992. SU 1310488 A1, 15.05.1987. SU 1281651 A1, 07.01.1987. RU
2117117 C1, 10.08.1998. RU 2136822 C1, 10.09.1999. RU 2102566 C1, 20.01.1998. US 4389829 A, 28.06.1983. FR 2551789 A, 15.03.1985.
(72) Автор(ы):
Дмитриев П.А.,
Инжутов И.С.,
Чернышов С.А.,
Деордиев С.В.,
Филиппов А.П.
(73) Патентообладатель(и):
Красноярская государственная
архитектурно-строительная академия
Адрес для переписки:
660041, г.Красноярск, пр. Свободный, 82, КрасГАСА
(54) УЗЛОВОЕ СОПРЯЖЕНИЕ КРАЙНЕГО НИЖНЕГО УЗЛА РАСКОСОВ С НИЖНИМ ПОЯСОМ ТРЕХГРАННОЙ ПРЕДВАРИТЕЛЬНО НАПРЯЖЕННОЙ БЛОК-ФЕРМЫ ПОКРЫТИЯ
(57) Реферат:
Изобретение относится к строительству и может быть использовано для покрытий отапливаемых промышленных и сельскохозяйственных зданий и сооружений. Технический
результат - повышение прочности и жесткости за счет предварительного напряжения и создания “следящих” за деформациями ползучести усилий предварительного
напряжения. Узловое сопряжение представляет собой металлический элемент соединения раскосов, образованный трубой с приваренными сверху V-образно двумя фасонками,
раскосы, присоединенные через металлические фасонки к металлическому элементу соединения раскосов, и металлический стержень, пропущенный через металлический
элемент соединения раскосов, имеющий резьбовую нарезку на конце и закрепленный с помощью гаек. Между гайками и металлическим элементом соединения раскосов
размещены две шайбы, выполненные из швеллера, а между ними винтовая пружина. 4 ил.

225.

Изобретение относится к строительству и может быть использовано для покрытий отапливаемых промышленных и сельскохозяйственных зданий и сооружений.
Известна преднапряженная панель покрытия, предназначенная для большепролетных зданий и сооружений, а также для несущих элементов транспортных галерей, переходов
и других аналогичных объектов. Преднапряженная панель покрытия представляет собой тонкую облегченную железобетонную плиту, выполняющую роль верхнего пояса, к
которой присоединены металлические подкрепляющие элементы в виде пространственно ориентированных шпренгелей, состоящих из стержней решетки, нижнего пояса. Она
снабжена дополнительно криволинейным поясом из пучков высокопрочной арматурной стали или тросов с подвесками или стойками, присоединенными к узлам нижнего
пояса, снабженным натяжным устройством.
Недостатком этой системы является неэффективность конструкции за счет большего веса и расхода материалов в отличие от предлагаемой авторами *1+.
Более близким по техническому решению к предлагаемому изобретению (прототипом) является трехгранная деревометаллическая блок-ферма марки ТБФ 12-3Р. Верхний пояс
П-образного сечения выполнен из крупноразмерных плит, имеющих каркас из цельнодеревянных элементов и прикрепленной к нему сверху шурупами обшивки из плоских
асбестоцементных листов. Между вспомогательными дощатыми ребрами, расположенными вдоль пролета, на обшивку укладывается утеплитель из полистирольного
пенопласта. Гидроизоляция устанавливается из трех слоев рубероида по выравнивающему слою из стеклоткани. Верхний пояс объединен с нижним пространственной решеткой
регулярного типа, выполненной из деревянных раскосов квадратного сечения. Крайние раскосы соединены с нижним поясом стальными стержневыми подвесками. Нижний
пояс из стальных стержней круглого сечения имеет по концам V-образное разветвление для сопряжения с основными ребрами верхнего пояса *2+.
Недостатком прототипа является неэкономичность конструкции за счет недостаточной несущей способности, потери усилия предварительного напряжения в нижнем поясе за
счет ползучести и температурно-влажностных деформаций в древесине и температурных деформаций металла и, как следствие, снижение жесткостных характеристик.
Целью изобретения является создание экономичной конструкции за счет повышения прочности и жесткости, за счет предварительного напряжения и создания “следящих” за
деформациями ползучести усилий предварительного напряжения.
Цель достигается тем, что в узловое сопряжение крайнего нижнего узла раскосов с нижним поясом трехгранной предварительно напряженной блок-фермы покрытия,
включающее в себя металлический элемент соединения раскосов, образованный трубой с приваренными сверху V-образно двумя фасонками, раскосы, присоединенные через
металлические фасонки к металлическому элементу соединения раскосов, и металлический стержень, пропущенный через металлический элемент соединения раскосов,
имеющий резьбовую нарезку на конце и закрепленный с помощью гаек, между гайками и металлическим элементом соединения раскосов размещены две шайбы,
выполненные из швеллера, а между ними винтовая пружина.

226.

В связи с тем, что в узловое сопряжение крайнего нижнего узла раскосов с нижним поясом трехгранной предварительно напряженной блок-фермы покрытия, включающее в
себя металлический элемент соединения раскосов, образованный трубой с приваренными сверху V-образно двумя фасонками, раскосы, присоединенные через металлические
фасонки к металлическому элементу соединения раскосов, и металлический стержень, пропущенный через металлический элемент соединения раскосов, имеющий резьбовую
нарезку на конце и закрепленный с помощью гаек, на металлический стержень между гайками и металлическим элементом соединения раскосов размещены две шайбы,
выполненные из швеллера, и между ними винтовая пружина, появляется возможность создания экономичной конструкции за счет снижения материалоемкости, создания
“следящих” за деформациями ползучести усилий предварительного напряжения. При этом в основном ребре возникает момент с обратным знаком, что в свою очередь ведет к
повышению несущей способности и жесткости.
Узловое сопряжение раскосов с нижним поясов пространственной решетчатой конструкции представлено на чертежах.
Фигура 1, 2 - общий вид трехгранной предварительно напряженной блок-фермы покрытия,
Фигура 3, 4 - узловое сопряжение крайнего нижнего узла раскосов с нижним поясом трехгранной предварительно напряженной блок-фермы покрытия.
Узловое сопряжение крайнего нижнего узла раскосов 1 с нижним поясом 2 трехгранной предварительно напряженной блок-фермы покрытия, включающее в себя
металлический элемент соединения раскосов 3, образованный трубой 4 с приваренными сверху V-образно двумя фасонками 5, раскосы 1, присоединенные через
металлические фасонки 5 к металлическому элементу соединения раскосов 3, и металлический стержень 6, пропущенный через металлический элемент соединения раскосов 3,
имеющий резьбовую нарезку на конце и закрепленный с помощью гаек 7. На металлический стержень между гайками 7 и металлическим элементом соединения раскосов 3
размещены две шайбы 9, выполненные из швеллера, и между ними винтовая пружина 8.
Сборка конструкции производится следующим образом: к металлическому элементу соединения раскосов 3, образованному трубой 4 с приваренными сверху V-образно двумя
фасонками 5, присоединяются раскосы 1, затем через 3 пропускается металлический стержень 6, имеющий резьбовую нарезку на конце. Далее стержень пропускается через
шайбу 9, винтовую пружину 8, шайбу 9 и закрепляется с помощью гаек 7.
В процессе эксплуатации пружина будет регулировать усилие предварительного напряжения, сохраняя его несмотря на ползучие и температурно-влажностные деформации в
древесине и температурные деформации металла.
Применение предлагаемого технического решения по сравнению с прототипом создает усилие предварительного напряжения и сохраняет его в процессе эксплуатации, что в
свою очередь позволяет создать экономичную конструкцию за счет повышения несущей способности и жесткости пространственной решетчатой конструкции.
Источники информации
1. RU, авторское свидетельство 2117117, 1998.
2. Л.В.Енджиевский, О.В.Князев, И.С.Инжутов, С.В.Деордиев. Трехгранная блок-ферма ТБФ 12-3Р // Информ. Листок №49-97/ ЦНТИ. - Красноярск, 1997.
Формула изобретения
Узловое сопряжение крайнего нижнего узла раскосов с нижним поясом трехгранной предварительно напряженной блок-фермы покрытия, включающее в себя металлический
элемент соединения раскосов, образованный трубой с приваренными сверху V-образно двумя фасонками, раскосы, присоединенные через металлические фасонки к
металлическому элементу соединения раскосов, и металлический стержень, пропущенный через металлический элемент соединения раскосов, имеющий резьбовую нарезку на
конце и закрепленный с помощью гаек, отличающееся тем, что на металлический стержень между гайками и металлическим элементом соединения раскосов размещены две

227.

шайбы, выполненные из швеллера, и между ними винтовая пружина.

228.

229.

230.

(21) Регистрационный номер заявки: 0099123410 Извещение опубликовано: 27.10.2006БИ: 30/2006
СПОСОБ МОНТАЖА ПРЕДВАРИТЕЛЬНО НАПРЯЖЕННОГО ШПРЕНГЕЛЬНОГО БЛОКА ПОКРЫТИЯ 2208103
РОССИЙСКАЯ ФЕДЕРАЦИЯ
(19)
RU
(11)
2 208 103
(13)
ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ,
C1
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
(51) МПК

231.

E04C 3/10 (2000.01)
(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ
Статус:
не действует (последнее изменение статуса: 13.08.2022)
Пошлина:
Патент перешел в общественное достояние.
(21)(22) Заявка: 2002121993/03, 12.08.2002
(24) Дата начала отсчета срока действия патента:
12.08.2002
(45) Опубликовано: 10.07.2003 Бюл. № 19
(56) Список документов, цитированных в отчете о
поиске: БЕЛЕНЯ Е.И. Предварительно напряженные несущие
металлические конструкции. - М.: Стройиздат, 1975, с.250-252,
(рис.V.21). SU 802479 A, 15.02.1981. SU 910985 A, 09.03.1982. GB
2174430 A, 05.11.1986. US 4353190 A1, 12.10.1982. SU 1308731 A1,
07.05.1987.
(71) Заявитель(и):
Петербургский государственный университет путей сообщения
(72) Автор(ы):
Егоров В.В.,
Алексашкин Е.Н.,
Забродин М.П.
(73) Патентообладатель(и):
Петербургский государственный университет путей сообщения
Адрес для переписки:
190031, Санкт-Петербург, Московский пр., 9, ПГУПС, патентный
отдел
(54) СПОСОБ МОНТАЖА ПРЕДВАРИТЕЛЬНО НАПРЯЖЕННОГО ШПРЕНГЕЛЬНОГО БЛОКА ПОКРЫТИЯ
(57) Реферат:
Изобретение относится к строительным конструкциям и может быть использовано при изготовлении предварительно напряженных шпренгельных блоков покрытия,
применяемых в качестве несущих конструкций покрытий зданий и сооружений и т. п. Технический результат - снижение трудоемкости монтажа предварительно напряженных
шпренгельных блоков покрытия. Способ монтажа предварительно напряженного шпренгельного блока покрытия включает крепление к концам элемента жесткости приопорных
хомутов, объединенных затяжкой, и установку диафрагм шпренгеля. Приопорные хомуты пропускают в петли на концах затяжки. Затем направляющие на концах диафрагм
шпренгеля упирают в сегментообразные торцы стопоров затяжки. Ригели диафрагм шпренгеля заводят в криволинейные направляющие элемента жесткости и объединяют их
временной затяжкой, снабженной натяжным устройством, с помощью которого смещают ригели диафрагм шпренгеля навстречу друг другу до касания с упорами

232.

криволинейных направляющих. После этого устанавливают фиксаторы и демонтируют временную затяжку. 8 ил.
Изобретение относится к строительным конструкциям и может быть использовано при изготовлении предварительно напряженных шпренгельных блоков покрытия,
применяемых в качестве несущих конструкций покрытий зданий и сооружений и т. п.
Известен способ предварительного напряжения шпренгельных балок, преимущественно большепролетных покрытий, включающий установку рычагов, присоединение к их
средним частям концов затяжки и направляющей со стяжными приспособлениями, к которым прикрепляют одни концы рычагов, подвижно соединенные с направляющей, при
этом рычаги выполняют спаренными и соединяют другими концами с предварительно напрягаемой балкой жесткости, а направляющую и концы затяжки размещают между
ними, причем концы затяжки жестко закрепляют к рычагам *1+.
Недостатком известного технического решения является сложность и трудоемкость его осуществления, связанная с необходимостью монтажа мощных рычагов, направляющих,
стяжных приспособлений, а также осуществления прикреплений в местах опирания рычагов на балку жесткости и жесткого закрепления затяжки к рычагам. Кроме того,
известное техническое решение предусматривает объединение затяжки при помощи вставки, помещаемой между спаренными рычагами, что также увеличивает трудоемкость
процесса предварительного напряжения.
Также известен способ монтажа предварительно напряженной несущей конструкции, включающий монтаж элемента жесткости, прикрепление к его торцам гибкой затяжки,
установку средней стойки шпренгеля, после чего производится первый этап натяжения затяжки домкратами двойного действия, закрепленными на концах гибкой затяжки, а
второй этап предварительного натяжения производится посредством удлинения средней стойки шпренгеля, смонтированной на ней винтовой муфтой *2+ (принято за прототип).
Недостатком такого технического решения является повышенная трудоемкость, обусловленная необходимостью присоединения к гибкой затяжке и средней стойке шпренгеля
натяжных устройств (домкратов и стяжной муфты), а также невозможностью демонтажа стяжной муфты, что, в конечном счете, повышает трудоемкость монтажа конструкции в
целом.
Задачей настоящего изобретения является снижение трудоемкости монтажа предварительно напряженных шпренгельных блоков покрытия.
Технический результат достигается тем, что в способе монтажа предварительно напряженного шпренгельного блока покрытия, включающем крепление к концам элемента
жесткости приопорных хомутов, объединенных затяжкой, и установку диафрагм шпренгеля, приопорные хомуты пропускают в петли на концах затяжки, затем направляющие на
концах диафрагм шпренгеля упирают в сегментообразные торцы стопоров затяжки, а ригели диафрагм шпренгеля заводят в криволинейные направляющие элемента жесткости
и объединяют их временной затяжкой, снабженной натяжным устройством, с помощью которого смещают ригели диафрагм шпренгеля навстречу друг другу до касания с
упорами криволинейных направляющих, после чего устанавливают фиксаторы и демонтируют временную затяжку.
Предлагаемое техническое решение описывается следующими графическими материалами:
- на фиг. 1 приводится общий вид предварительно напряженного шпренгельнго блока (вид по 1-1 на фиг. 2) после монтажа;

233.

- на фиг. 2 - план шпренгельного блока по фиг. 1;
- на фиг. 3 - поперечный разрез по 2-2 на фиг. 2;
- на фиг. 4 - узел А на фиг. 1;
- на фиг. 5 - общий вид предварительно напряженного шпренгельного блока на стадии монтажа;
- на фиг. 6 - узел Б на фиг. 5;
- на фиг. 7 - узел В на фиг. 5;
- на фиг. 8 - вид по 3 - 3 на фиг. 7.
Предлагаемый способ монтажа предварительно напряженного шпренгельного блока покрытия заключается в прикреплении к концам элемента жесткости 1 приопорных
хомутов 2, объединенных затяжкой усиления 3, и установке диафрагм 4 шпренгеля, для чего приопорные хомуты 2 пропускают в петли 5 на концах затяжки усиления 3 и крепят
их к концам элемента жесткости 1 (например, с помощью резьбовых концевиков с гайками), затем направляющие 6 диафрагм 4 шпренгеля упирают в сегментообразные торцы
стопоров 7 затяжки усиления 3, а ригели 8 диафрагм 4 шпренгеля, снабженные прорезями на концах, заводят в криволинейные направляющие 9 элемента жесткости 1 и
объединяют их временной затяжкой 10 с натяжным устройством 11 (например, стяжной муфтой), при помощи которого затем смещают ригели 8 диафрагм 4 шпренгеля
навстречу друг другу до касания с упорами 12 криволинейных направляющих 9, в результате чего диафрагмы 4 шпренгеля поворачиваются относительно точек упора
направляющих 6 диафрагм 4 шпренгеля в стопоры 7 затяжки 3, после чего в отверстия 13 криволинейных направляющих 9 устанавливают фиксаторы 14 и демонтируют
временную затяжку 10.
На концах затяжки 3 устроены петли 5 и стопоры 7, например, в виде спрессованных шайб.
Закрепление временной затяжки 10 к ригелям 8 диафрагм 4 шпренгеля осуществляется, например, с использованием торцевых анкеров.
При стягивании натяжным устройством 11 временной затяжки 10 она укорачивается, что приводит к перемещению ригелей 8 диафрагм 4 шпренгеля навстречу друг другу (в
направлении к середине пролета), при этом ригели 8 перемещаются в направляющих 9 (например, листового типа) вплоть до касания с упорами 12.
При перемещении диафрагм 4 шпренгеля из начального наклонного положения в проектное расстояние между осями элемента жесткости 1 и затяжки 3 увеличивается, что
приводит к появлению в затяжке 3 и приопорных хомутах 2 растягивающих усилий предварительного напряжения.
Стопоры 7 с сегментообразными торцами, смонтированные на затяжке 3, предотвращают смещение направляющих 6 диафрагм 4 шпренгеля и соответственно нижних концов
диафрагм 4 шпренгеля, фиксируя их положение в процессе напряжения временной затяжки 10 натяжным устройством 11. При этом на стопоры 7 воздействуют усилия,
возникающие из-за разности горизонтальных составляющих усилий в затяжке 3 и приопорных хомутах 2.
Торцы стопоров 7 затяжки 3, контактирующие с направляющими диафрагм 4 шпренгеля, выполнены сегментообразными, что позволяет обеспечить поворот диафрагм 4
шпренгеля относительно их точек упора в стопоры 7 затяжки 3 и уменьшить необходимые усилия для перемещения ригелей 8 диафрагм 4 шпренгеля навстречу друг другу, что,
как следствие, приводит к снижению трудоемкости монтажа.
Криволинейные направляющие 9 выполнены по кривым, радиус кривизны которых равен расстоянию от направляющей 6 диафрагмы 4 шпренгеля в месте пропуска затяжки 3
до прорезей ригеля 8 диафрагмы 4 шпренгеля, что позволяет уменьшить дополнительные усилия при перемещении ригеля 8 диафрагмы 4 шпренгеля (повороте диафрагм 4
шпренгеля) по направляющим 9 элемента жесткости 1, и, как следствие, снизить трудоемкость монтажа в целом.
При натяжении временной затяжки 10 натяжным устройством 11 диафрагмы 4 шпренгеля поворачиваются и соответственно угол α между продольной осью диафрагмы 4 и осью
временной затяжки 10 увеличивается, следовательно, усилия во временной затяжке 10 и натяжном устройстве 11, необходимые для перемещения ригелей 8 диафрагмы 4

234.

шпренгеля и равные Fз=Fд•cosα (где Fз - усилие натяжения во временной затяжке 10, Fд - реакция направляющих 9), уменьшаются, что приводит к снижению трудоемкости
процесса предварительного напряжения временной затяжки 10 натяжным устройством 11 и, как следствие, к снижению трудоемкости монтажа всего шпренгельного блока
покрытия в целом.
Кроме того, отпадает необходимость в стационарном натяжном устройстве (стяжной муфте и т. п.), которое остается на установленном предварительно напряженном
шпренгельном блоке покрытия и в дальнейшем не используется.
Демонтируемые временная затяжка 10 и натяжное устройство 11 являются инвентарными элементами многократного применения.
Использование предлагаемого изобретения позволит снизить трудоемкость монтажа предварительно напряженных шпренгельных блоков покрытия на 10... 15%.
ИСПОЛЬЗОВАННЫЕ ИСТОЧНИКИ
1. Авторское свидетельство СССР 802479, Е 04 G 21/12; В 1/22. Исаев П.М. и др. Натяжное устройство преимущественно для предварительного напряжения шпренгельных балок
большепролетных покрытий. - Бюл. 5. - 1981.
2. Беленя Е.И. Предварительно напряженные несущие металлические конструкции. -М.: Стройиздат, 1975. - с. 250...252 (рис. V.21).
Формула изобретения
Способ монтажа предварительно напряженного шпренгельного блока покрытия, включающий крепление к концам элемента жесткости приопорных хомутов, объединенных
затяжкой, и установку диафрагм шпренгеля, отличающийся тем, что приопорные хомуты пропускают в петли на концах затяжки, затем направляющие на концах диафрагм
шпренгеля упирают в сегментообразные торцы стопоров затяжки, а ригели диафрагм шпренгеля заводят в криволинейные направляющие элемента жесткости и объединяют их
временной затяжкой, снабженной натяжным устройством, с помощью которого смещают ригели диафрагм шпренгеля навстречу друг другу до касания с упорами
криволинейных направляющих, после чего устанавливают фиксаторы и демонтируют временную затяжку.

235.

236.

РОССИЙСКАЯ ФЕДЕРАЦИЯ
(19)

237.

RU
(11)
2 188 915
ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
(13)
C1
(51) МПК
E04C 3/10 (2000.01)
(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ
Статус:
не действует (последнее изменение статуса: 17.07.2021)
Пошлина:
учтена за 4 год с 17.07.2004 по 16.07.2005. Патент перешел в общественное
достояние.
(21)(22) Заявка: 2001119753/03, 16.07.2001
(24) Дата начала отсчета срока действия патента:
16.07.2001
(45) Опубликовано: 10.09.2002 Бюл. № 25
(56) Список документов, цитированных в отчете о
поиске: БЕЛЕНЯ Е.И. и др. Металлические конструкции, -М.1982,
с.95, рис.6.14 ж. КИРСАНОВ Н.М. Висячие покрытия
производственных зданий. - М., 1990, с.8, рис.1.1. SU 910985 А,
(71) Заявитель(и):
Петербургский государственный университет путей сообщения
(72) Автор(ы):
Егоров В.В.,
Алексашкин Е.Н.,
Забродин М.П.
(73) Патентообладатель(и):
Петербургский государственный университет путей сообщения

238.

09.03.1982. GB 2174430 А, 05.11.1986. US 4353190 А1, 12.10.1982.
SU 1308731 А1, 07.05.1987.
Адрес для переписки:
190031, Санкт-Петербург, Московский пр., 9, ПГУПС, патентный
отдел
(54) СПОСОБ МОНТАЖА ПРЕДВАРИТЕЛЬНО НАПРЯЖЕННОЙ ШПРЕНГЕЛЬНОЙ РАМЫ
(57) Реферат:
Изобретение относится к строительным конструкциям, а именно к способу монтажа предварительно напряженной шпренгельной рамы, и может быть использовано при
возведении несущих каркасов зданий и сооружений, жестких поперечин электрифицированных железных дорог и т.п. Технический результат - упрощение монтажа
предварительно напряженных шпренгельных рам и, как следствие, снижение его трудоемкости. Для этого в способе монтажа предварительно напряженной шпренгельной
рамы, включающем объединение колонн с фундаментами и предварительно напряженным ригелем шпренгельного типа, к балке-распорке ригеля прикрепляют стойки с
вилкообразными наконечниками, а на ее концах устанавливают вилкообразные упоры, затем балку-распорку ригеля стропуют в средней ее части и выполняют промежуточный
подъем, спрессованные на затяжке шайбы заводят за вилкообразные упоры, и опускают ригель, монтируют торцевые башмаки и крепят к ним концевые стопоры затяжки, после
чего ригель перестроповывают и устанавливают на колонны с совмещением скошенных поверхностей торцевых башмаков ригеля и оголовков колонн. При этом тангенс угла
наклона скошенных поверхностей торцевых башмаков и оголовков колонн при их совмещении равен отношению горизонтальных и вертикальных зазоров между ригелем и
колоннами. 1 з.п.ф-лы, 9 ил.

239.

Изобретение относится к строительным конструкциям, а именно к способу монтажа предварительно напряженной шпренгельной рамы, и может быть использовано при
возведении несущих каркасов зданий и сооружений, жестких поперечин электрифицированных железных дорог и т.п.
Известен способ монтажа рамы, заключающийся в предварительном монтаже колонн, ригеля и якорей (анкеров, погруженных в землю, например, гравитационного типа, бутовых, бетонных и т.п., - свайных и др.), к которым присоединяются гибкие ванты, объединяемые с ригелем подвесками, после чего производится предварительное
напряжение вантовой системы натяжными устройствами (например, стяжными муфтами и т.п.) *1+.
Недостатком такого решения является его сложность, обусловленная, в частности, изготовлением и установкой на вантах специальных натяжных устройств и проведением
дополнительных операций, связанных с натяжением вант и регулированием усилий в вантовой системе.
Также известен способ монтажа рамы с предварительно напряженным ригелем, заключающийся: в предварительном монтаже колонн и элемента жесткости ригеля рамы;
присоединении к нему стоек шпренгеля, снабженных на концах направляющими для пропуска гибких затяжек с закреплением их на торцах элемента жесткости; закреплении на
гибкой затяжке натяжных устройств; создание с их помощью в затяжке усилий предварительного напряжения и их регулирования *2+ (принято за прототип).
Недостатком такого решения является его сложность, связанная, в частности, с необходимостью закрепления на гибких затяжках натяжных устройств *3+, проведением операций
по предварительному натяжению гибких затяжек и регулированию усилий в шпренгельной системе. Создание предварительного напряжения в затяжках, кроме того, требует
дополнительных трудозатрат на операции по контролю величины их натяжения и на устройство монтажных подмостей.
Задачей изобретения является упрощение монтажа предварительно напряженных шпренгельных рам и, как следствие, снижение его трудоемкости.
Технический результат достигается тем, что в способе монтажа предварительно напряженной шпренгельной рамы, включающем объединение колонн с фундаментами и
предварительно напряженным ригелем, к балке-распорке ригеля, до ее монтажа в проектное положение, прикрепляют стойки шпренгеля с вилкообразными наконечниками, а
на ее концах устанавливают вилкообразные упоры, затем балку-распорку ригеля стропуют в средней ее части и выполняют промежуточный подъем, спрессованные на затяжке
шайбы заводят за вилкообразные упоры и опускают ригель на временные опоры, монтируют торцевые башмаки и крепят к ним концевые стопоры затяжки, после чего ригель
перестроповывают и устанавливают на колонны с совмещением скошенных поверхностей торцевых башмаков ригеля и оголовков колонн. При этом тангенс угла наклона
скошенных поверхностей торцевых башмаков и оголовков колонн принимают равным отношению вертикальных и горизонтальных зазоров между ригелем и колоннами.
Монтаж, включая предварительное напряжение шпренгельной рамы, производится в два этапа.
Первый этап - сборка и предварительное напряжение шпренгельного ригеля рамы. К балке-распорке крепят стойки шпренгеля с вилкообразными наконечниками, а на ее
концах устанавливают вилкообразные упоры. Балку-распорку ригеля стропуют в средней ее части и выполняют промежуточный подъем. Затем к балке-распорке прикрепляют
затяжку, вводя ее в вилкообразные наконечники стоек шпренгеля, а спрессованные на затяжке шайбы заводят за вилкообразные упоры. Положение затяжек в вилкообразных
упорах фиксируют замыкающими фиксаторами (например, шпильками, болтами и т.п.). После чего шпренгельный ригель рамы, включающий балку-распорку, стойки шпренгеля
и затяжку, опускают на временные опоры, размещенные под концами балки-распорки.
Балка-распорка как элемент шпренгельного ригеля воспринимает в основном продольные сжимающие усилия и в связи с этим обладает невысокой изгибной жесткостью. При
строповке в средней части ее длины и промежуточном подъеме балка-распорка деформируется по двухконсольной схеме, при этом концы балки-распорки под действием
собственной массы опускаются, а расстояние между вилкообразными упорами уменьшается, что позволяет завести за них спрессованные шайбы затяжки. В местах крепления

240.

затяжки к вилкообразным упорам устанавливают замыкающие фиксаторы. После установки ригеля на временные опоры, размещенные под концами балки-распорки, и его
расстроповки балка-распорка распрямляется и растягивает гибкую затяжку, создавая в ней усилия предварительного напряжения.
Второй этап - монтаж шпренгельного ригеля, включая предварительное напряжение колонн и дополнительное предварительное напряжение затяжки. На концах балкираспорки шпренгельного ригеля устанавливают торцевые башмаки и прикрепляют к ним концевые упоры затяжки. Так как крепление торцевых башмаков к балке-распорке
выполнено с возможностью их перемещения вдоль оси балки-распорки (болты, прикрепляющие торцевые башмаки к балке-распорке, установлены в овальные отверстия), то
усилий в затяжке на участках между спрессованными шайбами и концевыми стопорами при этом не возникает.
Шпренгельный ригель стропуют с размещением мест захвата строповочных устройств у его концов и производят подъем. При установке шпренгельного ригеля на колонны,
предварительно объединенные с фундаментами, совмещают скошенные поверхности торцевых башмаков и оголовков колонн, при этом между опорными горизонтальными и
вертикальными поверхностями торцевых башмаков и оголовков колонн остаются зазоры Δ1 и Δ2 соответственно. После расслабления строповочных устройств под действием
собственной массы (сил гравитации) преодолеваются силы трения, развивающиеся по контактным плоскостям скошенных поверхностей торцевых башмаков ригеля рамы и
оголовков колонн, происходит самопроизвольная осадка шпренгельного ригеля рамы в проектное положение (до полного касания опорных поверхностей - Δ1=0, Δ2=0), а
торцевые башмаки перемещаются вдоль скошенных поверхностей оголовков колонн. При этом на концевых участках затяжки (на участках между спрессованными шайбами и
концевыми стопорами) возникают дополнительные растягивающие усилия, горизонтальные составляющие которых направлены перпендикулярно продольным осям колонн к
центру рамы. Это вызывает в сечениях колонн усилия предварительного напряжения (начальные изгибающие моменты). Таким образом, на втором этапе производится
предварительное напряжение колонн и дополнительное напряжение затяжки ригеля (за счет донапряжения ее концевых участков).
Изобретение описывается следующими графическими материалами:
- на фиг.1 приводится общий вид предварительно напряженной шпренгельной рамы;
- на фиг.2 - узел "А" на фиг.1;
- на фиг.3 - вид по 1-1 на фиг.2;
- на фиг.4 - узел "Б" на фиг.1;
- на фиг.5 - вид по 2-2 на фиг.2;
- на фиг.6 - вид по 3-3 на фиг.2;
- на фиг.7 - вид по 4-4 на фиг.4;
- на фиг.8 - схема строповки балки-распорки на 1-м этапе монтажа;
- на фиг.9 - схема строповки шпренгельного ригеля на 2-м этапе монтажа.
Предлагаемый способ монтажа заключается в следующем. Колонны 1 шпренгельной рамы объединяются с фундаментами 2 и с предварительно напряженным шпренгельным
ригелем 3.
На 1-м этапе монтажа к балке-распорке 4 шпренгельного ригеля 3 крепят стойки шпренгеля 5 с вилкообразными наконечниками 6, а на ее концах устанавливают вилкообразные
упоры 7. Балку-распорку 4 шпренгельного ригеля 3 стропуют в средней ее части и выполняют промежуточный подъем. Затем к балке-распорке 4 прикрепляют затяжку 8, вводя
ее в вилкообразные наконечники 6 стоек шпренгеля 5, а спрессованные на затяжке 8 шайбы 9 заводят за вилкообразные упоры 7. Положение затяжки 8 на концах фиксируют
замыкающими фиксаторами 10. После чего шпренгельный ригель 3, включающий балку-распорку 4, стойки шпренгеля 5 и затяжку 8, опускают на временные опоры 11,
размещенные под концами балки-распорки 4.
На 2-м этапе монтажа на концах балки-распорки 4 шпренгельного ригеля 3 с помощью болтов 12 устанавливают торцевые башмаки 13 со скошенными поверхностями 14.
Концевые стопоры 15 затяжки 8 крепят к торцевым башмакам 13. Вследствие того что болты 12 проходят через овальные отверстия, расположенные в торцевых башмаках 13, то

241.

возможно взаимное смещение торцевых башмаков 13 относительно балки-распорки 4 вдоль ее продольной оси. При этом в затяжке 8 на участках между спрессованными
шайбами 9 и концевыми стопорами 15 усилий не возникает.
Шпренгельный ригель 3 перестроповывают с размещением мест захвата строповочных устройств у его концов и производят его подъем.
При установке шпренгельного ригеля 3 на колонны 1 совмещают скошенные поверхности 14 торцевых башмаков 13 и оголовков 16 колонн 1, при этом между опорными
горизонтальными и вертикальными поверхностями торцевых башмаков 13 и оголовков 16 остаются зазоры Δ1 и Δ2 соответственно.
После расслабления строповочных устройств под действием собственной массы (сил гравитации) происходит самопроизвольная осадка шпренгельного ригеля 3 рамы в
проектное положение до полного касания опорных поверхностей (Δ1=0, Δ2= 0), а торцевые башмаки 13 перемещаются вдоль скошенных поверхностей 14. При этом тангенс угла
наклона скошенных поверхностей 14 торцевых башмаков 13 и оголовков 16 колонн 1 принимают равным отношению вертикальных (Δ1) и горизонтальных (Δ2) зазоров между
шпренгельным ригелем 3 и колоннами 1.
Силы гравитации преодолевают силы трения, развивающиеся по контактным участкам скошенных поверхностей 14 торцевых башмаков 13 шпренгельного ригеля 3 и оголовков
16 колонн 1. При этом на концевых участках затяжек 8 (на участках между спрессованными шайбами 9 и концевыми стопорами 15) возникают дополнительные растягивающие
усилия, которые создают в местах контакта скошенных поверхностей 14 торцевых башмаков 13 и оголовков 16 колонн 1 горизонтальные составляющие усилий, направленные к
центру рамы перпендикулярно продольным осям колонн 1. Это вызывает в сечениях колонн 1 усилия предварительного напряжения - начальные изгибающие моменты, а на
концевых участках затяжки 8 - дополнительные растягивающие усилия предварительного напряжения.
Балка-распорка 4 как элемент шпренгельного ригеля 3 обладает невысокой изгибной жесткостью. При ее строповке в средней части и промежуточном подъеме балка-распорка
4 работает по двухконсольной схеме, при которой ее концы под действием собственной массы провисают, а расстояния между вилкообразными упорами 7 уменьшаются, что
позволяет завести за них спрессованные на затяжке 8 шайбы 9. Строповка балки-распорки 4 в средней ее части и промежуточный подъем по двухконсольной схеме увеличивает
(в сравнении с другими схемами строповки) перемещения ее концов.
После установки шпренгельного ригеля 3 на временные опоры 11, размещенные под концами балки-распорки 4, и его расстроповки балка-распорка 4 распрямляется и
растягивает гибкую затяжку 8, создавая в ней усилия предварительного напряжения. Шпренгельный ригель 3 становится предварительно напряженным элементом. При этом
для натяжения затяжки 8 не требуются специальные силовые устройства (например, домкраты, грузы, натяжные устройства - стяжные муфты и т. п. ), так как деформирование
балки-распорки 4 осуществляется за счет силы тяжести, возникающей от ее собственной массы. Причем отпадает необходимость в контрольно-измерительной аппаратуре
(например, динамометрах, тензометрах и т.п.), так как расчетные усилия предварительного напряжения в затяжке 8 определяются ее длиной на участке между спрессованными
шайбами 10. Процесс сборки шпренгельного ригеля 3 совмещается с процессом его предварительного напряжения. Это приводит к упрощению его сборки и, как следствие, к
снижению трудоемкости монтажа шпренгельной рамы в целом.
При установке шпренгельного ригеля 3 на оголовки 16 колонн 1 происходит самопроизвольная осадка шпренгельного ригеля 3 в проектное положение до полного касания
опорных поверхностей (Δ1= 0, Δ2=0). При этом на концевых участках затяжки 8 (на участках между спрессованными шайбами 9 и концевыми стопорами 15) возникают
дополнительные растягивающие усилия, под действием которых происходит изгиб колонн 1 вовнутрь рамы. Таким образом, на втором этапе монтажа шпренгельной рамы
создается предварительное напряжение колонн 1 и дополнительное напряжение затяжки 8. При этом процесс установки шпренгельного ригеля 3 в проектное положение
совмещается с процедурой предварительного напряжения колонн 1, что приводит к упрощению их предварительного напряжения и, как следствие, к снижению трудоемкости
монтажа шпренгельной рамы в целом.

242.

Назначение тангенса угла наклона скошенных поверхностей 14 торцевых башмаков 15 и оголовков 16 равным отношению вертикальных зазоров - Δ1 к горизонтальным зазорам
- Δ2 (
) обеспечивает одновременное и полное касание опорных поверхностей шпренгельного ригеля 3 и колонн 1 в проектном положении (Δ1=0, Δ2=0).
Использование изобретения позволяет упростить монтаж рамы за счет совмещения процессов сборки шпренгельного ригеля и его установки в проектное положение с
предварительным напряжением шпренгельного ригеля и колонн рамы. При этом не требуется применение дополнительных силовых устройств для натяжения затяжки и изгиба
колонн, не требуется контроль за величиной усилий предварительного напряжения в затяжке и величинами смещения колонн, в связи с чем отпадает необходимость в
специальной измерительной аппаратуре. В целом это приводит к снижению трудоемкости монтажа до 12-18%.
Источники информации
1. Кирсанов Н.М. Висячие покрытия производственных зданий. - М.: Стройиздат, 1990. - 128 с. - (Наука - строительному производству). Рис. 1.1 на с. 8.
2. Металлические конструкции: Спец. курс. учеб. пособие для вузов /Е.И. Беленя, Н. Н. Стрелецкий и др.; Под общ. ред. Е.И. Беленя. - 2-е изд. перераб. и доп. - М.: Стройиздат,
1982. - 472с. Рис. 6.14, ж на с.95.
3. Руководство по применению стальных канатов и анкерных устройств в конструкциях зданий и сооружений. - М.: Стройиздат, 1978. - 94с.
Формула изобретения
1. Способ монтажа предварительно напряженной шпренгельной рамы, включающий объединение колонн с фундаментами и предварительно напряженным ригелем
шпренгельного типа, отличающийся тем, что на концах балки-распорки ригеля со стойками шпренгеля, имеющими вилкообразные наконечники, устанавливают вилкообразные
упоры, балку-распорку ригеля стропуют в средней ее части и выполняют промежуточный подъем, затем спрессованные шайбы затяжки заводят за вилкообразные упоры, и
опускают ригель на временные опоры, монтируют торцевые башмаки и крепят к ним концевые стопоры затяжки, после чего ригель перестроповывают и устанавливают на
колонны с совмещением скошенных поверхностей торцевых башмаков ригеля и оголовков колонн.
2. Способ монтажа предварительно напряженной шпренгельной рамы по п. 1, отличающийся тем, что тангенс угла наклона скошенных поверхностей торцевых башмаков и
оголовков колонн принимают равным отношению вертикальных и горизонтальных зазоров между ригелем и колоннами.

243.

244.

245.

246.

247.

248.

РОССИЙСКАЯ ФЕДЕРАЦИЯ
(19)
RU
(11)
2 172 372
ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
(13)
C1
(51) МПК
E01D 22/00 (2000.01)
E01D 19/00 (2000.01)
E04C 3/10 (2000.01)
(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ
Статус:
не действует (последнее изменение статуса: 02.07.2021)
Пошлина:
учтена за 4 год с 22.02.2003 по 21.02.2004. Патент перешел в общественное
достояние.
(21)(22) Заявка: 2000104023/03, 21.02.2000
(24) Дата начала отсчета срока действия патента:
(71) Заявитель(и):
Воронежская государственная архитектурно-строительная
академия

249.

21.02.2000
(45) Опубликовано: 20.08.2001 Бюл. № 23
(56) Список документов, цитированных в отчете о поиске: SU
1261998 A, 07.10.1986. RU 2117120 C1, 10.08.1998. SU 1090786 A,
07.05.1984. SU 1070248 A, 30.01.1984. SU 1744172 A1, 30.06.1992.
SU 1799944 A1, 07.03.1993. SU 1090784 A, 07.05.1984. DE 1258441
A, 11.01.1968. GB 1241681 A, 04.08.1971. US 4718209 A,
12.01.1988. WO 93/22521 A, 11.11.1993. ГЛИНКА Н.Н., ПОСПЕЛОВ
Н.Д. Клееные пролетные строения мостов. - М.: Транспорт, 1964,
с.52-53. КУЛИШ В.И. Клееные деревянные мосты с
железобетонной плитой. - М.: Транспорт, 1979, с.43-50, рис.III.2.
(72) Автор(ы):
Накашидзе Б.В.
(73) Патентообладатель(и):
Воронежская государственная архитектурно-строительная
академия
Адрес для переписки:
394006, г.Воронеж, ул. 20-летия Октября, 84, ВГАСА, патентноинформационный отдел
(54) БАЛКА
(57) Реферат:
Изобретение относится к мостостроению и может быть использовано для усиления балочных конструкций промышленных и гражданских зданий, действующих мостовых
конструкций, а также в строительных предварительно напряженных конструкциях из разнородных материалов. Конструкция содержит усиленную продольными арматурными
стержнями по нижней грани деревянную стенку и верхнюю железобетонную плиту, объединенную со стенкой с помощью сдвиговоспринимающих устройств в виде наклонных
тяг, установленных под острым углом в направлении торцов балки. Новым является то, что продольные арматурные стержни снабжены на своих концевых участках
устройствами компенсации реактивных сил в виде контактирующих с анкерами поперечных упоров, подпружиненных цилиндрических гильз, шарнирно соединенных
посредством боковых накладок с наклонными тягами, угол наклона которых увеличивается по мере удаления тяг от соответствующего торца к середине балки, при этом
противоположные концы наклонных тяг также соединены через боковые накладки с продольными ребровыми выступами железобетонной плиты с возможностью вращения,
причем выступы выполнены высотой не менее 1/3 высоты стенки из дерева. Технический результат, достигаемый изобретением, состоит в создании и сохранении длительного
эффекта преднапряжения, а также дополнительного разгружающего момента в балочной конструкции, варьировании жесткостью сдвиговых связей с целью снижения

250.

деформаций между между железобетонной плитой и дощатоклееной стенкой, повышения степени поперечного обжатия для уменьшения скалывающих напряжений. 10 ил.
Изобретение относится к области мостостроения и может быть использовано для усиления балочных конструкций промышленных и гражданских зданий, действующих
мостовых конструкций, а также в строительных предварительно напряженных конструкциях из разнородных материалов.
Известны конструктивные решения по усилению пролетных мостовых балок из железобетона *1+ . Однако такие технические решения не позволяют сохранить длительно
заданный эффект предварительного напряжения, а конструкции балок не обладают демпфирующими свойствами.
Наиболее близкой к изобретению по совокупности признаков является балка деревожелезобетонного пролетного строения, преимущественно моста, включающая стенку из
дерева, усиленную продольными арматурными стержнями по нижней грани, и верхнюю железобетонную плиту, объединенную со стенкой посредством
сдвиговоспринимающих устройств, выполненных в виде наклонных тяг, установленных под острым углом в направлении торцов балки *2+.
В известном техническом решении продольные арматурные стержни и наклонные тяги позволяют создать эффект предварительного напряжения, а выполнение стенки из
клееной древесины способствует образованию демпфирующих свойств в конструкции балок при действии подвижной нагрузки.
Однако использование такого технического решения не позволяет сохранить требуемый длительный эффект предварительного напряжения по причине ползучести древесины и
релаксации армирующего материала, не представляется возможным создание дополнительного разгружающего изгибающего момента, противодействующего моменту от
внешней нагрузки, а также усложняется конструктивное решение снижения сдвиговых деформаций между железобетонной плитой и дощатоклееной деревянной стенкой.
Задачей, на решение которой направлено изобретение, является создание и сохранение длительного эффекта преднапряжения, а также дополнительного разгружающего
момента в балочной конструкции, варьирование жесткостью сдвиговых связей с целью снижения деформаций между железобетонной плитой и дощатоклееной деревянной
стенкой, повышение степени поперечного обжатия для уменьшения скалывающих напряжений.
Технический результат достигается за счет взаимосвязи напрягаемых арматурных стержней с устройствами компенсации реактивных сил, а благодаря наклонным тягам, угол
наклона которых увеличивается по мере удаления от соответствующего торца к середине балки, появляется возможность варьирования деформациями между железобетонной
плитой и клееной деревянной стенкой. Выполнение в железобетонной плите в плоскости сдвига прерывистых продольных ребровых выступов высотой не менее 1/3 высоты
стенки из дерева обеспечивает образование дополнительного разгружающего момента в составной деревожелезобетонной балке, а также способствует снижению деформаций
сдвига и отрыва в плоскости сопряжения плиты и стенки.

251.

Сущность предлагаемого изобретения заключается в том, что балка, преимущественно моста, включающая стенку из дерева, усиленную продольными арматурными стержнями
по нижней грани, и верхнюю железобетонную плиту, объединенную со стенкой посредством сдвиговоспринимающих устройств, выполненных в виде наклонных тяг,
установленных относительно продольных арматурных стержней под острым углом в направлении торцов балки, отличается от прототипа тем, что расположенные под нижней
гранью стенки продольные арматурные стержни снабжены установленными на своих концевых участках устройствами компенсации реактивных сил в виде контактирующих с
анкерами продольных арматурных стержней поперечных упоров, подпружиненных относительно размещенных под нижней гранью стенки и охватывающих концевые участки
упомянутых стержней цилиндрических гильз, шарнирно соединенных посредством боковых накладок, попарно установленных с противоположных сторон стенки, с наклонными
тягами, угол наклона которых увеличивается по мере удаления тяг от соответствующего торца к середине балки, при этом противоположными своими концами наклонные тяги
также через боковые накладки связаны с возможностью вращения с прерывистыми продольными ребровыми выступами верхней железобетонной плиты, выполненными
высотой не менее 1/3 высоты стенки из дерева.
Выполнение конструктивной системы путем взаимосвязи напрягаемых арматурных стержней и устройств компенсации реактивных сил позволяет создавать и длительно
сохранять эффект предварительного напряжения, а также повысить степень обжатия всей комбинированно-армированной балки как в продольном, так и в поперечном
направлении; при этом наклонные тяги, связанные шарнирно с прерывистыми продольными ребровыми выступами железобетонной плиты и продольными арматурными
стержнями, создают не только эффект обратного выгиба, противоположного прогибу от внешней нагрузки, но и дополнительный разгружающий момент от внутренних сил
обжатия. Выполнение в плоскости сопряжения железобетонной плиты и деревянной дощатоклееной стенки прерывистых ребровых выступов позволяет значительно увеличить
жесткость и прочность сдвиговых связей и тем самым повысить несущую способность всей балки. Благодаря устройству компенсации реактивных сил, шарнирно связанному с
наклонными тягами и продольными арматурными стержнями, обеспечивается надежный контроль и сохранение начально созданных напряжений в напрягаемой
конструктивной системе и тем самым длительно обеспечивается эффект преднапряжения в балке.
На фиг. 1 изображена балка пролетного строения, общий вид; на фиг. 2 - разрез 1-1 на фиг. 1; на фиг. 3 - разрез 2-2 на фиг. 1; на фиг. 4 изображен фрагмент А на фиг. 1, крепление
продольных арматурных стержней с наклонными сдвиговоспринимающими устройствами посредством компенсатора реактивных сил; на фиг. 5 изображен фрагмент Б на фиг. 1,
крепление наклонных сдвиговоспринимающих устройств с продольным ребровым выступом железобетонной плиты; на фиг. 6 - разрез 3-3 на фиг. 4; на фиг. 7 - фрагмент
выполнения на концевых участках деревянной стенки ниш для ребровых выступов железобетонной плиты; на фиг. 8 - общий вид балки пролетом более 9 м с концевыми и
промежуточными сдвиговоспринимающими устройствами; на фиг. 9 фрагмент выполнения в деревянной стенке промежуточной ниши для ребровых выступов железобетонной
плиты; на фиг. 10 - фрагмент создания дополнительного внутреннего момента, образующегося в плоскости сдвига ребровых выступов плиты и стенки.
Балка содержит деревянную дощатоклееную стенку 1, усиленную по нижней грани продольной арматурой 2, а по верхней - железобетонной плитой 3. Периферийные элементы
усиления 2 и 3 объединены совместно наклонными тягами 4 и боковыми накладками 5, шарнирно соединенными одним концом с цилиндрическими гильзами 6, а другим с
прерывистыми продольными ребровыми выступами 7 железобетонной плиты 3. Цилиндрические гильзы 6, по крайней мере на одном конце балки, взаимодействуют с
устройствами компенсации реактивных сил, например, в виде пружин 8, ориентированных вдоль цилиндрической гильзы 6 и концевого участка продольной арматуры 2.
Пружины 8 закреплены одним концом к упорному столику 9, установленному на боковой грани цилиндрической гильзы 6, а другим концом к поперечному П - образному упору
10, сквозь который пропущен концевой участок продольной арматуры 2, закрепленный при помощи концевого анкера 11. Наклонные тяги 4, имеющие на концах анкера 11,
крепятся шарнирно с боковыми накладками 5 при помощи упорных столиков 9.
Сборку балки производят следующим образом. Первоначально в клееной дощатой деревянной стенке 1 выполняют ниши 12 на концевых участках (фиг. 7) на глубину не менее
1/3 высоты стенки 1, а для перекрываемых пролетов от 9 до 15 м выполняют дополнительно еще промежуточные ниши 13 (фиг. 8, 9) на глубину не менее 1/3 высоты стенки, а
для пролетов от 15 до 18 м вновь дополнительно выполняются промежуточные ниши 13 соответственно на глубину не менее 1/3 высоты стенки 1. Шаг между нишами 12, 13
начиная от концов стенки 1 к ее серединной части принимается равным 1/4 - 1/7 перекрываемого пролета. Затем осуществляется омоноличивание верхней грани стенки 1
железобетоном таким образом, чтобы в образовавшихся продольных ребровых выступах плиты 3 выполнялось сквозное отверстие 14 для шарнирного крепления боковых
накладок 5. С набором требуемой прочности бетона осуществляется установка напрягаемой системы в виде продольных и наклонных арматурных стержней 2, 4, 5. Установка

252.

напрягаемой системы осуществляется таким образом, чтобы угол наклона концевых тяг 4 и боковых накладок 5 в приопорной части балок был в пределах 30 - 45o относительно
продольной оси арматуры 2, а для балок длиной от 9 до 15 м и для перекрываемых пролетов от 15 до 18 м, имеющих дополнительные промежуточные наклонные тяги 4 и
боковые накладки 5, угол наклона которых принимается в пределах 50 - 60o относительно продольной оси арматуры 2. Перед установкой напрягаемой системы первоначально
осуществляется подготовка продольной арматуры 2 к взаимосвязи с устройством компенсации реактивных сил и наклонными тягами 4 с накладками 5. Конструктивное решение
устройств компенсации реактивных сил имеет большое разнообразие (см. Патент РФ N 2109894). Взаимосвязь продольной арматуры 2 и компенсатора реактивных сил 8
осуществляется следующим образом. Первоначально, по крайней мере на одном конце продольной арматуры 2, устанавливается анкер 11, затем к нижней грани стенки 1 балки
на концевых участках устанавливают цилиндрические гильзы 6, к которым шарнирно присоединены одним концом боковые накладки 5, попарно устанавливаемые с
противоположных сторон стенки 1. Затем в сквозные отверстия 14 продольных ребровых выступов 7 плиты 3 вставляют оси 15, на которые крепится шарнирно другая
противоположная пара боковых накладок 5. После установки боковых накладок 5 в уровне верхней и нижней грани стенки 1 осуществляют их взаимное соединение тягами 4,
которые выполнены с концевыми анкерами 11. Продольный арматурный стержень 2 свободным (без анкера 11) концом протягивают сквозь цилиндрические гильзы 6 и
поперечный упор 10, а затем на свободный конец надевают анкер 11 и крепят к домкрату двойного действия (не показан). Для создания дополнительных реактивных сил
обжатия конструкции и их компенсации при потерях в период ползучести материала основы конструкции и релаксации напрягаемой арматуры необходимо устанавливать
компенсатор, например, в виде пружины 8 между поперечным упором 10 и цилиндрической гильзой 6. Таким образом, при действии домкрата пружина 8 сжимается, а
продольная арматура 2 натягивается на требуемую расчетную величину и затем свободный ее конец анкеруется анкером 11.
Напрягаемая система балки работает следующим образом. Используемый домкрат работает по принципу двойного действия, в результате при натяжении продольной арматуры
2 компенсатор реактивных сил, например, пружины 8 и цилиндрические гильзы 6 сжимаются, а наклонные сдвиговоспринимающие элементы в виде боковых накладок 5 и тяг 4
растягиваются. В результате внутреннего перераспределения сил от действия домкрата и сдвиговоспринимающих элементов с компенсатором реактивных сил балка выгибается
в сторону, противоположную прогибу от внешней нагрузки и собственного веса. При действии внешней нагрузки на балку образуется погонное сдвигающее внутреннее усилие
относительно нейтральной оси балки, которое воспринимается, как правило, связями. Податливость связей зависит от их жесткости. Выполнение в плоскости сдвига ж/б плиты 3
и деревянной дощатоклееной стенки 1 дополнительных связей в виде прерывистых продольных ребровых выступов 7 позволяет значительно повысить несущую способность
составной деревобетонной балки благодаря снижению вероятности скалывания в плоскости сдвига, так как касательные напряжения воспринимаются связями. При этом усилия
от наклонных сдвиговоспринимающих элементов 4, 5, передаваемые на оси 15, способствуют созданию дополнительного внутреннего разгружающего момента,
противоположного по знаку моменту от внешней нагрузки. Разгружающий дополнительный внутренний момент образуется следующим образом. При натяжении наклонных тяг
4 и боковых накладок 5 в условной точке сквозного отверстия 14 от оси 15 в ребровом выступе плиты 3 происходит внутреннее разложение усилий вдоль оси балки, поперек и
под соответствующим углом вдоль оси сдвиговоспринимающих элементов 4, 5. Усилие, направленное вдоль, относительно нейтральной оси балки имеет эксцентриситет,
который и способствует созданию дополнительного внутреннего момента (фиг. 10).
Изобретение позволяет повысить степень обжатия и эффект предварительного напряжения в балке благодаря комбинированному функциональному совмещению напрягаемой
продольной арматуры, наклонных сдвиговоспринимающих элементов и устройств компенсации реактивных сил. Принятые углы наклона сдвиговоспринимающих элементов
позволяет варьировать деформациями сдвига и отрыва ж/б плиты от дощатоклееной деревянной стенки, а выполнение прерывистых продольных ребровых выступов в плите в
плоскости сдвига способствует созданию дополнительного разгружающего момента от действия внешней нагрузки на балку, а также позволяет повысить жесткость связей,
воспринимающих сдвиг.
Таким образом, появилась большая надежность и возможность использования клееной древесины в комбинированных конструкциях из железобетона, полимербетона и
металла, так как обеспечивается прочность от возможного раскалывания древесины, являющейся наиболее уязвимым местом в деревянных конструкциях. Совместная
взаимосвязь продольной арматуры, наклонных сдвиговоспринимающих элементов и компенсатора потерь реактивных сил позволяет не только создавать в балке
противодействующий внешней нагрузке изгибающий момент, длительно сохранять эффект предварительного напряжения, значительно упростить процесс предварительного

253.

напряжения балки, но еще появилась возможность создавать дополнительный разгружающий момент от действия внешней нагрузки и гарантировать надежность составной
балочной конструкции от скалывания при действии касательных напряжений.
Изобретение может быть использовано для усиления балочных конструкций из традиционных материалов при действии как статической, так и динамической либо
пульсирующей нагрузки, а также при конструировании подкрановых балок и других изгибаемых конструкций составного сечения с разномодульными характеристиками
составных зон и недостаточной жесткостью связей, воспринимающих их взаимный сдвиг относительно продольной оси.
Источники информации
1. RU, Патент РФ 2117120, кл. E 04 С 3/10.
2. SU, авт. св. 1261998, кл. E 01 D 7/02.
Формула изобретения
Балка, включающая стенку из дерева, усиленную продольными арматурными стержнями по нижней грани и верхнюю железобетонную плиту, объединенную со стенкой
посредством сдвиговоспринимающих устройств, выполненных в виде наклонных тяг, установленных относительно продольных арматурных стержней под острым углом в
направлении торцов балки, отличающаяся тем, что расположенные под нижней гранью стенки продольные арматурные стержни снабжены установленными на своих концевых
участках устройствами компенсации реактивных сил в виде контактирующих с анкерами продольных арматурных стержней поперечных упоров, подпружиненных относительно
размещенных под нижней гранью стенки и охватывающих концевые участки упомянутых стержней цилиндрических гильз, шарнирно соединенных посредством боковых
накладок, попарно установленных с противоположных сторон стенки, с наклонными тягами, угол наклона которых увеличивается по мере удаления тяг от соответствующего
торца к середине балки, при этом противоположными своими концами наклонные тяги также через боковые накладки связаны с возможностью вращения с прерывистыми
продольными ребровыми выступами верхней железобетонной плиты, выполненными высотой не менее 1/3 высоты стенки из дерева.

254.

255.

256.

257.

258.

СТРОИТЕЛЬНАЯ ФЕРМА 2155259
РОССИЙСКАЯ ФЕДЕРАЦИЯ
(19)
RU
(11)
2 155 259

259.

ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
(13)
C2
(51) МПК
E04C 3/11 (2000.01)
(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ
Статус:
не действует (последнее изменение статуса: 02.07.2021)
Пошлина:
учтена за 5 год с 17.04.2000 по 16.04.2001. Патент перешел в общественное
достояние.
(21)(22) Заявка: 96107742/03,
16.04.1996
(24) Дата начала отсчета срока
действия патента:
16.04.1996
(45)
Опубликовано: 27.08.2000 Бюл.
№ 24
(56) Список документов,
цитированных в отчете о
поиске: SU 781293 A, 23.11.1980.
FR 2237030 A1, 07.02.1975. US
3541749 A, 24.11.1970.
Адрес для переписки:
199053, Санкт-Петербург, В.О., 2-я
линия 23, Государственный
гидрологический институт
(71) Заявитель(и):
Государственный
гидрологический институт
(72) Автор(ы):
Миронов В.Е.
(73) Патентообладатель(и):
Государственный
гидрологический институт

260.

(54) СТРОИТЕЛЬНАЯ ФЕРМА
(57) Реферат:
Изобретение относится к области строительства и может быть использовано в качестве несущей конструкции пролетного строения решетчатых гидрометрических мостов и как
стропильная ферма в перекрытиях зданий, сооружений. Технический результат изобретения - повышение жесткости фермы. Строительная ферма содержит верхний сжатый и
нижний растянутый непараллельные пояса, стержни раскосной решетки, стойки, а также дополнительные стойки и подкосы. Каждая из дополнительных стоек одним концом
прикреплена к раскосу вне узла, а другим концом к нижнему поясу, также вне узла, при этом длины панелей уменьшаются от середины пролета к опорам. Подкосы и
дополнительные стойки расположены только в средней части пролета фермы и имеют меньшее поперечное сечение, чем сопряженные с ними стержни фермы, при этом одна
часть подкосов прикреплена к стойкам под углом 45° вне узла, а другим концом - к нижнему поясу, также вне узла, другая часть подкосов прикреплена к раскосам вне узла, а
другим концом - к верхнему поясу, также вне узла, причем точки крепления к поясам подкосов и дополнительных стоек отстоят от ближайших узлов на расстоянии 1/6 длины
панели. 3 ил., 1 табл.
Изобретение относится к области гидрологии, а также строительства, в частности к гидрометрическим решетчатым мостам, в которых ферма может быть использована как
несущая конструкция пролетного строения и которые могут быть использованы на водных потоках с устойчивыми руслами и берегами для выполнения гидрометрических
измерений, с максимальной шириной по урезу в период горизонта высоких вод до 30 м и при перепаде уровня воды до 3-4 м. В конструкциях перекрытий зданий и сооружений
данное изобретение может найти применение в качестве стропильной фермы, в том числе с местной загрузкой поясов.
Известна строительная ферма с неравными панелями, длина которых уменьшается от середины пролета к опорам, содержащая верхний сжатым и нижний растянутый пояса,
стержни раскосной системы решетки с переменным направлением раскосов (треугольной системы решетки) и стойки. Такая ферма с местной загрузокй поясов считается
наиболее экономичным решением в случае, когда длина панелей фермы уменьшается от середины пролета к опорам *1+ (с. 250, фиг. 13).
Недостатком известной фермы является отсутствие единообразия в схемах узлов, которые по этой причине неудобны и трудоемки для конструирования. Это обстоятельство
практически не позволяет запроектировать ферму, состоящую из сборных унифицированных элементов, что является особенно важным при проектировании пролетных

261.

строений мостов различного назначения. Кроме того, при большой местной загрузке поясов в средней части пролета фермы приходится значительно увеличивать сечения
поясов, что приводит к увеличению материалоемкости.
Известна равнопанельная строительная ферма с параллельными поясами, включающая верхний сжатый и нижний растянутый пояса, стержни треугольной решетки и стойки, а
также дополнительные стойки, каждая из которых одним концом прикреплена к раскосу вне узла, а другим концом - к нижнему растянутому поясу, также вне узла, в точке,
отстоящей от него на расстоянии примерно 1/4 длины панели *2+. Такая конструкция решетки позволяет снизить материалоемкость за счет уменьшения расчетной длины
раскосов. Однако из-за значительной длины дополнительных стоек достигаемый экономический эффект является небольшим.
Наиболее близким к изобретению по технической сущности является равнопанельная строительная ферма моста параболического очертания, содержащая параболический
верхний сжатый и нижний растянутый пояса, нисходящие стержни раскосной системы решетки, стойки и расположенные между всеми стойками подкосы, каждый из которых
одним концом прикреплен к раскосу в средней точке, а другим концом - к нижнему растянутому поясу вне узла в точке, отстоящей от него на расстоянии примерно 1/7 длины
панели *1+ (с. 802). Известная строительная ферма моста параболического очертания принята за прототип.
Недостатком прототипа является то, что его конструкция позволяет только немного снизить материалоемкость за счет уменьшения расчетной длины раскосов, так как подкосы
имеют значительную длину - половину длины раскосов. Кроме этого, снижению материалоемкости не способствует то, что прототип является равнопанельной фермой.
Указанные недостатки в предлагаемой ферме сведены к минимуму. При создании изобретения были решены задачи снижения материалоемкости и повышения надежности
устройства за счет дополнения решетки фермы системой коротких стержней, позволяющих значительно уменьшить расчетные длины стержней решетки, прогибы поясов от
местной загрузки и повысить устойчивость сечения поясов при работе на изгиб.
В предлагаемой строительной ферме треугольного, параболического, полигонального или какого-либо другого очертания с непараллельными поясами, с длинами панелей,
уменьшающимися от середины пролета к опорам, содержащей верхний сжатый и нижний растянутый пояса, стержни раскосной системы решетки, стойки, а также подкосы и
дополнительные стойки, каждая из которых одним концом прикреплена к раскосу вне узла, а другим концом - к нижнему поясу, также вне узла, сущность изобретения
заключается в том, что подкосы и дополнительные стойки введены в решетку строительной фермы в средней части пролета и имеют меньшее поперечное сечение, чем
сопряженные с ними стержни фермы, при этом в каждой панели одна часть подкосов прикреплена к стойкам под углом 45o вне узла, а другим концом - к нижнему поясу, также
вне узла, другая часть подкосов прикреплена к раскосам вне узла, а другим концом - к верхнему поясу, также вне узла, причем расстояния между точками крепления подкосов и
дополнительных стоек к поясам и ближайшими узлами (их геометрическими центрами) определяются исходя из приближенного расчета поясов на прочность от местной
загрузки и расчета раскосов на устойчивость при сжатии с учетом их предельной гибкости, устанавливаемой нормами *3+, и составляют примерно 1/6 длины панели.
Предлагаемая строительная ферма соответствует критерию "Новизна", так как она не известна из уровня техники, и соответствует критерию "Изобретательский уровень", так как
для специалиста явным образом не следует из уровня техники.
На фиг. 1 приведена строительная ферма треугольного очертания с подкосами и дополнительными стойками в средней части пролета. На фиг. 2 - фрагмент строительной фермы
треугольного очертания на фиг. 1 в средней части пролета. На фиг. 3 - расчетная схема балки для определения площади поперечного сечения нижнего пояса, используемая для
определения оптимального расстояния
ее элементов.
которое соответствует минимальной материалоемкости строительной фермы и удовлетворяет условиям прочности и устойчивости
Строительная ферма содержит верхний сжатый пояс 1, нижний растянутый пояс 2, раскосную решетку 3, стойки 4, дополнительные стойки 5 и подкосы 6, расположенные в
средней части пролета фермы.
Устройство работает следующим образом.

262.

При загрузке фермы (в том числе при местной загрузке поясов) верхний пояс 1 и раскосы 3 сжимаются, а нижний пояс 2 и стойки 4 растягиваются и, кроме того, от местной
загрузки нижний пояс 2 изгибается и прогибается. Существенному уменьшению изгиба и прогиба нижнего пояса способствуют опорные закрепления подкоса 6 и
дополнительной стойки 5, которые под воздействием подвижной нагрузки P растягиваются и вовлекают в работу стойку 4, раскос 3 и посредством их верхний пояс 1. Кроме
этого, опорные закрепления раскоса 3 посредством подкоса 6 у верхнего пояса 1 и дополнительной стойки 5 у нижнего пояса 2 уменьшают расчетную длину раскоса 3 при его
сжатии и, таким образом, увеличивают устойчивость раскоса.
В целом благодаря наличию подкосов и дополнительных стоек в средней части пролета фермы значительно уменьшаются расчетные длины стержней решетки и местные
прогибы нижнего пояса, а также повышается его устойчивость при работе на изгиб. Кроме этого, повышается жесткость фермы в целом и в результате уменьшаются прогибы
узлов фермы в середине пролета при действии эксплуатационных нагрузок.
Для определения оптимального расстояния
(см. фиг. 2) приведем обоснование расчетных формул и результаты расчета по ним в табличной форме.
Площади поперечных сечений подкосов и дополнительных стоек определяются исходя из расчета на устойчивость при сжатии по нормам *3+. При этом с учетом запаса гибкости
подкосов и дополнительных стоек должны быть не более 150.
При определении площади поперечного сечения дополнительной стойки или подкоса предварительно определяется радиус инерции rg его поперечного сечения
где lg - длина дополнительной стойки или подкоса (расстояние между точками закрепления);
λ - гибкость дополнительной стойки или подкоса, принимаемая по нормам *3+, но не более 150.
Площадь Fg поперечного сечения дополнительной стойки или подкоса определяется по формуле
Fg = Ig/rg 2
где Ig - момент инерции поперечного сечения дополнительной стойки или подкоса.
Оптимальное горизонтальное расстояние
между узлом фермы на нижнем поясе и точкой крепления дополнительной стойки (подкоса) к поясу может быть определено на
основании расчета части длины пояса между точками крепления дополнительной стойки и подкоса как простой однопролетной балки, загруженной сосредоточенной силой P в
середине пролета lп - 2aо, где lп - длина панели. Для выполнения этого расчета предварительно следует задаться некоторым расстоянием aо. На основании расчета для каждого
заданного значения aо определяются геометрические характеристики поперечного сечения нижнего пояса и затем объем материала нижнего пояса
Определяются длина
подкоса и дополнительной стойки в зависимости от расстояния aо, площади поперечных сечений дополнительной стойки и подкоса и затем также объемы материалов подкоса
и дополнительной стойки V'2 и V''2 (см. расчетные формулы, константы и результаты расчетов в таблице). Объемы
V'2, V''2 суммируются. В результате каждому заданному
значению aо соответствует объем материала V, включающий нижний пояс и сопряженные с ним дополнительную стойку и подкос.
Результаты расчетов для определения оптимального расстояния aо представлены в таблице.

263.

Расчетные формулы
F1 = b•h;
Константы*)
lп = 300 см; P = 150 кгс; σ = 1600 кГc/cм2; b = 0,4 см; F2 = 1,46 см2; F'2 = 1,94 см2; tgϕ = 0,857; cos 45o = 0,707.
В приведенных формулах и обозначениях констант:
M - изгибающий момент в середине пролета lп-2aо;
W - момент сопротивления площади поперечного сечения нижнего пояса;
σ - напряжение в крайних волокнах поперечного сечения нижнего пояса от изгиба;
h - высота поперечного сечения нижнего пояса в форме пластины шириною b;
F1 - площадь поперечного сечения нижнего пояса;
объем материала нижнего пояса в пределах длины панели lп;
V'2 - объем материала подкоса;
F2 - площадь поперечного сечения подкоса или дополнительной стойки при aо = 37,5 см;
F'2 - площадь поперечного сечения подкоса или дополнительной стойки при aо = 75,0 см;
V''2 - объем материала дополнительной стойки;
ϕ - угол между направлением раскоса и нижним поясом;
V - суммарный объем материала нижнего пояса, подкоса и дополнительной стойки.
Остальные обозначения были пояснены в тексте ранее.
*) Площадь сечения F2 соответствует площади сечения уголка 20х20х4, а площадь сечения F'2 - площади сечения уголка 32х20х4.
Для определения оптимального значения
соответствующего минимальному значению V, была применена интерполяционная формула Ньютона при равных разностях
аргумента *4+. При этом начальное значение aо принималось равным 0. На основании применения этой формулы оптимальное расстояние
определялось по формуле
где V1, V2, V3 - значения объема V, соответствующие первому, второму и третьему значениям аргумента aо;
Δao - разность аргумента.
В рассматриваемом случае в соответствии с результатами расчета расстояния
по указанной формуле при Δao = 37,5 см равно 49.4 см. При lп = 300 см относительное
расстояние
Аналогичным образом расстояние aп вдоль раскоса между узлом на верхнем поясе и точкой крепления к раскосу подкоса определяется по формуле

264.

где lг - геометрическая длина раскоса (между центрами верхнего и нижнего узлов);
lр - расчетная длина раскоса (расстояние между опорными закреплениями).
Расчетная длина раскоса определяется по формуле
lp = r•λп,
где r - радиус инерции поперечного сечения раскоса, принимаемого по результатам общего статического расчета фермы без учета подкосов и дополнительных стоек;
λп - предельная гибкость раскоса, принимаемая по нормам *3+.
Таким образом, результаты расчетов по приведенным формулам показывают, что оптимальное расстояние
условия прочности и устойчивости элементов строительной фермы.
составляет 1/6 длины панели lп. При этом удовлетворяются
В заявляемом изобретении по сравнению с прототипом благодаря сочетанию неравнопанельной фермы с подкосами и дополнительными стойками в средней части пролета
снижение материалоемкости составляет ≈ 20%. Одновременно благодаря уменьшению прогиба узлов фермы приблизительно на 30% повышается надежность устройства.
Причем подкосы и дополнительные стойки не учитывались в общем статическом расчете фермы. Площади сечения подкосов и дополнительных стоек принимались с запасом
исходя из расчетной гибкости этих элементов при сжатии.
Источники информации
1. Деревянные конструкции. Справочник проектировщика промышленных сооружений. Л., ОНТИ, 1937 - 955 с.
2. Беккер Г.Н. Ферма с параллельными поясами. Авт. свид. СССР N 781293, кл. E 04 C 3/04.
3. Стальные конструкции. Глава СНиП П-23-81*. - М.: Стройиздат, 1990.
4. Справочник проектировщика промышленных, жилых и общественных зданий и сооружений. Под редакцией д.т.н., проф. А.А. Уманского. Госстройиздат.- М: 1960 - 1040 с.
Формула изобретения
Строительная ферма, содержащая верхний сжатый и нижний растянутый непараллельные пояса, стержни раскосной решетки, стойки, а также подкосы и дополнительные
стойки, каждая из которых одним концом прикреплена к раскосу вне узла, а другим концом - к нижнему поясу, также вне узла, при этом длины панелей уменьшаются от
середины пролета к опорам, отличающаяся тем, что подкосы и дополнительные стойки введены в решетку строительной фермы в средней части пролета и имеют меньшее
поперечное сечение, чем сопряженные с ними стержни фермы, при этом одна часть подкосов прикреплена к стойкам под углом 45o вне узла, а другим концом - к нижнему
поясу, также вне узла, другая часть подкосов прикреплена к раскосам вне узла, а другим концом - к верхнему поясу, также вне узла, причем точки крепления к поясам подкосов
и дополнительных стоек отстоят от ближайших узлов на расстоянии 1/6 длины панели.

265.

266.

УЗЛОВОЕ СОПРЯЖЕНИЕ ВЕРХНЕГО И НИЖНЕГО ПОЯСОВ В ПРОСТРАНСТВЕННОЙ ПРЕДВАРИТЕЛЬНО НАПРЯЖЕННОЙ БЛОК-ФЕРМЕ
РОССИЙСКАЯ ФЕДЕРАЦИЯ
(19)
RU 2247813
(11)
ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ,
2 247 813
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
(13)
C1
(51) МПК
E04C 3/00 (2000.01)
(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ
Статус:
не действует (последнее изменение статуса: 02.07.2021)
Пошлина:
учтена за 13 год с 26.08.2015 по 25.08.2016. Возможность восстановления:
нет.

267.

(21)(22) Заявка: 2003126076/03, 25.08.2003
(24) Дата начала отсчета срока действия патента:
25.08.2003
(45) Опубликовано: 10.03.2005 Бюл. № 7
(56) Список документов, цитированных в отчете о поиске: SU1638284 A1, 30.03.1991. RU2228415 C2,
10.09.2001. RU2184819 C1, 10.07.2002.
(72) Автор(ы):
Инжутов И.С. (RU),
Деордиев С.В. (RU),
Рожков А.Ф. (RU)
(73) Патентообладатель(и):
Красноярская государственная архитектурно-строительная ака
Адрес для переписки:
660041, г.Красноярск, пр. Свободный, 82, НИС Красноярская государственная архитектурно-строительная
академия
(54) УЗЛОВОЕ СОПРЯЖЕНИЕ ВЕРХНЕГО И НИЖНЕГО ПОЯСОВ В ПРОСТРАНСТВЕННОЙ ПРЕДВАРИТЕЛЬНО НАПРЯЖЕННОЙ БЛОК-ФЕРМЕ 2247813
(57) Реферат:
Изобретение относится к строительству и может быть использовано для покрытия отапливаемых промышленных и сельскохозяйственных зданий и сооружений. Достигаемый
технический результат изобретения - более полное использование прочностных свойств конструкции за счет предварительного напряжения и создания “следящих” за
деформациями ползучести усилий предварительного напряжения в целях уменьшения потерь преднапряжения. Для решения поставленной задачи узловое сопряжение
верхнего и нижнего поясов в пространственной предварительно напряженной блок-ферме, включающее траверсу с ребрами жесткости, на которой закреплены посредством
фиксаторов гибкие арки верхнего пояса и нижний пояс-затяжка в виде тонкой полосы, согласно изобретению снабжено средством для сохранения усилия предварительного
напряжения в виде рессор, связанных с нижним поясом, установленным с возможностью перемещения, при этом на концах нижнего пояса вварены металлические стержни,
которые пропущены через отверстия, выполненные в траверсе, и оперты при помощи упорных шайб и гаек на рессоры, расположенные с наружной стороны траверсы,
фиксаторы гибких арок приварены к ребрам жесткости траверсы и расположены совместно с установленными в них гибкими арками в прорезах, выполненных на концах
нижнего пояса-затяжки. 5 ил.

268.

Изобретение относится к строительству и может быть использовано для покрытия отапливаемых промышленных и сельскохозяйственных зданий и сооружений.
Известна пространственная предварительно напряженная металлическая блок-ферма, содержащая верхний и нижний гибкие пояса, составной по длине жесткий стержень,
соединенный с концами фермы при помощи траверс *Авт. свид. №421743, Е 04 С 3/04+.
Недостатком известной фермы является низкая ее эффективность из-за сложности создания предварительного напряжения путем распирания домкратами отдельных частей
жесткого стержня и установки в образовавшийся зазор вставки.
Наиболее близким по технической сущности к изобретению является узловое сопряжение верхнего и нижнего поясов в известной пространственной предварительно
напряженной ферме, принятой за прототип *Авт. свид. №1638284, Е 04 С 3/00+. Известная ферма состоит верхнего пояса, включающего ребристые плиты с утеплителем и
кровлей, уложенные на гибкие арки, нижнего пояса-затяжки в виде тонкой полосы, установленных между ними вертикальных распорок, раскосов и поперечных траверс,
установленных по концам фермы, к которым прикреплены верхний и нижний пояса, причем поперечные траверсы снабжены наклонной полкой, к которой на высокопрочных
ботах прикреплены концы нижнего пояса и фиксаторы-карманы с гибкими арками.
Недостатком прототипа являются потери усилия предварительного напряжения в нижнем поясе, обусловленные деформациями ползучести и температурно-влажностными
деформациями в древесине ребер плит верхнего пояса, температурными деформациями металла нижнего пояса, и, как следствие, не в полной мере использование
прочностных свойств конструкции с жестким выполнением соединения верхнего и нижнего поясов.

269.

Задача изобретения - более полное использование прочностных свойств конструкции за счет предварительного напряжения и создания “следящих” за деформациями
ползучести усилий предварительного напряжения в целях уменьшения потерь преднапряжения.
Для решения поставленной задачи узловое сопряжение верхнего и нижнего поясов в пространственной предварительно напряженной блок-ферме, включающее траверсу с
ребрами жесткости, на которой закреплены посредством фиксаторов гибкие арки верхнего пояса и нижний пояс-затяжка в виде тонкой полосы, согласно изобретению снабжено
средством для сохранения усилия предварительного напряжения в виде рессор, связанных с нижним поясом, установленным с возможностью перемещения, при этом на
концах нижнего пояса вварены металлические стержни, которые пропущены через отверстия, выполненные в траверсе, и оперты при помощи упорных шайб и гаек на рессоры,
расположенные с наружной стороны траверсы, фиксаторы гибких арок приварены к ребрам жесткости траверсы и расположены совместно с установленными в них гибкими
арками в прорезах, выполненных на концах нижнего пояса-затяжки.
На фиг.1 изображено узловое сопряжение верхнего и нижнего поясов в пространственной предварительно напряженной блок-ферме; на фиг.2 - то же, вид сверху; на фиг.3 - то
же, вид сбоку; на фиг.4 - вид в объеме с наружной стороны блок-фермы; на фиг.5 - вид в объеме с внутренней стороны блок-фермы.
Узловое сопряжение верхнего и нижнего поясов в пространственной предварительно напряженной блок-ферме включает траверсу 1 с ребрами жесткости 2 и 3,
расположенными с обеих сторон траверсы. К ребрам 2 приварены фиксаторы 4, в которых закреплены гибкие арки 5 верхнего пояса посредством болтовых соединений 6. С
наружной стороны траверсы на ребра 3 приварены рессоры 7, взаимодействующие с нижним поясом 8, выполненным в виде металлической полосы. При этом на конце
нижнего пояса 8 выполнены прорези 9 под гибкие арки, по контуру приварены стержни 10, выступающие концы которых пропущены через отверстия 11 в траверсе 1 и между
рессорами 7. Стержни 10 оперты на рессоры 7 через упорные шайбы 12, например, в виде швеллеров и гайки 13. С внутренней стороны траверсы 1 нижний пояс 8 установлен с
возможностью перемещения на скошенных ребрах 14 и закреплен на приваренной к ребрам 14 пластине 15 посредством болтовых соединений 16, расположенных в пазах 17,
выполненных в нижнем поясе 8.
В процессе эксплуатации конструкции рессоры будут регулировать усилие предварительного напряжения, сохраняя его, несмотря на ползучие и температурно-влажностные
деформации в древесине и температурные деформации металла.
Использование предлагаемого изобретения по сравнению с прототипом позволяет создавать и сохранять усилие предварительного напряжения в процессе эксплуатации, тем
самым сохраняя несущую способность и жесткость конструкции.
Такое решение дает более полное использование прочностных свойств конструкции, уменьшает потери преднапряжения, что приведет к сохранению несущей способности и
жесткости.
Формула изобретения
Узловое сопряжение верхнего и нижнего поясов в пространственной предварительно напряженной блок-ферме, включающее траверсу с ребрами жесткости, на которой
закреплены посредством фиксаторов гибкие арки верхнего пояса и нижний пояс-затяжка в виде тонкой полосы, отличающееся тем, что оно снабжено средством для сохранения
усилия предварительного напряжения в виде рессор, связанных с нижним поясом, установленным с возможностью перемещения, при этом на концах нижнего пояса вварены
металлические стержни, которые пропущены через отверстия, выполненные в траверсе, и оперты при помощи упорных шайб и гаек на рессоры, расположенные с другой
стороны траверсы, фиксаторы гибких арок приварены к ребрам жесткости траверсы и расположены совместно с установленными в них гибкими арками в прорезах,

270.

выполненных на концах нижнего пояса-затяжки.

271.

ФГБОУ СПб ГАСУ № RA.RU.21СТ39 от 27.05.2015, 190005, СПб, 2-я Красноармейская ул. д 4, организация «Сейсмофонд» при СПб ГАСУ [email protected] ИНН: 2014000780
[email protected], [email protected] [email protected] [email protected] [email protected] (996) 798-26-54, (951) 644-16-48
462 стр
УТВЕРЖДАЮ: Президент ОО «Сейсмофонд» при СПб ГАСУ ОГРН: 1022000000824 [email protected] Мжиев Х.Н. 12.01. 2023
Всего : 375 стр
Специальные технические условия монтажных соединений упругоплатических стальных ферм , пролетного строения моста из стержневых структур, МАРХИ ПСПК",
"Кисловодск" ( RU 80471 "Комбинированная пространсвенная структура" ) с большими перемещениями на предельное равновесие и приспособляемость ( А.Хейдари,
В.В.Галишникова) [email protected] [email protected] [email protected]
[email protected]
[email protected]

272.

Специальный репортаж газета Армия Защитников Отечества при СПб ГАСУ об использовании надвижного армейского моста дружбы для применения единственный способ
спасти жизнь русских и украинцев , объединение, покаяние, против истинного врага жeлезнодорожников глобалистов № 7 (7) от 12.01.23
Тезисы, доклад, аннотация для публикации в сборнике ЛИИЖТа IV Бетанкуровского международного инженерного форума ПГУПС ОО "Сейсмофонд" при СПб ГАСУ
11.01.23 т (812) 694-78-10

273.

274.

275.

276.

277.

278.

279.

280.

281.

282.

283.

284.

285.

286.

Справки по тел ( 951) 644-16-48, (921) 962-67-78, (996) 798-26-54 [email protected] [email protected] [email protected]

287.

Более подробно смотри автора статьи ТОМИЛОВ СЕРГЕЙ НИКОЛАЕВИЧ ВЛИЯНИЕ МОНТАЖНЫХ СОЕДИНЕНИЙ СЕКЦИЙ РАЗБОРНОГО МОСТА НА ЕГО НАПРЯЖЕННОДЕФОРМИРОВАННОЕ СОСТОЯНИЕ https://elibrary.ru/item.asp?id=43813437
Most Bailey bridge USA kompensator uprugoplastichniy gasitel napryajeniy 390 str
https://ppt-online.org/1235890
Mistroy tex zadanie dogovor proektirovanie sborno-razbornix mostov 500 str
https://ppt-online.org/1237042 https://t-s.today/PDF/25SATS220.pdf
Испытательного центра СПбГАСУ, аккредитован Федеральной службой по аккредитации (аттестат № RA.RU.21СТ39, выд. 27.05.2015), организация"Сейсмофонд" при СПб ГАСУ
ОГРН: 1022000000824
ФГАОУ ВО «СПбПУ» № RA.RU.21ТЛ09 от 26.01.2017, 195251, СПб, ул. Политехническая, д 29, организация «Сейсмофонд» при СПб ГАСУ 190005, 2-я Красноармейская ул. д 4
ОГРН: 1022000000824, т/ф:694-78-10 https://www.spbstu.ru с[email protected] , (996) 798-26-54, (921) 962-67-78 (аттестат № RA.RU.21ТЛ09, выдан 26.01.2017)
Испытания на соответствие требованиям (тех. регламент , ГОСТ, тех. условия)1. ГОСТ 56728-2015 Ветровой район – VII, 2. ГОСТ Р ИСО 4355-2016 Снеговой район – VIII, 3. ГОСТ
30546.1-98, ГОСТ 30546.2-98, ГОСТ 30546.3-98 (сейсмостойкость - 9 баллов). (812) 694-78-10, (921) 962-67-78 https://innodor.ru
Санкт -Петербургское городское отделение Всероссийской общественной организации ветеранов "Профсоюз Ветеранов Боевых Действий"
Заключение по использованию упругопластического сдвигового компенсатора гасителя сдвиговых напряжений для быстро собираемых на антисейсмических фрикционноподвижных соединениях для сборно–разборного железнодорожного армейского моста
1. Штыревые монтажные соединения секций разборного пролетного строения временного моста позволяют существенно ускорить процесс возведения и последующей
разборки конструкций, однако при этом являются причиной увеличения общих деформаций пролетного строения, кроме упругопластического сдвигового компенсатора,
гасителя сдвиговых напряжений для быстрособираемых на антисейсмических фрикционно-подвижных соединениях для сборно–разборного железнодорожного армейского
моста проф дтн ПГУПС А.М.Уздина
2. Штатное двухпутное движение при двухсекционной компоновке конструкций САРМ под современной автомобильной нагрузкой не обеспечено прочностью как основного
сечения секций, так и элементов штыревых соединений, а использование упругопластического сдвигового , компенсатора, гасителя сдвиговых напряжений для быстро
собираемых на антисейсмических фрикционно-подвижных соединениях для сборно–разборного железнодорожного армейского моста , все напряжения снимает

288.

3. В металле элементов штыревых соединений при современной нагрузке накапливаются пластические деформации, приводящие к выработке контактов «штырь-проушина»
и нарастанию общих деформаций (провисов), а упругопластический сдвиговой компенсатор гаситель сдвиговых напряжений для быстрособираемых на антисейсмических
фрикционно-подвижных соединениях для сборно–разборного железнодорожного армейского моста гасить напряжения
4. Ускорению процесса износа элементов штыревых соединений способствует многократная сборка-разборка пролетных строений и их эксплуатация под интенсивной
динамической нагрузкой и не гасит сдвиговых напряжений для быстро собираемых на антисейсмических фрикционно-подвижных соединениях для сборно–разборного
железнодорожного армейского моста
5. Образующийся провис пролетного строения создает ненормативное состояние продольного профиля ездового полотна, снижающее пропускную способность и безопасность
движения, упругопластический сдвиговой компенсатор гаситель сдвиговых напряжений для быстро собираемых на антисейсмических фрикционно-подвижных соединениях
для сборно–разборного железнодорожного армейского моста сдвиговый нагрузки «поглощает»
6. Изначально разборные конструкции САРМ проектировались под нужды военного ведомства для мобильного и кратковременного применения и штыревые монтажные
соединения в полной мере соответствуют такому назначению. При применении в гражданском строительстве эту особенность следует учитывать в разработке проектных
решений, назначении и соблюдении режима эксплуатации, например путем уменьшения полос движения или увеличения числа секций в поперечной компоновке, а
использование сдвигового компенсатора, гасителя сдвиговых напряжений для быстро собираемых на антисейсмических фрикционно-подвижных соединениях для сборно–
разборного железнодорожного армейского моста исключает обрушение железнодорожного моста
Дальнейшие исследования видятся в аналитическом обзоре применяемых конструкций разборных мостов, разработке отвечающих современным требованиям проектных
решений вариантов поперечной и продольной компоновки пролетных строений с использованием упругопластических , сдвиговых компенсатор, которые гасят, сдвиговые
напряжения для быстро собираемых, на антисейсмических фрикционно-подвижных соединениях , для отечественного сборно–разборного железнодорожного армейского
моста «Уздина»
Выводы Перспективы применения быстровозводимых мостов и переправ очевидны. Не имея хорошей
методической, научной, технической и практической базы, задачи по быстрому временному восстановлению
мостовых переходов будут невыполнимы. Это приведет к предсказуемым потерям
Преодоление водных препятствий всегда было существенной проблемой для армии. Все изменилось в начале 1983 году благодаря проф дтн ЛИИЖТ А.М.Уздину , который
получил патент № 1143895, 1168755, 1174616, 2550777 на сдвиговых болтовых соединениях, а инженер -механик Андреев Борис Иванович получил патент № 165076 "Опора

289.

сейсмостойкая" и № 2010136746 "Способ защита здания и сооружений ", который спроектировал необычный сборно-разборный армейский универсальный
железнодорожный мост" с использование антисейсмических фланцевых сдвиговых компенсаторов, пластический сдвиговой компенсатор ( Сдвиговая прочность при действии
поперечной силы СП 16.13330.2011, Прочностные проверки SCAD Закон Гука ) для сборно-разборного моста" , названный в честь его имени в честь русского ученого,
изобретателя "Мост Уздина". Но сборно-разборный мост "ТАЙПАН" со сдвиговым компенсатором проф дтн ПГУПС Уздина , пока на бумаге. Sborno-razborniy
bistrosobiraemiy universalniy most UZDINA PGUPS 453 str https://ppt-online.org/1162626 https://disk.yandex.ru/d/iCyG5b6MR568RA
Зато, западные партнеры из блока НАТО , уже внедрили похожие изобретения проф дтн ПГУПС Уздина А М. по использованию сдвигового компенсатора под названием
армейский Bailey bridge при использовании сдвиговой нагрузки, по заявке на изобретение № 2022111669 от 27.04.2022 входящий ФИПС 024521 "Конструкция участка
постоянного железобетонного моста неразрезной системы" , № 2021134630 от 06.05.2022 "Фрикционно-демпфирующий компенсатор для трубопроводов", а20210051 от 29
июля 2021 Минск "Спиральная сейсмоизолирующая опора с упругими демпферами сухого терния" . № а 20210217 от 23 сентября 2021, Минск " Фланцевое соединение
растянутых элементов трубопровода со скошенными торцами"
Однако, на переправе Северский Донец из выжило очень мало русский солдат. В Луганской области при форсировании реки Северский Донец российская армия потеряла
много военнослужащих семьдесят четвёртой мотострелковой бригады из-за отсутствия на вооружение наплавных ложных мостов , согласно изобретениям № 185336, №
77618. Об этом сообщил американский Институт изучения войны. "11 мая украинская артиллерия с гаубиц М 777 уничтожила российские понтонные мосты и плотно
сконцентрированные вокруг них российские войска и технику, в результате чего, как сообщается, погибло много русских солдат и было повреждено более 80 единиц техники»,
— отмечается в публикации. По оценке института, войска РФ допустили значительные тактические ошибки при попытке форсирования реки в районе Кременной, что привело к
таким потерям. Ранее в Институте изучения войны отмечали, что российские войска сосредотачиваются на битве за Северодонецк, отказавшись от плана крупномасштабного
окружения ВСУ и выхода на административные границы Донецкой области https://disk.yandex.ru/i/3ncRcfqDyBToqg
Administratsiya Armeyskie mosti uprugoplasticheskim sdvigovoy jestkostyu 176 str
https://ppt-online.org/1235168
Среди прочих мостов , в том числе и современных разборных конструкций мостов, особое место занимает средний автомобильный разборный мост (САРМ), разработанный в
1968 г. и модернизированный в 1982 г. для нужд Минобороны СССР. В процессе вывода накопленных на хранении комплектов САРМ в гражданский сектор строительства
выяснилась значительная востребованность этих конструкций, обусловленная следующими их преимуществами: полная укомплектованность всеми элементами моста, включая
опоры; возможность перекрытия пролетов 18,6, 25,6, 32,6 м с габаритами ездового полотна 4,2 м при однопутном и 7,2 м при двухпутном проезде. Паспортная
грузоподъемность обозначена как 40 т при однопутном проезде и 60 т при двухпутном проезде.
Так как по ряду геометрических и технических параметров конструкции САРМ не в полной мере соответствуют требованиям современных норм для капитальных мостов, то
применение их ориентировано в основном как временных.

290.

Следует отметить, что при незначительной доработке - постановке современных ограждений и двухпутной поперечной компоновке секций для однополосного движения
можно добиться соответствия требуемым геометрическим параметрам ездового полотна и общей грузоподъемности для мостов на дорогах общего пользования IV и V
технической категории.
В статье рассматривается конструктивная особенность штыревых монтажных соединений секций разборного пролетного строения как фактор, определяющий
грузоподъемность, характер общих деформаций и в итоге влияющий на транспортно- эксплуатационные характеристики мостового сооружения.
Целью настоящего исследования является анализ работы штыревых монтажных соединений секций пролетного строения САРМ с оценкой напряженного состояния элементов
узла соединения. Новизной в рассмотрении вопроса полагаем оценку прочности элементов штыревых соединений и ее влияние на общие деформации - прогибы главных балок.
Ключевые слова: пролетное строение; нижний пояс; верхний пояс; штыревое соединение; проушина; прочность; прогиб, методом оптимизации и идентификации статических
задач теории устойчивости надвижного армейского моста (жесткостью) при действии проперченных сил в ПK SCAD СП 16.1330.2011. SCAD п.7.1.1 в механике деформируемых
сред и конструкций с учетом сдвиговой прочности при математическом моделировании.
Введение
Наряду с постоянными, капитальными мостами на автомобильных дорогах общего пользования востребованы сооружения на дорогах временных, объездных,
внутрихозяйственных с приоритетом сборно-разборности и мобильности конструкций надвижного армейского моста (жесткостью) при действии проперченных сил в ПK SCAD СП
16.1330.2011. SCAD п.7.1.1 в механике деформируемых сред и конструкций с учетом сдвиговой прочности при математическом моделировании методом оптимизации и
идентификации статических задач теории устойчивости надвижного армейского моста (жесткостью) при действии проперченных сил в ПK SCAD СП 16.1330.2011. SCAD п.7.1.1 в
механике деформируемых сред и конструкций с учетом сдвиговой прочности при математическом моделировании.
.
Прокладка новых дорог, а также ремонты и реконструкции существующих неизбежно сопровождаются временными мостами, первоначально пропускающими движение
основной магистрали или решающими технологические задачи строящихся сооружений. Подобные сооружения могут быть пионерными в развитии транспортных сетей
регионов с решением освоения удаленных сырьевых районов.
В книге А.В. Кручинкина «Сборно-разборные временные мосты» *1+ сборно-разборные мосты классифицированы как временные с меньшим, чем у постоянных мостов сроком
службы, обусловленным продолжительностью выполнения конкретных задач. Так, для пропуска основного движения и обеспечения технологических нужд при строительстве
нового или ремонте (реконструкции) существующего моста срок службы временного определен от нескольких месяцев до нескольких лет. Для транспортного обеспечения

291.

лесоразработок, разработки и добычи полезных ископаемых с ограниченными запасами временные мосты могут служить до 10-20 лет *1+. Временные мосты применяют также
для обеспечения транспортного сообщения сезонного характера и для разовых транспортных операций.
Особая роль отводится временным мостам в чрезвычайных ситуациях, когда решающее значение имеют мобильность и быстрота возведения для срочного восстановления
прерванного движения транспорта.
В силу особенностей применения к временным мостам как отдельной ветви мостостроения уделяется достаточно много внимания и, несмотря на развитие сети дорог,
повышение технического уровня и надежности постоянных сооружений, задача совершенствования временных средств обеспечения переправ остается актуальной *2+.
Что касается материала временных мостов, то традиционно применялась древесина как широко распространенный и достаточно доступный природный ресурс. В настоящее
время сталь, конкурируя с железобетоном, активно расширяет свое применение в сфере мостостроения становясь все более доступным и обладающим лучшим показателем
«прочность-масса» материалом. Давно проявилась тенденция проектирования и строительства стальных пролетных строений постоянных мостов даже средних и малых,
особенно в удаленных территориях с недостаточной транспортной доступностью и слабо развитой
инфраструктурой. Разумеется, для мобильных и быстровозводимых временных мостов сталь - давно признанный и практически единственно возможный материал.
Конструктивное развитие временных мостов можно разделить на следующие направления:
• цельноперевозимые конструкции максимальной заводской готовности, как например «пакетные» пролетные строения, полностью готовые для пропуска транспорта после их
установки на опоры *3+;
• складные пролетные строения, способные трансформироваться для уменьшения габаритов при их перевозке1 *4+;
• сборно-разборные2 *5; 6+.
Разборность конструкций обусловлена необходимостью в перекрытии пролетов длиной, превышающей габаритные возможности транспортировки, отсюда и большое
разнообразие исполнения временных мостов такого типа. Членение пролетного строения на возможно меньшие части с целью ускорения и удобства сборки наиболее удачно
реализовано в Российской разработке «Тайпан» (патент РФ 1375583) или демпфирующий упругопластичный компенсатор гаситель сдвиговых напряжений с учетом
сдвиговой жесткости в ПК SCAD ( согласно СП 16.1330.2011 SCAD п.7.1.1- антисейсмическое фланцевое фрикционно-подвижное соединение) для сборно-разборного
быстрособираемого армейского моста из стальных конструкций покрытий производственных здании пролетами 18, 24 и 30 м. с применением замкнутых гнутосварных
профилей прямоугольного сечения типа «Молодечно» (серия 1.460.3-14 ГПИ «Ленпроектстальконструкция» ) для системы несущих элементов и элементов проезжей части
армейского сборно-разборного пролетного надвижного строения железнодорожного моста, с быстросъемными упругопластичными компенсаторами, со сдвиговой
фрикционно-демпфирующей прочностью, согласно заявки на изобретение «КОНСТРУКЦИЯ УЧАСТКА ПОСТОЯННОГО ЖЕЛЕЗОБЕТОННОГО МОСТА НЕРАЗРЕЗНОЙ СИСТЕМЫ,

292.

ВОССТАНОВЛЕННОГО С ПРИМЕНЕНИЕМ типовых структурных серии 1.460.3-14 ГПИ "Ленпроектстальконструкция", стальные конструкции покрытий производственных» №
2022111669 от 25.05.2022, «Сборно-разборный железнодорожный мост» № 2022113052 от 27.05.2022, «Сборно-разборный универсальный мост» № 2022113510 от
21.06.2022, «Антисейсмический сдвиговой компенсатор для гашения колебаний пролет. строения моста» № 2022115073 от 02.06.2022 и на осн. изобрет 1143895, 1168755,
1174616, 2550777, 2010136746, 165076, 858604, 154506, в которой отдельные «модули» не только упрощают сборку-разборку без привлечения тяжелой техники, но и являются
универсальными монтажными марками, позволяющими собирать мосты разных габаритов и грузоподъемности *7; 8+.
Основные параметры некоторых инвентарных сборно-разборных мостов
Ожидаемо, что сборно-разборные мобильные мостовые конструкции приоритетным образом разрабатывались и выпускались для нужд военного ведомства и с течением
времени неизбежно попадали в гражданский сектор мостостроения. Обзор некоторых подобных конструкций приведен в ссылке
ВЛИЯНИЕ МОНТАЖНЫХ СОЕДИНЕНИЙ СЕКЦИЙ РАЗБОРНОГО МОСТА НА ЕГО НАПРЯЖЕННО-ДЕФОРМИРОВАННОЕ
СОСТОЯНИЕ
ТОМИЛОВ СЕРГЕЙ НИКОЛАЕВИЧ 1
1 ФГБОУ ВО «Тихоокеанский государственный университет», Хабаровск Россия
https://elibrary.ru/item.asp?id=43813437
Временные мосты необходимы для обеспечения движения при возведении или ремонте (реконструкции) капитальных мостовых сооружений, оперативной связи прерванных
путей в различных аварийных ситуациях, для разовых или сезонных транспортных сообщений.
В мостах такого назначения целесообразны мобильные быстровозводимые конструкции многократного применения. Инвентарные комплекты сборно-разборных мостов
разрабатывались и производились прежде всего в интересах военного ведомства, но в настоящее время широко востребованы и применяются в гражданском секторе
мостостроения в силу их экономичности, мобильности, доступности в транспортировке. Среди прочих, в том числе и современных разборных конструкций мостов, особое место
занимает средний автомобильный разборный мост (САРМ), разработанный в 1968 г. и модернизированный в 1982 г. для нужд Минобороны СССР. В процессе вывода
накопленных на хранении комплектов САРМ в гражданский сектор строительства выяснилась значительная востребованность этих конструкций, обусловленная следующими их
преимуществами: полная укомплектованность всеми элементами моста, включая опоры; возможность перекрытия пролетов 18,6, 25,6, 32,6 м с габаритами ездового полотна 4,2
м при однопутном и 7,2 м при двухпутном проезде...
Однако, смотрите ссылку антисейсмический сдвиговой фрикционно-демпфирующий компенсатор, фрикци-болт с гильзой, для соединений секций разборного моста
https://ppt-online.org/1187144

293.

Более подробно смотри автора статьи ТОМИЛОВ СЕРГЕЙ НИКОЛАЕВИЧ ВЛИЯНИЕ МОНТАЖНЫХ СОЕДИНЕНИЙ СЕКЦИЙ РАЗБОРНОГО МОСТА НА ЕГО НАПРЯЖЕННОДЕФОРМИРОВАННОЕ СОСТОЯНИЕ https://elibrary.ru/item.asp?id=43813437
Most Bailey bridge USA kompensator uprugoplastichniy gasitel napryajeniy 390 str
https://ppt-online.org/1235890
Mistroy tex zadanie dogovor proektirovanie sborno-razbornix mostov 500 str
https://ppt-online.org/1237042 https://t-s.today/PDF/25SATS220.pdf
Несмотря на наличие современных разработок *7; 8+, инвентарные комплекты сборно-разборных мостов в процессе вывода их из мобилизационного резерва широко
востребованы в гражданском секторе мостостроения в силу их экономичности, мобильности, доступности в транспортировке и многократности применения *9; 10+.
Среди описанных в таблице 1 инвентарных комплектов мостов особое место занимает САРМ (средний автомобильный разборный мост) 4 . Разработанный в 1968 г. и
модернизированный в 1982 г. инвентарный комплект позволяет перекрывать пролеты 18,6, 25,6 и 32,6 м с габаритом ездового полотна 4,2 м при однопутном и 7,2 м при
двухпутном проезде (рисунок 1). Удобный и эффективный в применении комплект САРМ в процессе вывода накопленных на хранении конструкций в гражданский сектор
строительства показал значительную востребованность, обусловленную, кроме отмеченных выше преимуществ также и полную укомплектованность всеми элементами моста,
включая опоры. Факт широкого применения конструкций САРМ в гражданском мостостроении отмечен тем, что федеральное дорожное агентство «Росавтодор» в 2013 году
выпустило нормативный документ ОДМ 218.2.029 - 20135, специально разработанный для применения этого инвентарного комплекта.
К недостаткам проекта САРМ следует отнести несоответствия некоторых его геометрических и конструктивных параметров действующим нормам проектирования: габариты
ездового полотна 4,2 м при однопутном и 7,2 м при двухпутном проезде, также штатные инвентарные ограждения (колесоотбои) не соответствуют требованиям действующих
норм СП 35.1333.20116, ГОСТ Р 52607-20067, ГОСТ 26804-20128. Выполнение требований указанных выше норм может быть обеспечено ограничением двухсекционной
поперечной компоновки однопутным проездом с установкой добавочных ограждений *10+ или нештатной поперечной компоновкой в виде трех и более секций,
рекомендуемой нормами ОДМ 218.2.029
20135.
Пролетное строение среднего автомобильного разборного моста (САРМ) в продольном направлении набирается из средних и концевых секций расчетной длиной 7,0 и 5,8 м
соответственно. Количество средних секций (1, 2 или 3) определяет требуемую в каждом конкретном случае длину пролета 18,6, 25,6, 32,6 м (рисунок 1).
Объединение секций в продольном направлении в сечениях 3 (рисунок 1) выполняется с помощью штырей, вставляемых в отверстия (проушины) верхнего и нижнего поясов
секций. В поперечном направлении в стыке одной секции расположены два штыревых соединения в уровне верхнего и два - в уровне нижнего пояса (рисунок 2).

294.

4 Средний автодорожный разборный мост. Техническое описание и инструкция по эксплуатации / Министерство обороны СССР. -М.: Военное изд-во мин. обороны СССР, 1982.
- 137 с.
5 Методические рекомендации по использованию комплекта среднего автодорожного разборного моста (САРМ) на автомобильных дорогах в ходе капитального ремонта и
реконструкции капитальных искусственных сооружений: Отраслевой дорожный методический документ ОДМ 218.2.029 - 2013. - М.: Федеральное дорожное агентство
(РОСАВТОДОР), 2013. - 57 с.
6 Свод правил. СП 35.13330.2011. Мосты и трубы. Актуализированная редакция СНиП 2.05.03-84* (с Изменениями № 1, 2) / ОАО ЦНИИС. - М.: Стандартинформ, 2019.
7 ГОСТ Р 52607-2006. Технические средства организации дорожного движения. Ограждения дорожные удерживающие боковые для автомобилей. Общие технические
требования / ФДА Минтранса РФ, ФГУП РосдорНИИ, Российский технический центр безопасности дорожного движения, ОАО СоюздорНИИ, МАДИ (ГТУ), ДО БДД МВД России,
НИЦ БДДМВД России. - М.: Стандартинформ, 2007, - 21 с.
8 ГОСТ 26804-2012. Ограждения дорожные металлические барьерного типа. Технические условия / ЗАО СоюздорНИИ, ФГУП РосдорНИИ, ООО НПП «СК Мост». - М.:
Стандартинформ, 2014, - 24 с.
Страница 4 из 14
25SATS220
1 - концевая секция; 2 - средняя секция; 3 - сечения штыревых соединений секций
Рисунок : Томилова Сергей Николаевича вставлен

295.

Рисунок 1. Фасад пролетного строения разборного моста САРМ с вариантами длины 18,6 м (а), 25,6 м (б), 32,6 м (в) (разработано автором)
Каждое соединение верхнего пояса секций включает тягу в виде пластины с двумя отверстиями и два вертикальных штыря, а соединение нижнего пояса выполнено одним
горизонтальным штырем через проушины смежных секций (рисунок 4).
Таким образом, продольная сборка пролетного строения осуществляется путем выгрузки и проектного расположения секций, совмещения проушин смежных секций и
постановки штырей.
1 - штыревые соединения верхнего пояса; 2 - штыревые соединения нижнего пояса; а - расстояние между осями штыревых соединений

296.

Рисунок 2. Двухсекционная компоновка поперечного сечения пролетного строения (разработано автором)
Постановка задачи
Штыревое соединение секций пролетных строений позволяет значительно сократить время выполнения работ, но это обстоятельство оборачивается и недостатком невозможностью обеспечения плотного соединения при работе его на сдвиг. Номинальный диаметр соединительных штырей составляет 79 мм, а отверстий под них и проушин 80 мм.
Разница в 1 мм необходима для возможности постановки штырей при сборке пролетных строений.
Цель настоящего исследования - оценить напряженное состояние узла штыревого соединения, сравнить возникающие в материале элементов соединения напряжения
смятия и среза с прочностными параметрами стали, возможность проявления пластических деформаций штыря и проушин и как следствие - их влияние на общие деформации
пролетного строения.
Штыревые соединения как концентраторы напряжений в конструкциях мостов уже привлекали внимание исследователей *11+ и также отмечался характерный для
транспортных сооружений фактор длительного циклического воздействия *8+. Изначально неплотное соединение «штырь-проушина» и дальнейшая его выработка создает

297.

концентрацию напряжения до 20 % против равномерного распределения *11+, что может привести к ускорению износа, особенно с учетом цикличного и динамического
воздействия подвижной автотранспортной нагрузки.
В настоящей статье рассмотрены напряжения смятия и деформации в штыревых соединениях и как их следствие - общие деформации (прогибы) пролетного строения.
Оценка напряженного состояния в соединении выполнена исходя из гипотезы равномерного распределения усилий по расчетным сечениям.
Сравнительный расчет выполним для распространенного пролета 32,6 м в следующей последовательности: прочность основного сечения одной секции при изгибе;
прочность штыревого соединения по смятию металла проушин; прочность металла штыря на срез.
Паспортная (проектная) грузоподъемность при двухсекционной поперечной компоновке и двухпутном ездовом полотне - временные вертикальные нагрузки Н-13, НГ-60 по
нормам СН 200-621. Так как конструкции САРМ запроектированы на нагрузки, уступающие современным, то для обеспечения приемлемой грузоподъемности можно
использовать резервы в компоновке - например двухсекционная поперечная компоновка будет пропускать только одну полосу движения, что на практике зачастую не
организовано и транспорт движется двумя встречными полосами. Рассмотрим именно такой случай и в качестве полосной автомобильной нагрузки примем А11 по СП
35.1333.20116, хотя и меньшую, чем принятая для нового проектирования А14, но в полной мере отражающую состав транспортных средств регулярного поточного движения.
При постоянстве поперечного сечения по длине пролета и исходя из опыта проектирования для оценочного усилия выбираем изгибающий момент.
В работе основного сечения одной секции при изгибе участвуют продольные элементы верхнего и нижнего пояса: верхним поясом являются лист настила шириной 3,0 м,
продольные швеллеры и двутавры № 12; нижним поясом являются два двутавра № 23Ш2 (рисунок 3).
Предельный момент, воспринимаемый основным сечением секции (рисунок 3)
где Ry = 295 МПа - расчетное сопротивление стали 15ХСНД; I - момент инерции сечения секции относительно оси изгиба; - максимальная ордината расчетного сечения
относительно оси изгиба.
1 - лист настила толщиной 0,006м; 2 - швеллер № 12 по ГОСТ 8239; 3 - двутавр № 12 по ГОСТ 8240; 4 - двутавр № 23Ш2 по ТУ 14-2-24-72

298.

Рисунок 3. Поперечное сечение секции пролетного строения САРМ с выделением продольных элементов с функциями верхнего и нижнего пояса при изгибе (разработано
автором)
Данные расчета по (1) приведены в таблице 2.
Расчет предельного изгибающего момента основного сечения секции САРМ
Расчет предельного изгибающего момента основного сечения секции САРМ
Для сравнительной оценки несущей способности основного сечения секции (предельный изгибающий момент, таблица 2) представим расчетный изгибающий момент от
временной нагрузки А11 для двухпутного проезда, а именно 1 полоса А11 - на 1 секцию в поперечном направлении.
Для выделения полезной части грузоподъемности из предельного удерживается изгибающий момент от постоянной нагрузки. Расчетными сечениями по длине пролета
принимаем его середину и сечение штыревого соединения, ближайшее к середине пролета. Результаты расчета путем загружения линий влияния изгибающего момента в
выбранных сечениях приведены в таблице 3.

299.

Как видно, предельный изгибающий момент основного сечения секции (3894,9 кН-м) только на 59,4 % обеспечивает восприятие момента (1134,5 + 5418,6 = 6553,1 кН-м) от
суммы постоянной и временной А11 расчетных нагрузок.
Оценить напряженное состояние металла проушин по смятию штырем можно по схеме контакта штыря с внутренней поверхностью проушин, где усилие N с плечом a
составляет внутренний момент, уравновешивающий внешний, обусловленный нагрузкой на пролет (рисунок 4).
Рисунок 5. Схема штыревого соединения нижнего пояса, вид сверху (разработано автором). Но , есть упругопластический сдвиговой компенсатор гаситель сдвиговых
напряжений для быстро собираемых на антисейсмических фрикционно-подвижных соединениях для сборно–разбороного железнодорожного армейского моста и он
надежнее
1 - одинарная проушина; 2 - двойная проушина; 3 - штырь
Сравним полученные в (3) и (4) результаты с прочностными характеристиками стали 15ХСНД, из которой изготовлены несущие элементы моста САРМ, таблица 4.
Следует определить суммарный расчетный изгибающий момент М от постоянной Мпост и временной Мвр (А11) нагрузок для сечения ближайшего к середине пролета стыка
по данным таблицы 3.
M = Mпост + Mвр = 1081,2 + 5195,3 = 6276,5 кН- м.
1 - вертикальный штырь верхнего пояса; 2 - горизонтальный штырь нижнего пояса

300.

Рисунок 4. Схема стыка секций пролетного строения
При суммарной толщине элементов проушины нижнего пояса, сминаемых в одном направлении, 0,06 м и диаметре штыря 0,079 м площадь смятия составит А = 0,06-0,079 =
0,0047 м2 на один контакт (рисунок 5). При наличии двух контактов нижнего пояса в секции напряжение смятия металла проушины составит
Для расчета сечения штыря на срез следует учесть, что каждый из двух контактов на секцию имеет две плоскости среза (рисунок 5), тогда напряжение сдвига
Примечание:расчетные сопротивления стали смятию и сдвигу определены по таблице 8.3 СП 35.13330.20116 (составлено автором)
Сравнение полученных от воздействия нагрузки А11 напряжений с характеристиками прочности стали 15ХСНД
Напряжение сдвига в штыре превосходит расчетное сопротивление стали, а напряжение смятия в контакте штырь-проушина превосходит как расчетное сопротивление, так и
предел текучести, что означает невыполнение условия прочности, выход металла за предел упругости и накопление пластических деформаций при регулярном и
неорганизованном воздействии временной нагрузки А11.
Практическое наблюдение
В организациях, применяющих многократно использованные конструкции САРМ, отмечают значительные провисы (прогибы в незагруженном состоянии) пролетных
строений, величина которых для длин 32,6 м доходит до 0,10-0,15 м. Это создает искажение продольного профиля ездового полотна и негативно влияет на пропускную

301.

способность и безопасность движения. При этом визуально по линии прогиба отчетливо наблюдаются переломы в узлах штыревых соединений секций. При
освидетельствовании таких пролетных строений отмечается повышенный зазор между штырем и отверстием (рисунок 6).
Рисунок 6. Повышенный зазор в штыревом соединении секций пролетного строения САРМ (разработано автором)
Смещения в штыревых соединениях, обусловленные пластическими деформациями перенапряженного металла, определяют величину общих деформаций (прогибов)
пролетных строений (рисунок 7).

302.

Рисунок 7. Схема общих деформаций вследствие смещения в штыревых соединениях (разработано автором)
Полное смещение (подвижка) на одно соединение с0 = с + с2, где с1 = 1 мм - исходное конструктивное; с2 - добавленное за счет смятия в соединении (рисунок 7).
Вертикальное перемещение f (прогиб) в середине пролета для рассмотренного примера будет суммой xi и Х2 (рисунок 7).
f = Xi + Х2.
Величины x1 и x2 можно определить, зная углы а и 2а, которые вычисляются через угол
где а - расстояние между осями штыревых соединений верхнего и нижнего поясов; I1 - длина средней секции пролетного строения; I2 - длина концевой секции пролетного
строения.
В качестве примера рассмотрим временный объездной мост через р. Черниговка на автодороге Хабаровск - Владивосток «Уссури», который был собран и эксплуатировался в
составе одного пролета длиной 32,6 м из комплекта САРМ на период строительства постоянного моста. Были отмечены значительные провисы пролетных строений временного

303.

моста величиной в пределах 130-150 мм в середине пролета, что вызвало беспокойство организаторов строительства. При обследовании была установлена выработка всех
штыревых соединений главных ферм в среднем на 2,5 мм сверх номинального 1 мм.
Таким образом смещение (подвижка) на одно соединение с0 = с1 + с2 = 1 + 2,5 = 3,5 мм, а так как в уровне верхнего пояса в качестве связующего элемента применена
продольная тяга с двумя отверстиями и двумя расположенными последовательно штырями, то суммарное смещение, отнесенное к уровню нижнего пояса с = 3,5-3 = 10,5 мм.
Далее следуют вычисления по формулам (5) при а = 1,37 м; h = 7,0 м; I2 = 5,8 м.
а = arcsin 0,0105 = 0,205o; а = 2 • 0,205 = 0,41o; xi = 7,0 • sin 0,41 = 0,05 м;
2
2 • 1,47
1
2а = 2 • 0,41 = 0,82o; x2 = 5,8 • sin 0,82o = 0,083 м.
Полная величина прогиба f = Х1 + Х2 = 0,05 + 0,083 = 0,133 м, что вполне согласуется с фактически замеренными величинами f.
Заключение по использованию упругопластического сдвигового компенсатора гасителя сдвиговых напряжений для быстро собираемых на антисейсмических фрикционноподвижных соединениях для сборно–разборного железнодорожного армейского моста
1. Штыревые монтажные соединения секций разборного пролетного строения временного моста позволяют существенно ускорить процесс возведения и последующей
разборки конструкций, однако при этом являются причиной увеличения общих деформаций пролетного строения, кроме упругопластического сдвигового компенсатора,
гасителя сдвиговых напряжений для быстрособираемых на антисейсмических фрикционно-подвижных соединениях для сборно–разборного железнодорожного армейского
моста проф дтн ПГУПС А.М.Уздина
2. Штатное двухпутное движение при двухсекционной компоновке конструкций САРМ под современной автомобильной нагрузкой не обеспечено прочностью как основного
сечения секций, так и элементов штыревых соединений, а использование упругопластического сдвигового , компенсатора, гасителя сдвиговых напряжений для быстро
собираемых на антисейсмических фрикционно-подвижных соединениях для сборно–разборного железнодорожного армейского моста , все напряжения снимает
3. В металле элементов штыревых соединений при современной нагрузке накапливаются пластические деформации, приводящие к выработке контактов «штырь-проушина»
и нарастанию общих деформаций (провисов), а упругопластический сдвиговой компенсатор гаситель сдвиговых напряжений для быстрособираемых на антисейсмических
фрикционно-подвижных соединениях для сборно–разборного железнодорожного армейского моста гасить напряжения

304.

4. Ускорению процесса износа элементов штыревых соединений способствует многократная сборка-разборка пролетных строений и их эксплуатация под интенсивной
динамической нагрузкой и не гасит сдвиговых напряжений для быстро собираемых на антисейсмических фрикционно-подвижных соединениях для сборно–разборного
железнодорожного армейского моста
5. Образующийся провис пролетного строения создает ненормативное состояние продольного профиля ездового полотна, снижающее пропускную способность и безопасность
движения, упругопластический сдвиговой компенсатор гаситель сдвиговых напряжений для быстро собираемых на антисейсмических фрикционно-подвижных соединениях
для сборно–разборного железнодорожного армейского моста сдвиговый нагрузки «поглощает»
6. Изначально разборные конструкции САРМ проектировались под нужды военного ведомства для мобильного и кратковременного применения и штыревые монтажные
соединения в полной мере соответствуют такому назначению. При применении в гражданском строительстве эту особенность следует учитывать в разработке проектных
решений, назначении и соблюдении режима эксплуатации, например путем уменьшения полос движения или увеличения числа секций в поперечной компоновке, а
использование сдвигового компенсатора, гасителя сдвиговых напряжений для быстро собираемых на антисейсмических фрикционно-подвижных соединениях для сборно–
разборного железнодорожного армейского моста исключает обрушение железнодорожного моста
Дальнейшие исследования видятся в аналитическом обзоре применяемых конструкций разборных мостов, разработке отвечающих современным требованиям проектных
решений вариантов поперечной и продольной компоновки пролетных строений с использованием упругопластических , сдвиговых компенсатор, которые гасят, сдвиговые
напряжения для быстро собираемых, на антисейсмических фрикционно-подвижных соединениях , для отечественного сборно–разборного железнодорожного армейского
моста «Уздина»
ЛИТЕРАТУРА
1. Кручинкин А.В. Сборно-разборные временные мосты. - М.: Транспорт, 1987. - 191 с.
2. Тыдень В.П., Малахов Д.Ю., Постников А.И. Реализация современных требований к переправочно-мостовым средствам в концепции выгружаемого переправочно-десантного
парома // Вестник Московского автомобильно- дорожного государственного технического университета (МАДИ). - М.: Изд-во МАДИ(ГТУ), 2019. - Вып. 3 (58). - С. 69-74.
3. Томилов С.Н. О применении стальных пакетных конструкций в постоянных мостах // Научные чтения памяти профессора М.П. Даниловского: материалы Восемнадцатой
Национальной научно-практической конференции: в 2 т. - Хабаровск: Изд-во Тихоокеан. гос. ун-та, 2018. - 2 т. - С. 360-363.

305.

4. Mohamad Nabil Aklif Biro, Noor Zafirah Abu Bakar. Design and Analysis of Collapsible Scissor Bridge. MATEC Web of Conferences. Vol. 152, 02013 (2018). DOI:
https://doi.org/10.1051/matecconf/201815202013.
5. Дианов Н.П., Милородов Ю.С. Табельные автодорожные разборные мосты: учебное пособие. - М.: Изд-во МАДИ (ГТУ), 2009. - 236 с.
6. Adil Kadyrov, Aleksandr Ganyukov, Kyrmyzy Balabekova. Development of Constructions of Mobile Road Overpasses. MATEC Web of Conferences. Vol. 108, 16002 (2017). DOI:
https://doi.org/10.1051/matecconf/201710816002.
7. Бокарев С.А., Проценко Д.В. О предпосылках создания новых конструкций временных мостовых сооружений // Интернет-журнал «Науковедение». 2014. № 5(24). URL:
https://naukovedenie.ru/PDF/26KO514.pdf. - С. 1-11.
8. Проценко Д.В. Совершенствование конструктивно-технологических параметров системы несущих элементов и элементов проезжей части универсального сборно- разборного
пролетного строения с быстросъемными шарнирными соединениями. Диссертация на соискание ученой степени кандидата технических наук / Сибирский государственный
университет путей сообщения (СГУПС). Новосибирск: 2018.
9. Матвеев А.В., Петров И.В., Квитко А.В. Оценка по теории инженерного прогнозирования новых образцов мостового имущества МЛЖ-ВФ-ВТ и ИМЖ- 500 // Вестник
гражданских инженеров. - СПб: Изд-во Санкт-Петербургского гос. арх.-строит. ун-та, 2018. Вып. 4 (69). - С. 138-142.
10. Томилов С.Н., Николаев А.Р. Применение комплекта разборного моста под современные нагрузки // Дальний Восток. Автомобильные дороги и безопасность движения:
международный сборник научных трудов (под. ред. А.И. Ярмолинского). - Хабаровск: Изд-во Тихоокеан. гос. ун-та, 2018. - № 18. - С. 125-128.
11. Сухов И.С. Совершенствование конструктивно-технологических решений шарнирных соединений автодорожных мостов. Автореферат диссертации на соискание ученой
степени кандидата технических наук / Научно- исследовательский институт транспортного строительства (ОАО ЦНИИС). М.: 2011.

306.

307.

308.

Сейсмические требования к стальному каркасу в США STAR SEISMIC USA или новые конструктивные решения антисейсмических демпфирующих связей Кагановского
СЕЙСМИЧЕСКАЯ ЗАЩИТА КАРКАСОВ RC С ИСПОЛЬЗОВАНИЕМ фланцевых фрикционных компенсаторов США
Seismic demands on steel braced frame bu Seismic_demands_on_steel_braced_frame_bu
https://ru.scribd.com/document/489003023/Seismic-Demands-on-Steel-Braced-Frame-Bu-1
https://ppt-online.org/846004
https://yadi.sk/i/D6zwaIimCrT5JQ
http://www.elektron2000.com/article/1404.html
https://ppt-online.org/827045
https://ppt-online.org/821532

309.

310.

311.

312.

313.

314.

315.

316.

317.

318.

319.

320.

321.

322.

323.

324.

325.

326.

327.

328.

329.

330.

331.

332.

333.

334.

335.

336.

337.

338.

339.

340.

341.

Сборно разборный железнодорожный мост 2758302
РОССИЙСКАЯ ФЕДЕРАЦИЯ
(19)
RU
(11)
2 758 302
(13)
C1
(51) МПК
E01D 15/12 (2006.01)
ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ
(52) СПК
E01D 15/12 (2021.05)
(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ
действует (последнее изменение статуса: 10.11.2021)
Статус:
Установленный срок для уплаты пошлины за 3 год: с 05.02.2022 по 04.02.2023. При уплате пошлины за 3 год в дополнительный 6-месячный срок с 05.02.2023 по
Пошлина:
04.08.2023 размер пошлины увеличивается на 50%.
(21)(22) Заявка: 2021102635, 04.02.2021
(24) Дата начала отсчета срока действия патента:
04.02.2021
Дата регистрации:
28.10.2021
(72) Автор(ы):
Пищалов Юрий Вячеславович (RU),
Демьянов Алексей Анатольевич (RU),
Бирюков Юрий Александрович (RU),
Бирюков Дмитрий Владимирович (RU),
Гановичев Даниил Алексеевич (RU),
Бутин Илья Павлович (RU)

342.

Приоритет(ы):
(22) Дата подачи заявки: 04.02.2021
(45) Опубликовано: 28.10.2021 Бюл. № 31
(73) Патентообладатель(и):
Федеральное государственное казённое военное образовательное
учреждение высшего образования "Военная академия материальнотехнического обеспечения имени генерала армии А.В. Хрулева" Министерства
обороны Российской Федерации (RU)
(56) Список документов, цитированных в отчете о поиске: ГАСТЕВ В.А., Восстановление мостов,
Руководство для транспортных ВТУЗОВ. М.-Л., ОГИЗ-ГОСТРАНСИЗДАТ, 1932, с.26-28, 38-43. RU
2280122 C1, 20.07.2006. RU 2005837 C1, 15.01.1994. CN 108842597 A, 20.11.2018. RU 2158331 C1,
27.10.2000. GB 1119981 A, 17.07.1968. Методические рекомендации по проектированию опор
мостов, Всесоюзное научно-техническое
общество железнодорожников и транспортных строителей Дорожное правление научнотехнического общества ордена Ленина Октябрьской железной дороги, Ленинград, 1988, раздел
3.2.2., рис. 3.6.
Адрес для переписки:
191123, Санкт-Петербург, ул. Захарьевская, 22, Военный институт (инженерно-технический)
ФГКВОУВО ВА МТО им. генерала армии А.В. Хрулева, Бюро по изобретательству и
рационализации
(54) Сборно-разборный железнодорожный мост
(57) Реферат:
Изобретение относится к области мостостроения и, в частности, к временным сборно-разборным низководным мостам, используемым для пропуска железнодорожного
подвижного состава и скоростной наводки совмещенных железнодорожных и автодорожных мостовых переправ через широкие и неглубокие водные преграды на период
разрушении, реконструкции или восстановлении разрушенных капитальных мостов при ликвидации последствий чрезвычайных ситуаций природного и техногенного характера.
Технический результат - создание упрощенной конструкции сборно-разборного железнодорожного моста вблизи неисправного железнодорожного моста, что существенно
сокращает трудовые и материальные затраты, а также уменьшает время на его возведение с использованием бывших в употреблении списанных элементов железнодорожной
инфраструктуры - вагонов, железнодорожных шпал и рельс. Сборно-разборный железнодорожный мост состоит из рамных плоских опор, башенных опор, установленных
непосредственно на грунт и пролетных строений, рамные плоские опоры и башенные опоры выполнены из списанных бывших в употреблении железнодорожных полувагонов с
демонтированными рамами и тележками, заполненных блоками, собранными из списанных бывших в употреблении железобетонных шпал. В промежутках между шпалами
засыпан щебень и вертикально установлены трубы, верх которых выступает для подачи в них цементно-песчаного раствора. Трубы выполнены с равномерно расположенными
по высоте отверстиями для обеспечения возможности формирования цементно-песчаным раствором монолитной конструкции опоры. Пролетные строения выполнены из
списанных бывших в употреблении рам фитинговых платформ с устроенным по верху рам настилом под рельсы пути из металлических шпал, установленных с определенным
шагом и выполненных из металлических рам от цистерн. По верху металлических шпал выполнен деревянный настил из бывших в употреблении списанных деревянных шпал
для движения автомобильной и гусеничной техники, и для передвижения личного состава. По краям пролетного строения установлено ограждение, выполненное из лестниц от
железнодорожных цистерн и колесоотбойники из списанных деревянных шпал. 1 з.п. ф-лы, 4 ил.

343.

Изобретение относится к области мостостроения и в частности к временным сборно-разборным низководным мостам, используемым для пропуска железнодорожного
подвижного состава и скоростной наводки совмещенных железнодорожных и автодорожных мостовых переправ через широкие и не глубокие водные преграды на период
разрушении, реконструкции или восстановлении разрушенных капитальных мостов при ликвидации последствий чрезвычайных ситуаций природного и техногенного характера.
Заявленное техническое решение относится к низководным мостам и может быть использовано для оперативного возведения переправы для автомобилей, гусеничной техники
и железнодорожных составов.
Известна «Средняя секция наводочной балки пролетного строения» по патенту на изобретение RU 2717445 С1 от 23.05.2019, МПК E01D 15/12 *1+, которая выполнена из
углепластика в виде полой балки с прямоугольным сечением и разъемными межсекционными соединениями, а межсекционное соединение из полой вставки прямоугольного
сечения на болтах. На нижних болтовых соединениях двух смежных секций наводочной балки установлены две силовые тяги, выполненные из титана.

344.

Недостатком «Средней секции наводочной балки пролетного строения» является значительное время на доставку секции к месту устройства моста и высокая стоимость из-за
применения дорогих материалов углепластика и титана.
Известна «Опора из массивных блоков и способ ее сооружения» по патенту на изобретение RU 94027969 от 18.07.1994, МПК E01D 19/02 (1995.01) *2+, которая может быть
использована при временном восстановлении или сооружении опор железнодорожных мостов. Опора возводится из массивных блоков с усеченной четвертью, имеющих на
своих гранях штыри и гнезда, противоположно расположенные на примыкающих гранях соседних блоков, а монтаж опоры осуществляется таким образом, чтобы внутренние
блоки нижнего яруса усеченной частью образовывали пространство, по всему объему равное объему массивного элемента, а внешние блоки своей целой гранью вплотную
примыкали к целым граням внутренних.
Недостатком «Опоры из массивных блоков и способа ее сооружения» является значительное время на доставку конструкций к месту устройства моста, сложность и
трудозатратность при производстве массивных блоков. Массивные блоки из-за своих габаритов сложны в доставке и монтаже.
Известна «Мостовая секция» по патенту на изобретение RU 92008311 от 25. 11. 1992, МПК E01D 15/12 (1995. 01) *3+, которая содержит балки, с колесоотбоями, стыковыми
узлами, шарнирно соединенные с балками межколейной панели в виде силовой балки и угловыми распорками. При этом межколейная панель и балки имеют в поперечном
сечении треугольную форму, а боковая наружная сторона колесоотбоев выполнена скошенной в сторону межколейной панели под углом, обеспечивающим в транспортном
положении параллельность ее поверхности верхней плоскости панели.
Недостатком «Мостовой секции» является значительное время на доставку конструкций к месту устройства моста, сложность и трудозатратность при производстве мостовых
секций, которые из-за своих габаритов сложны в доставке и монтаже.
Известен «Складной блок моста» по патенту на изобретение RU 94 025 034 от 04. 07. 1994, МПК E01D 15/12 (1995. 01) *4+, который включает две нижние и две верхние
полубалки, соединенные продольными шарнирами с верхней и нижней плитами проезжей части, расположенными в транспортном положении одна на другой, плиты проезжей
части с одного транца соединены поперечными шарнирами, а на другом имеют прорезь, в которую в транспортном положении входит киль платформы транспортного
автомобиля.
Недостатком «складного блока моста» является сложность и высокая металлоемкость конструкции. Элементы мостового перехода требуют время на доставку к месту установки.
Известен «Двухколейный механизированный мост» по патенту на изобретение RU 2267572 от 12.04.2004, МПК T01D 15/12 (2006.01) *5+, включающий соединенные
межколейными стяжками две колеи, каждая из которых состоит из двух шарнирно связанных секций, выполненных в виде каркасных коробчатых ферм сварной конструкции,
содержащих верхний и нижний настилы, боковые стенки, поперечные диафрагмы, элементы крепления механизма раскрывания моста, детали механизма установки моста,
имеющего увеличенную длину мостовой конструкции, сниженную массу моста, повышенный запас прочности и устойчивости без уменьшения грузоподъемности моста.
Недостатком «двухколейного механизированного моста» является значительное время на доставку конструкций к месту устройства моста, сложность и трудозатратность при
производстве мостовых секций, которые из-за своих габаритов сложны в доставке и монтаже.
Известен «Способ сооружения фундамента временной опоры моста и опалубка для его реализации» по патенту на изобретение RU 94027085 от 18.07.1994, МПК E01D 19/02
(1995.01) *6+, при котором опалубка изготавливается из секций потопов и погружается на дно путем заполнения понтона водой, бетонируется и при наборе соответствующей
прочности снимается подачей в понтоны воздуха.
Недостатком «способ сооружения фундамента временной опоры моста и опалубка для его реализации» является значительное время на доставку конструкций к месту
устройства моста и впоследствии вывозу с места работ, получаемые фундаменты материалоемки и трудозатраты.

345.

Известен инвентарный мост - сборно-разборная металлическая эстакада РЭМ-500 *7+, выбранный в качестве прототипа, состоящий из пролетных строений, рамных (плоских)
опор, башенных опор, установленных непосредственно на грунт, предназначенная для быстрого устройства мостовых переходов через широкие, неглубокие водотоки. Рамы
состоят из стоек, ригелей, башмаков, горизонтальных распорок и талрепов.
Недостатками конструкции сборно-разборной металлической эстакады РЭМ-500 являются то, что при сборке моста требуется высококвалифицированный личный состав,
значительное время на доставку и сборку конструкций, при этом необходимы значительные материальные и трудовые затраты. При слабых грунтах речного дна эстакаду
использовать нельзя.
Недостатки прототипа и аналогов ставят задачу создания «сборно-разборного железнодорожного моста» для пропуска железнодорожного подвижного состава, колесной и
гусеничной техники при разрушении или реконструкции капитальных мостов через водные преграды простой конструкции, позволяющей наводиться переправе за короткое
время с использованием незначительных материальных и трудовых затрат.
Ограничительные признаки заявленного технического решения общие с устройством прототипа следующие: сборно-разборный мост, состоящий из рамных плоских опор,
башенных опор, установленных непосредственно на грунт, пролетных строений, предназначенный для быстрого устройства мостовых переходов через широкие, неглубокие
водотоки.
Предполагается, что заявленный «Сборно-разборный железнодорожный мост» можно использовать при устройстве переправы для пропуска железнодорожного подвижного
состава, колесной и гусеничной техники при разрушении или реконструкции капитальных мостов через неглубокие несудоходные водные преграды.
При этом для его реализации предполагается применить:
- рамные плоские опоры и башенные опоры выполнены из списанных, бывших в употреблении, железнодорожных полувагонов с демонтированными рамами и тележками,
заполненных блоками, собранными из списанных, бывших в употреблении, железобетонных шпал, при этом в промежутках между шпалами засыпан щебень и вертикально
установлены трубы, верх которых выступает для подачи в них цементно-песчаного раствора, причем трубы снабжены равномерно выполненными по высоте отверстиями для
обеспечения возможности формирования цементно-песчаным раствором монолитной конструкции опоры.
- пролетные строения выполнены из списанных, бывших в употреблении рам фитинговых платформ с устроенным по верху рам настилом под рельсы пути из металлических
шпал, установленных с определенным шагом и выполненных из металлических рам от цистерн, по верху металлических шпал выполнен деревянный настил из бывших в
употреблении списанных деревянных шпал для движения автомобильной и гусеничной техники, и для передвижения личного состава, по краям пролетного строения
установлено ограждение, выполненное из лестниц от железнодорожных цистерн и колесоотбойники из списанных деревянных шпал.
Сущность заявленного технического решения заключается в том, что сборно-разборный железнодорожный мост формируется из опор и пролетных строений. При этом опоры
собираются из списанных бывших в употреблении - полувагонов и шпал. Пролетные строения формируются из металлических рам от фитинговых платформ.
Технический результат - создание упрощенной конструкции сборно-разборного железнодорожного моста вблизи неисправного железнодорожного моста, что существенно
сокращает трудовые и материальные затраты, а также уменьшает время на его возведение с использованием бывших в употреблении списанных элементов железнодорожной
инфраструктуры - вагонов, железнодорожных шпал и рельс.
Бывшие в употреблении списанные вагоны и рельсы переплавляются (утилизируются) и используются для изготовления новых металлических конструкций. Процесс утилизации
и изготовления новых конструкций влечет значительные трудовые, материальные и энергетические затраты, которых можно избежать, используя списанные материалы
железнодорожной инфраструктуры для устройства «сборно-разборного железнодорожного моста». Ежегодно списывается значительное количество материалов, в 2020 году
планировалось списать 8 тыс. фитинговых платформ *8+, в 2018 году РЖД заменило 2 тысяч километров железнодорожных путей *9+, в 2017 году списано 10380 цистерн *10+.

346.

В настоящее время в России насчитывается более 10 тыс. железнодорожных мостов. Значительное количество из них мосты через неглубокие водные преграды, и они требуют
прикрытия на случай разрушения во время ведения боевых действий или возникновения чрезвычайной ситуации. Для обеспечения непрерывности движения через широкие и
неглубокие водные преграды имеется парк временных мостов, по количество их ограничено, и они требуют значительного времени на доставку и сборку.
Использование материалов железнодорожной инфраструктуры в конкретном месте позволяет заблаговременно определить необходимые для устройства моста материалы и
конструкции. При этом значительно сокращается время возведения, т.к. хранение сборно-разборного железнодорожного моста на берегу у места его возведения сокращает
время возведения до минимума. Заблаговременно монтируются и подъездные пути из бывших в употреблении, списанных рельс и шпал. Использование бывших в
употреблении, списанных материалов железнодорожной инфраструктуры позволяет значительно снизить материальные и трудовые затраты на устройство переправы.
Заявленное техническое решение иллюстрируется чертежами:
На фиг. 1а) изображен вариант реализации заявленного «сборно-разборного железнодорожного моста» для пропуска железнодорожного состава, а на фиг. 1б) - разрез
пролетного строения по А-А.
На фиг. 2а) - изображен блок из железобетонных шпал, а на фиг. 2б) - разрез блока из железобетонных шпал по Б-Б.
На фиг. 3а) представлен вид сверху полувагона, заполненного уплотненной обратной засыпкой с армирующими элементами, а на фиг. 3б) - разрез полувагона по В-В.
На фиг. 4 представлено изображение реализации второго этапа - предварительных работ по устройству «сборно-разборного железнодорожного моста».
Дополнительно на фигурах 1…4 обозначены: 1 - локомотив; 2 - железобетонные шпалы; 3 - скрутки из отожженной проволоки для скрепления железобетонных шпал (2); 4 петли для монтажа блоков (6) из отожженной проволоки;;ил 5 - железнодорожный полувагон; 6 - блок из железобетонных шпал (2), расположенных крест-накрест, в два ряда и
соединенными между собой скрутками (3) из отожженной проволоки; 7 - пролетное строение из рам фитинговых платформ; 8 - рельсовый пучь; 9 - обратная засыпка из щебня;
10 - металлические шпалы из рам цистерн; 11 - трубы с отверстиями; 12 - ограждение пролетного строения; 13 - настил из деревянных шпал; 14 - колесоотбойник из деревянных
шпал.
Порядок возведения сборно-разборного железнодорожного моста
На нервом этапе выбирается место посадки сборно-разборного железнодорожного моста, определяются его габариты в зависимости от рельефа прибрежной зоны и глубин
водной преграды, составляется проект, заготавливаются необходимые материалы из бывших в употреблении вагонов и элементов пути металлических рам цистерн, рам
фитинговых платформ (7), рельс (8), полувагонов (5), железобетонных шпал (2) и деревянных шпал (13).
На втором этапе выполняются предварительные работы (фиг. 4), в ходе которых разрабатываются котлованы под полувагоны (5), монтируются первая и вторая (от берега) опоры
пролетных строений из полувагонов (5), заполненных блоками из железобетонных шпал (6). В промежутки между шпалами вертикально устанавливаются трубы с отверстиями
(11) и засыпают щебень (9), который вытесняя воду, заполняет пазухи. В трубы с отверстиями (11) подается цементно-песчаный раствор и формируется монолитная
железобетонная конструкция опоры.
Пролетное строение из рам фитинговых платформ (7) устанавливают на опоры из полувагонов (5) возвышающиеся над водной поверхностью. По верху рамы устраивается настил
из металлических шпал, установленных с определенным шагом, выполненных из металлических рам от цистерн под рельсы пути. По верху металлических шпал устраивается
деревянный настил из бывших в употреблении, списанных деревянных шпал для движения автомобильной и гусеничной техники, а также для передвижения личного состава.
По краям пролетного строения устраивается ограждение, выполненное из лестниц от железнодорожных цистерн (12) и устанавливаются колесоотбойники (14).

347.

Далее, на большей глубине, превышающей высоту полувагона, устанавливаются спаренные опоры из полувагонов (5) для устройства нижней части опоры. Спаренные опоры из
полувагонов (5) объединяются сваркой или болтами в единую конструкцию с заполнением внутреннего объема так же, как и для рассмотренных выше опор. Для монтажа в
проектное положение разрабатывается котлован под полувагоны. Полувагоны, смонтированные на втором этапе, устанавливаются в проектное положение заблаговременно и
могут находиться в воде продолжительное время, поэтому выполняется их защита от коррозии, о даже в случае полного разрушения от ржавления металла полувагона,
конструкция опоры обеспечит целостность за счет объединения блоков из железобетонных шпал в единую монолитную, железобетонную конструкцию.
На третьем, завершающем этапе, который наступает после выхода из строя основного моста, на смонтированные ранее спаренные опоры устанавливаются верхние части опор
пролетных строений из полувагонов (5), заполненных блоками из железобетонных шпал (6) с заполнением внутреннего объема так же, как и для рассмотренных выше опор.
Пролетное строение из рам фитинговых платформ (7) устанавливают на опоры из полувагонов (5) возвышающиеся над водной поверхностью. Рамы сплачивают между собой и с
опорой болтовыми соединениями. По верху рамы устраивается настил из металлических шпал, установленных с определенным шагом, выполненных из металлических рам от
цистерн под рельсы пути. По верху металлических шпал устраивается деревянный настил из бывших в употреблении, списанных деревянных шпал для движения автомобильной
и гусеничной техники, а также для передвижения личного состава. По краям пролетного строения устраивается ограждение, выполненное из лестниц от железнодорожных
цистерн (12) и устанавливаются колесоотбойники (14).
При заблаговременном устройстве сборно-разборного железнодорожного моста устраиваются подъездные пути и 1 и 2-я (при пологом дне и последующие) опоры с
пролетными строениями между ними. В мирное время для обеспечения надзора и в целях маскировки, полученные конструкции можно использовать для причаливания
катеров и небольших судов.
Таким образом, использование предложенной схемы позволяет возвести в сжатые сроки сборно-разборный железнодорожный мост, не требующий значительных трудовых и
материальных затрат с использованием списанных, бывших в употреблении элементов железнодорожного пути - металлических рам цистерн и фитинговых платформ, рельсов и
шпал.
При данном способе устройства сборно-разборного железнодорожного моста получаем гидротехническое сооружение, не требующее для возведения специально
изготовленных заводских конструкций, что важно в условиях возникновения чрезвычайных ситуаций и снабжении войск при ведении боевых действий.
Предлагаемое решение сборно-разборного железнодорожного моста проверено расчетом на прочность и несущую способность. Расчеты показали, что пролетное строение из
фитинговой платформы и опоры из полувагонов заполненных железобетоном обладают требуемой прочность и несущую способность на нагрузку от железнодорожного
состава.
Значительная экономия средств в мирное время достигается за счет использования списанных, бывшие в употреблении, железнодорожных полувагонов и железобетонных
шпал, а в случае войны и изъятых у железной дороги или получивших повреждения в ходе боевых действий.
Предлагаемое техническое решение конструкции направлено на решение логистических задач при возникновении чрезвычайных ситуаций и при ведении боевых действий и
соответствует критерию «новизна».
Вышеприведенная совокупность отличительных признаков не известна на данном уровне развития техники и не следует из общеизвестных правил конструирования сборноразборных железнодорожных мостов, что доказывает соответствие критерию «изобретательский уровень».
Конструктивная реализация заявляемого технического решения с указанной совокупностью существенных признаков не представляет никаких конструктивно-технических и
технологических трудностей, откуда следует соответствие критерию «промышленная применимость».
Литература

348.

1. Патент на изобретение RU 2717445 С1 от 23.05.2019, МПК E01D 15/12 - «Средняя секция наводочной балки пролетного строения».
2. Патент на изобретение RU 94027969 С1 от 18.07.1994, МПК E01D 19/02 - «Опора из массивных блоков и способ се сооружения».
3. Патент на изобретение RU 92008311 C от 25.11.1992, МПК E01D 15/12 - «Мостовая секция».
4. Патент на изобретение RU 94025034 С1 от 04.07.1994, МПК E01D 15/12 - «Складной блок моста».
5. Патент на изобретение RU 2267572 С1 от 12.04.2004, МПК E01D 15/12 - «Двухколейный механизированный мост».
6. Патент на изобретение RU 94027085 С1 от 18.07.1994, МПК E01D 19/02 - «Способ сооружения фундамента временной опоры моста и опалубка для его реализации».
7. Металлическая эстакада РЭМ-500. Техническое описание и инструкции но монтажу, перевозке, хранению и эксплуатации. ГУЖДВ, 1976 г., Воениздат. - прототип.
8. https://www.rzd-partner.ru/zhd-transport/opinions/spisanie-spelsializirovannogo-podvizhnogo-sostava-dolzhno-kompensirovalsya-v-blizhayshie-4-goda/.
9. https://vgudok.com/lcnta/rclsy-rclsy-cifry-cifry-rzhd-otchityvayutsya-o-zakupkah-putevyh-materialov-no-umalchivayut.
10. https://vgudok.com/lenta/podvizhnyy-sostav-vypusk-spisanie-stoimost-stavki-obzor-parka-ps-na-seti-rzhd.
Формула изобретения
1. Сборно-разборный железнодорожный мост, состоящий из рамных плоских опор, башенных опор, установленных непосредственно на грунт, и пролетных строений,
отличающийся тем, что рамные плоские опоры и башенные опоры выполнены из списанных бывших в употреблении железнодорожных полувагонов с демонтированными
рамами и тележками, заполненных блоками, собранными из списанных бывших в употреблении железобетонных шпал, при этом в промежутках между шпалами засыпан
щебень и вертикально установлены трубы, верх которых выступает для подачи в них цементно-песчаного раствора, причем трубы снабжены равномерно выполненными по
высоте отверстиями для обеспечения возможности формирования цементно-песчаным раствором монолитной конструкции опоры.
2. Сборно-разборный железнодорожный мост по п. 1, отличающийся тем, что пролетные строения выполнены из списанных бывших в употреблении рам фитинговых платформ с
устроенным по верху рам настилом под рельсы пути из металлических шпал, установленных с определенным шагом и выполненных из металлических рам от цистерн, по верху
металлических шпал выполнен деревянный настил из бывших в употреблении списанных деревянных шпал для движения автомобильной и гусеничной техники, и для
передвижения личного состава, по краям пролетного строения установлено ограждение, выполненное из лестниц от железнодорожных цистерн и колесоотбойники из
списанных деревянных шпал.

349.

350.

351.

352.

Наплавной железнодорожный мост
РОССИЙСКАЯ ФЕДЕРАЦИЯ
(19)
RU
(11)
2 755 794
(13)
C1
(51) МПК
E01D 15/14 (2006.01)
ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ
(52) СПК
E01D 15/14 (2021.05)
(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ
действует (последнее изменение статуса: 27.09.2021)
Статус:
Установленный срок для уплаты пошлины за 3 год: с 05.02.2022 по 04.02.2023. При уплате пошлины за 3 год в дополнительный 6-месячный срок с 05.02.2023 по
Пошлина:
04.08.2023 размер пошлины увеличивается на 50%.
(21)(22) Заявка: 2021102706, 04.02.2021
(24) Дата начала отсчета срока действия патента:
04.02.2021
Дата регистрации:
21.09.2021
Приоритет(ы):
(72) Автор(ы):
Пищалов Юрий Вячеславович (RU),
Демьянов Алексей Анатольевич (RU),
Бирюков Юрий Александрович (RU),
Бирюков Дмитрий Владимирович (RU),
Савчук Николай Александрович (RU),
Гановичев Даниил Алексеевич (RU),
Бутин Илья Павлович (RU)
(73) Патентообладатель(и):

353.

(22) Дата подачи заявки: 04.02.2021
(45) Опубликовано: 21.09.2021 Бюл. № 27
(56) Список документов, цитированных в отчете о поиске: ГАСТЕВ В.А. Восстановление
мостов, Руководства для транспортных ВТУЗОВ. Москва-Ленинград ОГИЗ- ГОСТРАНСИЗДАТ,
1932, с.26-28, 38-43. RU 2158331 C1, 27.10.2000 . DE 1024995 B, 27.02.1958. GB 1287632 A,
06.09.1972. RU 44331 U1, 10.03.2005.
Федеральное государственное казённое военное образовательное учреждение
высшего образования "Военная академия материально-технического обеспечения
имени генерала армии А.В. Хрулева" Министерства обороны Российской
Федерации (RU)
Адрес для переписки:
191123, Санкт-Петербург, ул. Захарьевская, 22, Военный институт (инженерно-технический)
ФГКВОУВО ВА МТО им. генерала армии А.В. Хрулева, Бюро по изобретательству и
рационализации
(54) Наплавной железнодорожный мост
(57) Реферат:
Изобретение относится к области мостостроения и, в частности, к наплавным мостам, используемым для скоростной наводки совмещенных железнодорожных и автодорожных
мостовых переправ через широкие и глубокие водные преграды на период восстановления разрушенных капитальных мостов, ликвидации последствий чрезвычайных ситуаций
природного и техногенного характера. Технический результат - создание упрощенной конструкции временной речной железнодорожной переправы вблизи неисправного
железнодорожного моста, что существенно сокращает трудовые и материальные затраты, а также уменьшает время на его возведение с использованием бывших в
употреблении списанных элементов железнодорожной инфраструктуры - вагонов и железнодорожных шпал и рельс. Наплавной железнодорожный мост, по длине
выполненный из переходных частей, речной части и береговых частей, включающий понтоны, скрепленные между собой в продольном направлении сцепными устройствами и
рельсами железнодорожной колеи. В качестве понтонов речной и переходной части использованы понтоны, собранные из бывших в употреблении железнодорожных цистерн,
их рам и хомутов, рам фитинговых платформ, при этом цистерны закреплены к рамам цистерн посредством хомутов на сварке с образованием секций, соединенных при
помощи рам цистерн и рам фитинговых платформ на сварке в понтоны береговых и речной частей, которые объединены в ленту посредством сплачивающих балок, рельс и
сцепных устройств в виде автоматических сцепных устройств на рамах цистер. Каждый из понтонов состоит из трех пар цистерн, объединенных сверху по длине моста при
помощи пяти рам цистерн и хомутов. Поверх пяти рам цистерн перпендикулярно расположению последних закреплены четыре рамы фитинговых платформ, на которых сверху
по длине моста установлены: по центру понтона рельсы для железнодорожного состава, а по краям понтона колеи из рельс для колесного и гусеничного транспорта. Каждый из
понтонов содержит два элемента для обеспечения жесткости сопряжения смежных понтонов, в виде пакета из металлических балок от рам фитинговых платформ,
закрепленных кронштейнами и сдвигаемых лебедкой на соседний понтон, формируя, таким образом, неразрезную ленту наплавного моста. В качестве элементов продольного
закрепления моста использованы автоматические сцепные устройства, имеющиеся на обеих сторонах пяти рам цистерн. При этом каждый из понтонов содержит перила,
выполненные из лестниц железнодорожных цистерн и в качестве береговой части использованы устроенные заблаговременно или возведенные временные причалы с

354.

инвентарными подходами из заблаговременно возведенных железнодорожных путей, собранных из списанных, бывших в употреблении, железнодорожных рельсов и шпал. 6
з.п. ф-лы, 13 ил.

355.

Изобретение относится к области мостостроения и в частности к наплавным мостам, используемым для пропуска железнодорожного подвижного состава и скоростной наводки
совмещенных железнодорожных и автодорожных мостовых переправ через широкие и глубокие водные преграды на период разрушении, реконструкции или восстановлении
разрушенных капитальных мостов при ликвидации последствий чрезвычайных ситуаций природного и техногенного характера.
Заявленное техническое решение относится к наплавным мостам и может быть использовано для оперативного возведения переправы для автомобилей, боевой техники и
железнодорожных составов.
Известен ППС-84 (Понтонный Парк Специальный) *1+ состоящий из речных и береговых звеньев, выстилки и буксирно-моторных катеров. Речная часть моста состоит из мостовых
понтонов с межпонтонными устройствам и механизмами. Береговое звено для оборудования Переходов между наплавной частью моста и берегом. В состав берегового звена
входят: понтоны, сходни, межпонтонные механизмы и устройства. Выстилка предназначена для укрепления въездов на мост при слабых грунтах.
Недостатками конструкции ППС-84 являются то, что при сборке моста требуется высококвалифицированный личный состав, значительное время на доставку и сборку
конструкций, при этом необходимы значительные материальные и трудовые затраты.
Известен наплавной железнодорожный мост НЖМ-56 *2+ с раздельным автомобильным и железнодорожным проездами. Наплавной мост состоит из речной части, двух
переходных и двух береговых частей. Речная часть моста состоит из мостовых понтонов с шарнирным соединением. Береговое пролетное строение собирается их трех
монтажных блоков. Переходная часть обеспечивает плавный проезд подвижного состава с береговой на речную часть.
Недостатки конструкции моста НЖМ-56 в том, что такой мост требует значительное время для установки и больших трудовых и материальных затрат. Глубина воды в местах
установки понтонов должна быть не менее 1,2 м при скальных грунтах и не менее 1 м при мягких. Дно у берега, сложенное песчаными грунтами, требуется очистить от
предметов, способных проколоть обшивку понтона при его погружении под железнодорожным составом, а также большое количество болтов при сборке, ненадежность
поперечного закрепления моста и отсутствие инвентарных конструкций для связи с берегом.
Известен "Наплавной железнодорожный мост" *3+, выбранный в качестве прототипа, включающий в себя понтоны, скрепленные между собой в продольном направлении и
рельсы железнодорожной колеи, по длине выполненный из переходных частей, речной части и береговых частей моста, речную часть, состоящую из понтонов, с элементами
поперечного закрепления, береговые части, состоящие из двух башенных подъемных рамно-винтовых опор, переходных понтонов с рельсами, элементов продольного
закрепления моста и инвентарных подходов к нему. Понтоны соединяются днищевыми и палубными поперечными замковыми устройствами. На крайних понтонах имеются
якоря.
По аналогии с рассмотренным решением в настоящее время принят на вооружение наплавной мост МЯЖ-ВФ-ВТ *6+.
Недостатки наплавного железнодорожного моста в том, что такой мост требует значительное время для транспортировки конструкций к месту установки, время для монтажа и
демонтажа, больших трудовых и материальных затрат.
Известно «Звено плавучего сооружения» по авторскому свидетельству RU 186018 от 05.10.2017 г., МПК В63В 35/36, E01D 15/14, СПК В63В 35/36 - *4+, содержащее понтон с
межпонтонными стыковыми устройствами, расположенными на палубе и днище, при этом днищевые межпонтонные стыковые устройства выполнены в виде уха и вилки с
запорным штырем, имеющего возможность складывания с соседним звеном, снабженное якорным устройством с лебедкой, имеющее проезжую и пешеходные палубы с
разделением леерами и отбойниками.
Недостатки «Звена плавучего сооружения» заключаются в том, что в целом конструкция трудозатратная и материалоемкая, сложна в сборке и требует квалифицированного
персонала для установки. Также наличие большого количества сложных разъемов затрудняет процесс сборки и демонтажа моста.

356.

Известно «Речное звено наплавного железнодорожного моста», по авторскому свидетельству RU 2575293 от 09.10.2014 г., МПК E01D 15/14 - *5+, включающее понтоны,
скрепленные между собой в продольном и поперечном направлениях палубными и днищевыми сцепными устройствами и рельсы железнодорожной колеи, с понтонами
речного звена с вмонтированными между их поперечными шпангоутами тремя рамками с водонепроницаемыми стенками, образующими на всю ширину речного звена
водопропускные каналы.
Недостатками «Речного звена наплавного железнодорожного моста» являются недостаточная надежность работы сцепленных звеньев из-за несовершенства привода запорного
штыря, высокая материалоемкость и трудозатратнось конструкций, также звено требует значительное время для транспортировки конструкций к месту установки, время для
монтажа и демонтажа.
Недостатки прототипа и аналогов ставят задачу создания «наплавного железнодорожного моста» для пропуска железнодорожного подвижного состава, колесной и гусеничной
техники при разрушении или реконструкции капитальных мостов через широкие и глубокие водные преграды простой конструкции, позволяющей наводиться переправе за
короткое время с использованием незначительных материальных затрат.
Ограничительные признаки заявленного технического решения общие с устройством прототипа следующие: наплавной железнодорожный мост, по длине выполненный из
переходных частей, речной части и береговых частей, включающий понтоны, скрепленные между собой в продольном направлении сцепными устройствами и рельсами
железнодорожной колеи.
Предполагается заявленный «Наплавной железнодорожный мост» использовать при устройстве наплавного моста для пропускания железнодорожного подвижного состава,
колесной и гусеничной техники при разрушении или реконструкции капитальных мостов через широкие и глубокие водные преграды.
При этом для его реализации предполагается применить:
- в качестве речного звена, состоящего из понтонов - понтоны, собранные из списанных, бывших в употреблении, железнодорожных цистерн, металлических рам от цистерн,
рам фитинговых платформ и рельс;
- в качестве элементов продольного закрепления - автоматическое сцепное устройство, имеющееся на металлических рамах цистерн, бывших в употреблении, а также
металлические балки, изготовленные из списанных рам фитинговых платформ и рельс;
- в качестве железнодорожной колеи - бывшие в употреблении, списанные рельсы.
Сущность заявленного технического решения заключается в том, что наплавной железнодорожный мост формируется из переходных и речных звеньев, состоящих из понтонов.
При этом понтоны собираются из списанных, бывших в употреблении железнодорожных цистерн, металлических рам от цистерн и фитинговых платформ и рельс. Скрепление
частей моста выполняется с использованием автоматического сцепного устройство имеющегося на металлических рамах цистерн.
Технический результат - создание упрощенной конструкции временной речной железнодорожной переправы вблизи неисправного железнодорожного моста, исключающего
транспортировку известных стандартных МЛЖ-ВФ-ВТ или НЖМ-56 к месту его установки, что существенно сокращает трудовые и материальные затраты, а также уменьшает
время на его возведение и разборку за счет использования бывших в употреблении списанных элементов железнодорожной инфраструктуры - вагонов и железнодорожных
шпал и рельс.
Бывшие в употреблении списанные вагоны и рельсы переплавляются (утилизируются) и используются для изготовления новых металлических конструкций. Процесс утилизации
и изготовления новых конструкций влечет значительные трудовые, материальные и энергетические затраты, которые можно избежать, используя списанные материалы

357.

железнодорожной инфраструктуры для устройства наплавного моста. Ежегодно списывается значительное количество материалов, в 2017 году списано 10380 цистерн *4+, в 2018
году РЖД заменило 2 тысяч километров железнодорожных путей *5+.
В настоящее время в России насчитывается более 10 тыс. железнодорожных мостов. Значительное количество из них мосты через широкие и глубокие водные преграды, и они
требуют прикрытия на случай разрушения во время ведения боевых действий или возникновения чрезвычайной ситуации. Для обеспечения непрерывности движения через
широкие и глубокие водные преграды имеется парк наплавных мостов, но количество их ограничено, и они требуют значительного времени на доставку и сборку.
Использование материалов железнодорожной инфраструктуры в конкретном месте позволяет заблаговременно определить необходимые для устройства моста материалы и
конструкции. При этом значительно сокращаются время возведения, а в следствии хранения наплавного моста на берегу у места его возведения, сокращаются трудовые и
материальные затраты.
Заявленное техническое решение иллюстрируется чертежами:
На фиг. 1 а) представлен вид сверху переходного и речного звеньев наплавного железнодорожного моста, причал, а на фиг. 1 б) - разрез переходного и речного звеньев
наплавного железнодорожного моста с причалом по а-а.
На фиг. 2 а) представлен вариант использования наплавного железнодорожного моста для пропуска железнодорожного состава, на фиг. 2 б) вариант с использованием
наплавного железнодорожного моста для пропуска автотранспорта в две полосы.
На фиг. 3 а) представлен вид сверху понтона речной части, на фиг. 3 б) - разрез понтона речной части по б-б, а на фиг. 3 в) - разрез понтона речной части по в-в.
На фиг. 4 а) представлен вид сверху речного звена, на фиг. 4 б) - поперечный разрез речного звена по г-г, а на фиг. 4 в) - продольный разрез речного звена понтона речной части
по д-д.
На фиг. 5 представлено автосцепка для первичного соединения понтонов при сборке моста.
На фиг. 6 представлено штатный хомут крепления цистерны к раме вагона.
На фиг. 7 представлены исходные конструкции для сборки наплавного моста - железнодорожная цистерна.
На фиг. 8 представлена исходная конструкция для сборки наплавного моста - фитинговая платформа.
На фиг. 9 представлено звено речного понтона для сборки наплавного моста.
На фиг. 10 представлена сборка понтона из 2-х звеньев.
На фиг. 11 представлено устройство настила из рам фитинговых платформ.
На фиг. 12 представлен готовый к укрупнительной сборке понтон.
На фиг. 13 представлена готовый к пропуску автомобильного и железнодорожного транспорта наплавной железнодорожный мост.

358.

Дополнительно на фигурах 1…4, 9…12 обозначены: 1 - переходной понтон; 2 - понтон речной части; 3 - причал; 4 - локомотив; 5 - рельс; 6 - цистерны; 7 - рама цистерны, 8 - рама
фитинговой платформы; 9 - автосцепка, 10 - опора переходного понтона на причал; 11 - сплачивающая балка, 12 - штатный хомут, 13 - настил для проезда автотранспорта, 14 ограждение понтона.
Для устройства переходного понтона (1) и понтона речной части (2) наплавного железнодорожного моста (фиг. 1 и фиг. 2) применены списанные, бывших в употреблении
железнодорожные цистерны (6), металлические рамы цистерн (7), штатные хомуты (12), рамы фитинговых платформ (8), сплачивающие балки (11) из металлических рам
фитинговых платформ и рельсов (5). Береговая часть выполняется в виде причала (3) с опорой для переходного понтона (10). По наплавному железнодорожному мосту может
передвигаться локомотив (4) или автотранспорт.
Порядок возведения наплавного железнодорожного моста.
На первом этапе выбирается место посадки наплавного железнодорожного моста, определяются его габариты в зависимости от рельефа прибрежной зоны и глубин водной
преграды, составляется проект, заготавливаются необходимые материалы из бывших в употреблении вагонов и элементов пути - металлических рам цистерн (7), фитинговых
платформ (8), рельсов (5), железнодорожных цистерн (б) штатных хомутов (12). Все имеющиеся в цистерне (6) технологические отверстия герметизируются.
На втором этапе устраиваются причалы (3) с двух сторон водной преграды с подъездными железнодорожными путями, которые могут выполняться как заблаговременно, так и в
ходе устройства наплавного железнодорожного моста. Параллельно собираются секции понтонов (фиг. 4 и фиг. 9), которые объединяются в переходные понтоны (1) (фиг. 12) и
понтоны речной части (2) (фиг. 1 и фиг. 3). Крепление цистерны (6) к раме цистерны (7) выполняется при помощи штатного хомута (12) на сварке (фиг. 9). Полученные секции
(фиг. 4 и фиг. 9) объединяются при помощи рамы цистерны (7) (фиг. 10) и рам фитинговой платформы (8) (фиг. 11) на сварке в понтоны береговой (1) и речной части (2) (фиг. 3 и
фиг. 12).
На плаву, катерами, понтоны (1, 2) (фиг. 12) при помощи автосцепок (9), сплачивающих балок (11) и рельсовых путей (5) на болтовых соединениях, объединяются в ленту,
которую крепят к опоре (10) причала (3), по понтонам устраивается настил для пешеходов, выполненный из стенок крытых вагонов, на сварке. По краям понтонов устраивается
ограждение, выполненное из лестниц от железнодорожных цистерн (14).
На заключительном этапе лента наплавного железнодорожного моста (фиг. 13) ставится на якоря для поперечного раскрепления от давления воды и ветра. После окончания
эксплуатации разборка наплавного железнодорожного моста выполняется в обратной последовательности.
Таким образом, использование предложенной схемы позволяет возвести в сжатые сроки наплавной железнодорожный мост, не требующий значительных трудовых и
материальных затрат с использованием списанных, бывших в употреблении элементов железнодорожного пути - металлических рам цистерн и фитинговых платформ,
железнодорожных цистерн, рельсов и шпал.
При данном способе устройства наплавного железнодорожного моста получаем сооружение, не требующее для возведения дорогостоящих материалов и конструкций, что
важно в условиях возникновения чрезвычайных ситуаций и снабжении войск при ведении боевых действий.
Значительное уменьшение материальных затрат средств достигается за счет использования списанных, бывших в употреблении вагонов (фиг. 7 и фиг. 8) и элементов пути металлических рам цистерн и фитинговых платформ, рельс, емкостей железнодорожных цистерн, а с случае войны и изъятых у железной дороги.
Предлагаемое решение наплавного железнодорожного моста проверено расчетом на плавучесть и остойчивость. Расчеты показали, что понтон при пропуске
железнодорожного состава обладает требуемой плавучестью и остойчивостью.
Предлагаемое техническое решение конструкции направлено на решение логистических задач при возникновении чрезвычайных ситуаций и при ведении боевых действий.

359.

Таким образом, устройство наплавного железнодорожного моста в совокупности с признаками формулы изобретения (сущностью изобретения) является новым для наплавных
мостовых сооружении, следовательно, соответствует критерию «новизна».
Вышеприведенная совокупность отличительных признаков не известна на данном уровне развития техники и не следует из общеизвестных правил конструирования наплавных
железнодорожных мостов, что доказывает соответствие критерию «изобретательский уровень».
Конструктивная реализация заявляемого технического решения с указанной совокупностью существенных признаков е представляет никаких конструктивно-технических и
технологических трудностей, откуда следует соответствие критерию «промышленная применимость».
Литература:
1. Понтонный парк специальный ППС-84. Книга 1. Материальная часть парка. Москва. Воениздат.1990 г.
2. Наплавной железнодорожный мост НЖМ-56. Техническое описание и инструкция по монтажу, перевозке, хранению и эксплуатации - М.: Воениздат, 1977.
3. Патент на изобретение RU 2158331 С1 от 17.04.2000, МПК E01D 15/14 - «Наплавной железнодорожный мост». – прототип.
6. Использование наплавного моста МЛЖ-ВФ-ВТ при ликвидации последствий кризисных ситуаций. - Киров, Издательство АНО ДПО «Межрегиональный центр инновационных
технологии в образовании», 2019.
Формула изобретения
1. Наплавной железнодорожный мост, по длине выполненный из переходных частей, речной части и береговых частей, включающий понтоны, скрепленные между собой в
продольном направлении сцепными устройствами и рельсами железнодорожной колеи, отличающийся тем, что в качестве понтонов речной и переходной части использованы
понтоны, собранные из бывших в употреблении железнодорожных цистерн, их рам и хомутов, рам фитинговых платформ, при этом цистерны закреплены к рамам цистерн
посредством хомутов на сварке с образованием секций, соединенных при помощи рам цистерн и рам фитинговых платформ на сварке в понтоны береговых и речной частей,
которые объединены в ленту посредством сплачивающих балок, рельс и сцепных устройств в виде автоматических сцепных устройств на рамах цистерн.
2. Наплавной железнодорожный мост по п. 1, отличающийся тем, что каждый из понтонов состоит из трех пар цистерн, объединенных сверху по длине моста при помощи пяти
рам цистерн и хомутов.
3. Наплавной железнодорожный мост по п. 2, отличающийся тем, что поверх пяти рам цистерн перпендикулярно расположению последних закреплены четыре рамы
фитинговых платформ, на которых сверху по длине моста установлены: по центру понтона рельсы для железнодорожного состава, а по краям понтона колеи из рельс для
колесного и гусеничного транспорта.

360.

4. Наплавной железнодорожный мост по п. 1, отличающийся тем, что каждый из понтонов содержит по два элемента для обеспечения жесткости сопряжения смежных
понтонов, в виде пакета из металлических балок от рам фитинговых платформ, закрепленных кронштейнами и сдвигаемых лебедкой на соседний понтон, формируя, таким
образом, неразрезную ленту наплавного моста.
5. Наплавной железнодорожный мост по п. 1, отличающийся тем, что в качестве элементов продольного закрепления моста использованы автоматические сцепные устройства,
имеющиеся на обеих сторонах пяти рам цистерн.
6. Наплавной железнодорожный мост по п. 1, отличающийся тем, что каждый из понтонов содержит перила, выполненные из лестниц железнодорожных цистерн.
7. Наплавной железнодорожный мост по п. 1, отличающийся тем, что в качестве береговой части использованы устроенные заблаговременно или вновь возведенные
временные причалы с инвентарными подходами и заблаговременно возведенными железнодорожными путями, собранными из списанных, бывших в употреблении,
железнодорожных рельсов и шпал.

361.

362.

363.

364.

365.

366.

367.

368.

369.

Приложение к реферату КОНСТРУКЦИЯ УЧАСТКА ПОСТОЯННОГО ЖЕЛЕЗОБЕТОННОГО МОСТА НЕРАЗРЕЗНОЙ СИСТЕМЫ, ВОССТАНОВЛЕННОГО С ПРИМЕНЕНИЕМ об
использовании комбинированных типовых структурных пространственных перекрестно - стержневых конструкций МАРХИ ПСПК МПК E01D 12/00 ( аналог № № 69 082, 68
528 )
Приложение к реферату КОНСТРУКЦИЯ УЧАСТКА ПОСТОЯННОГО ЖЕЛЕЗОБЕТОННОГО МОСТА НЕРАЗРЕЗНОЙ СИСТЕМЫ, ВОССТАНОВЛЕННОГО С ПРИМЕНЕНИЕМ об
использовании комбинированных типовых структурных пространственных перекрестно - стержневых конструкций МАРХИ ПСПК МПК E01D 12/00 ( аналог № № 69 082, 68
528 )

370.

Коваленко Александр Иванович : заместитель Президента организации "Сейсмофонд" при СПб ГАСУ [email protected]
(911) 175-84-65
Егорова Ольга Александровна зам Презид общ. орг "Сейсмофонд" при СПб ГАСУ [email protected] (981) 886-57-42
Уздин Александр Михайлович ПГУПС проф. дтн: [email protected] (981) 276-49-92
Богданова Ирина Александровна: заместитель Президента организации "Сейсмофод" при СПб ГАСУ [email protected] (921) 962-67-78
Матвеев Владимир Владимирович заместитель Президента организации "Сейсмофонд" при СПб ГАСУ [email protected] (911) 19409-80

371.

Романова Анна Анатольевна Начальник отдела аспирантуры [email protected] (812) 457-80-97 Санкт-Петербург, Московский пр., д. 9, ауд. 7-402 [email protected]
Андреева Елена Ивановна Заместитель президента организации "Сейсмофонд" при СПб ГАСУ [email protected] (911) 175-84-65
Мажиев Хасан Нажоевич
Президент организации «Сейсмофонд» при СПб ГАСУ E-Mail: [email protected] (981) 886-57-42
Пояснительная записка к расчету упруго пластического сдвигаемого шарнира для сборно-разборного железнодорожного моста за 24 часа, (длина пролета - 30 метров,
ширина проезжей части 3.0 метра, грузоподъемность -65,0 тонны), с большими перемещениями на предельное равновесие и приспособляемость
Аннотация. В статье приведен краткий обзор характеристик существующих временных мостовых сооружений, история создания таких
мостов и обоснована необходимость проектирования универсальных быстровозводимых мостов построенных в штате Монтана через реку Суон
в США
Предпосылкой для необходимости проектирования новой временной мостовой конструкции послужили стихийные бедствия в ДНР, ЛНР
во время специальной военной операции на Украине в 20222012 г., где будут применены быстровозводимых сооружений, что могло бы
значительно увеличить шансы спасения человеческих жизней.
Разработанную, в том числе автором, новую конструкцию моста, можно монтировать со скорость не менее 25 метров в сутки без
применения тяжелой техники и кранов и доставлять в любой пострадавший район воздушным транспортом. Разрезные пролетные строения
могут достигать в длину от 3 до 60 метров, при этом габарит пролетного строения так же варьируется. Сечение моста подбирается оптимальным
из расчета нагрузка/количество металла.

372.

Рис. 1. Пролетное строение из упруго пластинчатых балок, через реку Суон, штат Монтана, США построенное в 2017 по изобретениям проф
дтн Уздина А.М
На настоящий момент построена экспериментальная модель моста в штате Минесота , через реку Суон. Американской стороной проведены всесторонние испытания,
показавшие высокую корреляцию с расчетными значениями (минимальный запас 4.91%). Мостовое сооружение не имеет аналогов на территории Российской Федерации.
На конструкцию армейского моста получен патенты №№ 1143895, 1168755, 1174616, 168076, 2010136746. Доработан авторами , в том числе авторами способ бескрановой
установки надстройки опор при строительстве временного железнодорожного моста № 180193 со сборкой на фланцевых фрикционно-подвижных соединениях проф дтн
А.М.Уздина для сборно-разборного железнодорожного моста
демпфирующего компенсатора гасителя динамических колебаний и
сдвиговых напряжений с учетом сдвиговой жесткости в ПК SCAD ( согласно СП 16.1330.2011 SCAD п.7.1.1 сдвиговая с учетом действий
поперечных сил ) антисейсмическое фланцевое фрикционное соединение для сборно-разборного быстрособираемого

373.

железнодорожного моста из стальных конструкций покрытий производственных здании пролетами 18, 24 и 30 м с применением
замкнутых гнутосварных профилей прямоугольного сечения типа «Молодечно» (серия 1.460.3-14 ГПИ «Ленпроект-стальконструкция» )
для системы несущих элементов и элементов проезжей части армейского сборно-разборного пролетного надвижного строения
железнодорожного моста, с быстросъемными упругопластичными компенсаторами, со сдвиговой фрикционно-демпфирующей
прочностью и предназначенные для сейсмоопасных районов с сейсмичностью до 9 баллов, серийный выпуск. В районах с
сейсмичностью более 9 баллов, необходимо использование демпфирующих компенсаторов с упругопластическими шарнирами на
фрикционно-подвижных соединениях, расположенных в длинных овальных отверстиях, с целью обеспечения многокаскадного
демпфирования при импульсных растягивающих и динамических нагрузках согласно изобретениям, патенты: №№ 1143895,
1174616, 1168755 (автор: проф. д.т.н. ПГУПС А.М.Уздин) , 2010136746 ,165076 , 2550777, с использованием сдвигового
демпфирующего гасителя сдвиговых напряжений , согласно заявки на изобретение «КОНСТРУКЦИЯ УЧАСТКА ПОСТОЯННОГО
ЖЕЛЕЗОБЕТОННОГО МОСТА НЕРАЗРЕЗНОЙ СИСТЕМЫ, ВОССТАНОВЛЕННОГО С ПРИМЕНЕНИЕМ типовых структурных серии
1.460.3-14 ГПИ "Ленпроектстальконструкция", стальные конструкции покрытий производственных» № 2022111669 от 25.05.2022,
«Сборно-разборный железнодорожный мост» № 2022113052 от 27.05.2022, «Сборно-разборный универсальный мост» № 2022113510 от
21.06.2022, «Антисейсмический сдвиговой компенсатор для гашения колебаний пролетного строения моста» № 2022115073 от
02.06.2022 ФИПС : "Огнестойкого компенсатора -гасителя температурных напряжений" заявка № 2022104632 от 21.02.2022 , вх
009751, "Фрикционно-демпфирующий компенсатор для трубопроводов" заявка № 2021134630 от 29.12.2021, "Термический компенсатор
гаситель температурных колебаний" Заявка № 2022102937 от 07.02.2022 , вх. 006318, "Термический компенсатор гаситель
температурных колебаний СПб ГАСУ № 20222102937 от 07 фев. 2022, вх 006318, «Огнестойкий компенсатор –гаситель
температурных колебаний»,-регистрационный 2022104623 от 21.02.2022, вх. 009751, "Фланцевое соединения растянутых элементов
трубопровода со скошенными торцами" № а 20210217 от 23 сентября 2021, Минск, "Спиральная сейсмоизолирующая опора с
упругими демпферами сухого трения" № а 20210051, "Компенсатор тов. Сталина для трубопроводов" № а 20210354 от 22 февраля
2022 Минск , заявка № 2018105803 от 27.02.2018 "Антисейсмическое фланцевое фрикционно-подвижное соединение для трубопроводов"
№ а 20210354 от 22.02. 2022, Минск, "Антисейсмическое фланцевое фрикционно-подвижное соединение для трубопроводов №
2018105803 от 15.02.2018 ФИПС, для обеспечения сейсмостойкости сборно-разборных надвижных армейских быстровозводимых
мостов в сейсмоопасных районах в сейсмичностью более 9 баллов https://disk.yandex.ru/d/ctPqcuCLs1-9Sg

374.

а)
б)
Рис. 3. Пролетное строение из упруго пластинчатых балок, через реку Суон, штат Монтана, США

375.

а)
б)

376.

Ключевые слова: Сборно-разборные мосты, временные мосты, быстровозводимые мосты,
мостовые сооружения, мостовые конструкции,
реконструкция мостов.
В результате стихийных бедствий (наводнение, сход сели, землетрясение, техногенная катастрофа), военных или других чрезвычайных
ситуаций происходит разрушение мостов и путепроводов. Разрыв транспортных артерий существенно осложняет оказание помощи
пострадавшим местам. Максимально быстрое возобновление автомобильного и железнодорожного движения является одной из главных задач
восстановления жизнеобеспечения отрезанных стихией районов. Мостовой переход - это сложное инженерное сооружение, состоящее из
отдельных объектов (опор, пролетных строений, эстакад, подходных насыпей и т.д.), капитальный ремонт или новое строительство которых
может длится годы. Поэтому в экстренных случаях используют временные быстровозводимые конструкции, монтаж которых занимает всего
несколько суток, а иногда и часов. Последовательно рассмотрим существующие варианты восстановления мостового перехода.
В исключительных случаях, при возникновении чрезвычайной ситуации могут сооружать примитивные мосты, например, срубив дерево и
опрокинув его на другой берег. На рисунке 1. показан такой способ переправы, мост через реку Суон США , штат Монтана.
Примитивные мосты - это и подвесные мосты, сооруженные из подручных материалов. Сплетенные из лиан и других ползучих растений
веревки натягивают через ущелье, горный поток или овраг, пространство между ними застилают или досками.. Ненадежность конструкции,
низкая грузоподъѐмность все это практически исключает примитивные мосты для серьезного использования при ликвидации последствий
стихийных бедствий.
Самым распространенным и самым быстрым способом устройства мостового перехода на сегодняшний день является наведение
понтонной переправы. Для еѐ монтажа требуется доставить понтоны к месту строительства и спустить на воду, после чего происходит их
объединение. Плавучие элементы несут нагрузку за счет герметично устроенного корпуса.
Также возникают проблемы в организации такой переправы на быстротоках и мелководье. Для доставки и монтажа требуется мощная, как
правило, венная техника.

377.

Дешевой и быстровозводимой разновидностью понтонных мостов через водную преграду являются понтонно-модульные платформы.
На каждой платформе предусмотрены специальные проушины, которые позволяют собирать конструкцию любого габарита и любой длины.
Существенный недостаток этих мостов - низкая грузоподъемность. Максимальная нагрузка на пластиковый модуль не превышает 400 кгс/м2.
Применение таких мостов оправдано для переправы людей в экстренных ситуациях, а так же для устройства причалов или плавучих ферм.
а)
б)
Рис. 3. Пролетное строение из упруго пластинчатых балок, через реку Суон, штат Монтана, США
При сохранении опор возможно использование как временных, так и капитальных металлических и железобетонных пролетных строений.
Восстановление железнодорожных мостов возможно установкой новых капитальных пролетных строений из резерва мобилизационных
складов. Использование таких конструкций, естественно, являются самыми надежным способом восстановления транспортного сообщения.
Если же необходимо заново

378.

сооружать опоры, то сначала производят изыскательные работы, выполняют расчет и конструирование, составляют проект строительства
моста и только после этого приступают к его монтажу что занимает, порой, несколько лет. Такое капитальное сооружение, в отличие от
временных, можно эксплуатировать в течение продолжительного промежутка времени тяжелой, в том числе перспективной нагрузкой. Однако,
применение этих мостов не может решить краткосрочные задачи, нацеленные на спасение людей.
Деревянные мосты, как правило, возводят из бруса или бревен, изготовленных из деревьев близлежащего к месту строительства лесного
массива. Преимущество таких мостов в их дешевизне и доступности материала: дерево - материал недорогой, легкий, прочный. Существуют
проекты мостов, разработанные под различные временные нагрузки (пешеходные, автомобильные, железнодорожные). Не редким случаем
является строительство деревянных переправ без проекта. На рисунке 4 показан автодорожный мост опоры и пролетные строения которого
выполнены из дерева. Все соединения элементов деревянных мостов выполняют "по месту", потому, повторное применение элементов такой
конструкции практически исключено . Трудоемкость возведения, ограниченность в длине пролетов (как правило, до 9 метров)
Существуют инвентарные конструкции
временных
металлических мостов. Самое распространенное такое решение - САРМ (средний автодорожный разборный мост), вид которого представлен на
рисунке 5.
Они состоят из готовых типовых элементов, которые хранятся на складе. Монтаж моста осуществляют как минимум двумя стреловыми
кранами и расчетом из 260
человек.
Основным
преимуществом САРМ является их широкое
распространение
и
наличие
на
базах
мобилизационного резерва [3]. Эти мосты
проектировались для решения тактических задач
в военных целях. Использование таких
конструкций для «гражданского» строительства
не всегда оправдано: например, строительство
переправы для обеспечения транспортного
сообщения
небольшой
грузоподъемности (пешеходные мосты, мосты
для легковых автомобилей и др.) влечет за собой
перерасход материала и дополнительные
расходы на СМР.
Рис.4. Пролетное строение из упруго пластинчатых балок, через реку Суон, штат
Монтана, США

379.

Ряд интересных решений временных мостов был реализован в нескольких экземплярах. Например, монтаж понтонно-модульного моста,
приведенного на рисунке 6.а, требует применение вертолетов, а грузоподъемность такого моста не превышает 20 тонн. Монтаж тяжелого
механизированного моста, приведенного на рисунке 6.б, производят с рекордной скоростью до 42 метров в час. Длина моста неограниченна и
кратна 10.5 метрам, допустимая масса транспортного средства составляет 60 тонн. Такие мосты в первую очередь позиционируются как
военные, нацеленные на переправу транспорта и грузов в труднопроходимых условиях. Ограниченность применения таких мостов связана в
первую очередь с их высокой стоимостью.
В основном, существующие в Российской Федерации временные сборно-разборные мостовые переходы разработаны еще во времена
СССР и «морально» устарели. Их конструкции, как правило, не универсальны, т.е. неизменны по длине и величине пропускаемой нагрузки.
Максимальная длина одного балочного разрезного пролетного строения составляет 33 метра. Пролетное строение моста через реку Суон 60
метров в Монтане США . Это влечет необходимость устройства промежуточных опор при перекрытии широких препятствий, что не всегда
возможно и занимает дополнительное время. У всех рассмотренных сборно-разборных конструкций невозможна оптимизация сечений
элементов в зависимости от массы пропускаемой нагрузки. Единственным решением, которое смогло исключить этот недостаток, является
разрезное пролетное строение с двумя решетчатыми фермами (патент РФ №2010136746, 1143895, 1168755, 1174616, 2550777, 165076, ). В
конструкции этого моста имеется два варианта грузоподъемности: обычный и повышенный. Для монтажа практически всех без исключения
существующих решений временных сооружений необходимо применение тяжелой техники и большого числа монтажников. Соответственно,
даже при возможности быстрого монтажа самой конструкции, доставка в район постройки необходимой техники займет много времени. Целью

380.

данного исследования является обеспечение возобновление пешеходного, автодорожного или железнодорожного движения в зоне стихийного
бедствия в кратчайшие сроки за счет применения при временном восстановлении мостовых сооружений универсальной, сборно-разборной
конструкции временного моста.
Из проведенных выше данных следует, что такая мостовая конструкция должна соответствовать следующим современным требованиям:
Максимальная длина пролетного строения не менее 60 метров, ширина 3,5 метра , однопутный , армейский для ДНР, ЛНР ;
Длина пролета должна быть переменной и кратной 3 метрам для случая его использования на сохранившихся опорах капитального
моста;
Максимальный вес любого элемента пролетного строения, не должен превышать одной тонны, что позволит ограничиться легким
крановым оборудованием;
Конструкция пролетного строения должна обеспечивать возможность изменять его геометрические характеристики, определяющие
его несущую способность, в зависимости от массы и габарита пропускаемой нагрузки;
Продолжительность монтажа пролетных строений для малых и средних мостов не должна превышать 2-3 суток, что соответствует
скорости его монтажа примерно 25 метров в сутки;
Конструкция должна обеспечивать многократность применения;
Время доставки конструкций моста в любую точку России не должно превышать одних суток.
С учетом всех вышеперечисленных требований, были разработаны конструкция и технология сооружения временного моста, названного
УЗДИН, по аналогу моста ТАЙПАН. Основная идея состоит в том, что мост собирают подобно конструктору из отдельных элементов (панель,
поперечная балка, ортотропная плита, опорная стойка) максимальной массой 800 кг и габаритом 3,00 х 1,50 х 0,12 м. Ортотропные плиты
проезда покрыты полимерным материалом, обеспечивающим надежное сцепление колес автомобиля с проезжей частью.
Сборка не требует применения спецтехники: собирается жесткий каркас посредством различных сборно-разборных соединений. При
отсутствии опор, либо при невозможности их устройства (в случае, когда необходим максимально быстрый монтаж конструкции), фундаментом
могут служить любые близлежащие бетонные блоки, при достаточности их размеров.
Отдельные конструктивные элементы пролетного строения и общий вид моста приведены на рисунке 7. На конструкцию моста получен
патент №137558, кл. E01D 15/133 от 20.02.2014 года. Применение коротких блоков позволяет получить мосты практически любой длины, как с
разрезными, так и неразрезными балочными пролетными строениями, рассчитанными на пропуск автомобильной нагрузки А11 и Н11 или
колонны танков массой до 70 тонн каждый. Промежуточные опоры собирают из тех же элементов, что и пролетное строение. В качестве
фундамента и устоев могут быть использованы любые бетонные блоки или бескрановая установка надстроечных опор по изобретению №
180193 .
-

381.

382.

383.

384.

385.

386.

387.

388.

389.

390.

391.

392.

393.

394.

395.

396.

397.

398.

399.

400.

401.

402.

403.

404.

Сборка пролетного строения происходит на берегу соединением элементов жесткого каркаса шплинтами, в необходимых случаях с
применением легкого кранового оборудования - автомобиля с гидроманипулятором (самопогрузчик). По предварительным оценкам скорость
монтажа составит не менее 25 метров в сутки. После сборки пролетного строения производят его надвижку в русло. При надвижке
необходимо использовать аванбек, который позволяет отказаться от противовеса. Надвижку осуществляет либо группа людей (например, рота
солдат), либо бульдозер, толкающий пролетное строение.
Предельные автомобильно-дорожные нагрузки А11 и Н11 (одиночная нагрузка 80 тонн: 4 оси по 20 тонн) . При тех же характеристиках,
грузоподъемность моста достаточна для пропуска колонны танков до 50 тонн каждый.
Все элементы моста типовые и схемы сооружений отличаются большим или меньшим их количеством. Основными несущими
элементами являются панели размером 3х1.5 метра, которые связывают между собой при помощи шарнирных соединений - пинов, а левый и
правый пояса моста объединяют поперечными балками. Таким образом, можно оптимизировать конструкцию исходя из заданых задач - длина
и грузоподъемность, тем самым обеспечив рациональную материалоемкость (меньше нагрузка - меньше металла).

405.

Транспортировку элементов можно выполнять автомобилями или по железной дороге. Доставка конструкций моста в
труднодоступные районы может быть осуществлена по воздуху в контейнерах, так как это показано на рисунке 10.
ЛИТЕРАТУРА
-
ВСН 50-87. Инструкция по ремонту, содержанию и эксплуатации паромных переправ и наплавных мостов / М-во автомоб.
дорог РСФСР 1988. - 131 с;
Цвей И.И. Деревянные конструкции мостов; ВНИИНТПИ Госстроя России, 1991. - 44 с;
Кручинкин А.В. Сборно-разборные временные мосты. «Транспот». М., 1987 г, - 191с;
Беликов И.П., Бахтиаров И.П. Временные мосты / Транспортное строительство. 1989 г. № З , с 15-16;
Власов Г.М. Проектирование опор мостов. Новосибирск, 2004. - 332 с;
ВСН 136-78. Инструкция по проектированию вспомогательных сооружений и устройств для строительства мостов. - М.,
1978, - 206 с;
ГОСТ Р 52748-2007 Нормативные нагрузки, расчетные схемы нагружения и габариты приближения. М., 2008. - 12 с;
-
Корнеев М.М. Стальные мосты. Теоретическое и практическое пособие по проектированию мостов. Том 1.Киев: Академпрес, 2010. - 532 с;
-
-
ОДМ 218.2.029 - 2013. Методические рекомендации по использованию комплекта среднего автодорожного разборного
моста (САРМ) на автомобильных дорогах в ходе капитального ремонта и реконструкции капитальных искусственных
сооружений. М. 2013. - 57 с ;
ОДМ 218.5.006-2008 Методические рекомендации по применению экологически чистых антигололедных материалов и
технологий при содержании мостовых сооружений. М. 2008. - 22 с;
Патент на полезную модель от №137558 «Сборно-разборный универсальный мост» , кл. E01D 15/133 от 20.02.2014 г;
Рязанов Ю.С. Строительство мостов. Временные вспомогательные сооружения и устройства. Издательство ДВГУПС.
Хабаровск, 2005. - 153 с.
Селиверстов В. А. Методы определения рабочих уровней воды для проектирования временных и вспомогательных
сооружений в мостостроении. - М., 1999. - 209 с;
СП 48.13330.2011. Организация строительства. [Актуализированная редакция СНиП 12-01-2004]. М. 2011. - 22 с;
-
СП 20.13330.2011 Нагрузки и воздействия. [Актуализированная редакция СНиП 2.01.07-85*]. М. 2011. - 85 с;
-
СП 35.13330.2011 Мосты и трубы. [Актуализированная редакция СНиП 2.05.0384*]. М. 2011 г. - 346 с.
-
-
Рецензент: доктор технических наук, профессор ПГУПС Темнов Владимир Григорьевич
E-Mail:[email protected] (921) 962-67-78
Егорова Ольга Александровна ктн доц. ПГУПС
E-Mail:[email protected] (996) 798-26-54

406.

About prerequisites creating new designs temporary bridges
Abstract: Steel ферменные bridges are effective and aesthetic variant for crossing highways. Their rather small weight in comparison with
пластинчато-балочными by systems does(makes) by their desirable alternative both from the point of view of economy of materials, and
from the point of view of constructibility. The prototype of the welded steel farm designed with a built - in concrete flooring, was offered as
potential alternative of the projects of the accelerated construction of bridges (ABC) in Montana. This system consists of a collapsible
welded steel farm, увенчанной by a concrete flooring, which can be отлит at a factory - manufacturer (for the projects ABC) or in field
conditions after installation (for the usual projects). To investigate the possible(probable) decisions усталостных of restrictions of some
welded connections of elements in these farms, were appreciated болтовые of connection between diagonal натяжными by elements both
top and bottom belts(zones) of a farm. In this research for the bridge with a steel farm fastened by bolts - by welding, were appreciated both
usual system of a flooring on a place, and accelerated system of a flooring of the bridge (отлитая for one whole with a farm). For exacter
account of distribution of loadings on a strip of movement and lorries on separate farms the 3D-model of final elements was used. The
elements of a farm and connection for both variants of a design were designed with use of loadings from combinations of loadings AASHTO
Strength I, Fatigue I and Service II. the comparison between two configurations of farms and length 205 ft was carried out(spent).
Пластинчатая the beam used in the earlier designed bridge through the river Суон. The estimations of materials and manufacturing show,
that cost of the traditional and accelerated methods of construction on 10 % and 26 % is less, accordingly, than at пластинчатых of beams
intended for a ferry through the river Суон.
Keywords: collapsible bridges, prefabricated bridges, temporary bridges, prefabricated bridges, Taypan, bridge construction, bridge
construction, reconstruction of bridges.
REFERENCES
-
VSN 50-87. Instruktsiya po remontu, soderzhaniyu i ekspluatatsii paromnykh pereprav i naplavnykh mostov / M-vo avtomob. dorog
RSFSR 1988. - 131 s;
Tsvey I.I. Derevyannye konstruktsii mostov; VNIINTPI Gosstroya Rossii, 1991. - 44 s;
Kruchinkin A.V. Sborno-razbornye vremennye mosty. «Transpot». M., 1987 g, - 191s;
Belikov I.P., Bakhtiarov I.P. Vremennye mosty / Transportnoe stroitel'stvo.1989 g. № Z , s 15-16;
Vlasov G.M. Proektirovanie opor mostov. Novosibirsk, 2004. - 332 s;
VSN 136-78. Instruktsiya po proektirovaniyu vspomogatel'nykh sooruzheniy i ustroystv dlya stroitel'stva mostov. - M., 1978, - 206 s;
GOST R 52748-2007 Normativnye nagruzki, raschetnye skhemy nagruzheniya i gabarity priblizheniya. M., 2008. - 12 s;

407.

-
Korneev M.M. Stal'nye mosty. Teoreticheskoe i prakticheskoe posobie po proektirovaniyu mostov. Tom 1.Kiev: Akadempres, 2010. - 532
s;
ODM 218.2.029 - 2013. Metodicheskie rekomendatsii po ispol'zovaniyu komplekta srednego avtodorozhnogo razbornogo mosta (SARM)
na avtomobil'nykh dorogakh v khode kapital'nogo remonta i rekonstruktsii kapital'nykh iskusstvennykh sooruzheniy. M. 2013. - 57 s ;
ODM 218.5.006-2008 Metodicheskie rekomendatsii po primeneniyu ekologicheski chistykh antigololednykh materialov i tekhnologiy pri
soderzhanii mostovykh sooruzheniy. M. 2008. - 22 s;
Patent na poleznuyu model' ot №137558 «Sbomo-razbomyy universal'nyy most» , kl. E01D 15/133 ot 20.02.2014 g;
Ryazanov Yu.S. Stroitel'stvo mostov. Vremennye vspomogatel'nye sooruzheniya i ustroystva. Izdatel'stvo DVGUPS. Khabarovsk, 2005. 153 s.
Seliverstov V. A. Metody opredeleniya rabochikh urovney vody dlya proektirovaniya vremennykh i vspomogatel'nykh sooruzheniy v
mostostroenii. - M., 1999. - 209 s;
SP 48.13330.2011. Organizatsiya stroitel'stva. [Aktualizirovannaya redaktsiya SNiP 12-01-2004]. M. 2011. - 22 s;
SP 20.13330.2011 Nagruzki i vozdeystviya. [Aktualizirovannaya redaktsiya SNiP 2.01.07-85*]. M. 2011. - 85 s;
SP 35.13330.2011 Mosty i truby. [Aktualizirovannaya redaktsiya SNiP 2.05.03-84*]. M. 2011 g. - 346 s.
English     Русский Rules