Similar presentations:
Газета «Земля России» №62
1.
Газета «Земля РОССИИ» №62(газета «Земля России» имеет свидетельство о регистрации № П 0931 от
16.05.94 г. Настоящее свидетельство выдано :Начальником Северо-западного
регионального управления государственного комитета Российской Федерации по
печати ( г СПб) Ю.В Третьяковым )Учредитель организация "Сейсмофонд"
ОГРН ;1022000000824, ИНН ;2014000780 [email protected]
190005, СПб, 2-я стр 309
Красноармейская д 4 СПб ГАСУ
(911) 175-84-65, (996) 798-26-54, (921) 96267-78 [email protected] Мажиев Х.Н
Спецвыпуск № 62 от 28 .01.2022 редакции газеты «Земля РОССИИ»
1
2.
Народная благодарность белорусскому народа от ИА «Крестьянскогоинформационного агентство» Национальному собранию Республики Беларусь Кочановой
Наталье Ивановне и Правительству Республики Беларусь Головченко Роману Александровичу
Председателю Совета Республики Национального собрания Республики Беларусь Кочановой Натальи
Ивановне и Правительству Республики Беларусь Головченко Роману Александровичу
http://www.sovrep.gov.by/ru/kontakty-ru/
Председателю государственного комитета по науке и технике
Республики Беларусь ШУМИЛИНу Александр Геннадьевичу
http://www.gknt.gov.by/o-komitete/rukovodstvo/
Генеральному директору Национального центра интеллектуальной
собственности Республики Беларусь Минск Козлова 20 220034
[email protected] РЯБОВОЛОВу Владимиру Анатольевичу
https://www.ncip.by/o-centre/rukovodstvo/ , а также Первому заместителю
генерального директора А.В.Курману, Начальнику отдела
предварительной экспертизы управления экспертизы промышленной
собственности Н.В. Чехловой, ведущему специалисту Л.М.Юхновичу,
начальнику отдела организации делопроизводства управления экспертизы
промышленной собственности С.Н.Щербак от редакции газеты
«Земля России», за освобождение перед погребением тяжело
больному раком предстательной железы T2N0M1 (
сопутствующими заболеваниями) онкобольному, инвалиду первой
группы, ветерану боевых действий на Северном Кавказе 19941995гг, военкору Данилику Павлу Викторовичу,
позывной "Ден" , 2 батальон 5, бригады "Оплот"
ДНР.(участнику боя при обороне Логвиново, запирая
Дебальцевский котел, д.р 6.02.1983), инж-стр. отдела Гос.
2
3.
Инст. «Грозгипронефтехим», гв. мл. серж. в/ч 21209 г.Грозный,специалисту по СПОСОБу УПРАВЛЕНИЯ РЕЖИМОМ
СМЕЩЕНИЙ ВО ФРАГМЕНТАХ СЕЙСМОАКТИВНЫХ
ТЕКТОНИЧЕСКИХ РАЗЛОМОВ № 2273035 направленным
взрывом в разломах, в среде вычислительного комплекса SCAD
Offiсe [email protected]
Редакция "Земля России", выражаем глубокую благодарность за
оказание без оплаты государственной регистрации, белорусу, инвалиду
первой группы согласно пункта 1 статья 296 Налогового кодекса
Республики Беларусь от уплаты патентной пошлины освобождаются
инвалиды 1 группы по заявке на изобретение Термический гаситель
температурных колебаний СПб ГАСУ"
МПК F16L 23/00 и по заявке
№ а 20210071 от 02 марта 2021 (2021.02.02) «Спиральная
сейсмоизолирующая опора с упругими демпферами сухого трения» E 04H
9/02 и вторая заявка на изобретение ( не дошла) «Фланцевые
соединения растянутых элементов трубопроводов со скошенными
торцами F 04 16 L направленные от , ветеранов боевых действий в
ДНР, ЛНР и Чеченской республики
на изобретение
Письменный запрос редакции газеты «Земля РОССИИ»,
депутатам ГД РФ от ветеранов боевых действий и военных
изобретателей России, почему в РФ, в налоговом кодексе
инвалиды первой групп, отсутствует - пункт 1 и статья 296 ,
как в Налоговом кодексе Республики Беларусь и белорусского
изобретателя, инвалиды первой группы , не освобождают в
РФ, от уплаты патентной пошлины в ФИПС , хотя деньги
есть.
Смотрите приложение список фамилий, самой богатой
буржуазии в России. И это , устаревшая информации .
Благодаря кризису они стали еще богаче, еще в три раза :
1. Алишер Усманов 18 500 ООО 000S
2. Виктор Вексельберг 15 700 ООО 000S
3. Михаил Фридман 15 700 000 000S
4 Владимир Потанин 14 000 000 000$
5. Леонид Михельсон 13 400 000 000$
3
4.
6. Геннадий Тимченко 13 100 000 000$7. Владимир Лисин 12 600 000 000$
8. Вагит Алекперов 12 300 000 000$
9. Алексей Мордашов 11 200 000 000$
10. Сергей Галицкий 10 900 000 000$
11. Михаил Прохоров 10 200 000 000$
12. Герман Хан 10 000 000 000$
13. Роман Абрамович 9 600 000 000$
14. Дмитрий Рыболовлев 8 800 000 000$
15. Олег Дерипаска 8 600 000 000$
16. Андрей Скоч 8 200 000 000$
17. Андрей Мельниченко 8 100 000 000$
18. Алексей Кузьмичев 7 800 000 000$
19. Леонид Федун 5 700 000 000$
20. Искандер Махмудов 5 700 000 000$
21 Петр Авен 5 600 000 000$
22. Филарет Галчев 5 300 000 000$
23. Сергей Попов 5 000 000 000$
24. Александр Абрамов 4 200 000 000$
25. Самвел Карапетян 3 700 000 000$
26. Игорь Кесаев 3 600 000 000$
27. Александр Светаков 3 500 000 000$
Хотя деньги есть, у эффективных менеджеров - наших
партнеров : Вот, где недостающий бюджет прячется, для
освобождения от уплаты патентной пошлины в РФ , хотя бы,
для инвалидов первой группы, как Республики Беларусь, где нет
нефти и газа, золота и алмазов . Там же и пенсии недостающие,
индексации, накрутки на лекарства, продукты и бесплатны
обеды для детей в школах и матерям одиночкам.
Первому заместителю генерального директора Национального центар интеллектуальной
собственности 220034 Минск ул Козлова , 20 [email protected] А.В Курмину
Заместитель начальника управления экспертизы промышленной собственности –начальник
отдела биологии М.А.Пателиной , Ведущими специалисту Л.М.Юхновичу т (017) 272-94-35
ЗАЯВЛЕНИЕ О освобождении от патентной пошлины согласно
пункта 13 « Положение о пошлинах» Ветерана боевых действий Мажиева
Хасан Нажоевича, согласно прилагаемого удостоверения серия БД № 404894
от 26 июля 2021 выданной Министерством строительство –жилищно –
коммунального хозяйство Российской Федерации (Минстрой ЖКХ) за
подписью С.В. Иванова изобретение «Фрикционно –демпфирующий
4
5.
компенсатор для трубопроводов» № 2021134630/20/(073171) и заявка наизобретение «Термический гаситель температурных колебаний СПб ГАСУ
МПК F 16L 23/00
О выдачи патента ФИПС РФ и Республики Беларусь на изобретение
"Термический гаситель
температурных колебаний СПб ГАСУ" МПК F16L 23/00
Фигуры к заявке на изобретение полезная модель
5
6.
67.
Термический компенсатор гаситель температурныхколебаний СПб ГАСУ
Фиг 1
Фиг 2 Термический
компенсатор гаситель температурных
колебаний СПб ГАСУ
7
8.
Термический компенсатор гаситель температурныхколебаний СПб ГАСУ
Фиг 3
Термический компенсатор гаситель температурных
колебаний СПб ГАСУ
Фиг 4
8
9.
Фиг 5 Термическийкомпенсатор гаситель температурных
колебаний СПб ГАСУ
Фиг 6 Термический
компенсатор гаситель температурных
колебаний СПб ГАСУ
9
10.
Фиг 7 Фланцевое соединение растянутых элементов трубопровода соскошенными торцами
Фиг 8 Термический
компенсатор гаситель температурных
колебаний СПб ГАСУ
Фиг 9 Термический
компенсатор гаситель температурных
колебаний СПб ГАСУ
Термический компенсатор гаситель температурных
колебаний СПб ГАСУ
Фиг 10
Термический компенсатор гаситель температурных
колебаний СПб ГАСУ
Фиг 11
10
11.
Фиг 12 Термическийкомпенсатор гаситель температурных
колебаний СПб ГАСУ
Фиг 13 Термический
компенсатор гаситель температурных
колебаний СПб ГАСУ
11
12.
Фиг 14 Термическийкомпенсатор гаситель температурных
колебаний СПб ГАСУ
12
13.
Термический компенсатор гаситель температурныхколебаний СПб ГАСУ
Фиг 15
РЕФЕРАТ изобретения на полезную модель Термический
компенсатор
гаситель температурных колебаний СПб ГАСУ" F16L 23/00
Термический компенсатор гаситель температурных колебаний СПб ГАСУ с упругими демпферами
сухого трения предназначена для термической и сейсмической виброзащиты
строительных конструкций , трубопроводов , оборудования, сооружений, объектов,
зданий от сейсмических, взрывных, вибрационных, неравномерных воздействий за счет
использования сейсмоизолирующей опоры с упругими демпферами сухого трения ,
многослойной втулки (гильзы) из упругого троса в полимерной из без полимерной
оплетке и протяжных фланцевых фрикционно- податливых соединений, с зазором до
50-100 мм отличающаяся тем, что с целью повышения сеймоизолирующих свойств
демпфирующей опоры или корпус опоры выполнен сборным с трубчатым сечением в виде
раздвижного демпфирующего «стакан» и состоит из нижней целевой части и сборной
верхней части подвижной в вертикальном направлении с демпфирующим эффектом,
соединенные между собой с помощью фрикционно-подвижных соединений и
контактирующими поверхностями с контрольным натяжением фрикци-болтов с
упругой тросовой втулкой (гильзой) , расположенных в длинных овальных отверстиях,
при этом пластины-лапы верхнего и нижнего корпуса расположены на упругой
перекрестной гофры (демпфирующих ножках) и крепятся фрикци-болтами с
многослойным из склеенных пружинистых медных пластин клином, расположенной в
коротком овальном отверстии верха и низа корпуса опоры.
https://findpatent.ru/patent/241/2413820.html
Фланцевое соединение растянутых элементов трубопровода со скошенными торцами с
упругими демпферами сухого трения , содержащая трубообразный корпус-опору в виде
перевернутого «стакан» заполненного тощим фиробетоно и сопряженный с ним
подвижный узел из контактирующих поверхностях между которыми проложен
демпфирующий трос в пластмассой оплетке с фланцевыми фрикционно-подвижными
соединениями с закрепленными запорными элементами в виде протяжного соединения.
Кроме того в строительных конструкциях , трубопроводе со скошенными торцамикосыми , параллельно центральной оси, выполнено восемь симметричных или более
открытых пазов с длинными овальными отверстиями, расстояние от торца корпуса,
больше расстояния до нижней точки паза опоры.
Увеличение усилия затяжки фланцевое соединение растянутых элементов
строительных конструкций , трубопровода со скошенными торцами, ботовых
соединений приводит к уменьшению зазора <Z> корпуса, увеличению сил трения в
сопряжении составных частей корпуса опоры и к увеличению усилия сдвига при внешнем
воздействии.
Податливые демпферы фланцевое соединение растянутых элементов трубопровода со
скошенными торцами с упругими демпферами сухого трения, представляют собой
двойную фрикционную пару, имеющую стабильный коэффициент трения по свинцовому
13
14.
листу в нижней и верхней части виброизолирующих, сейсмоизолирующих поясов,вставкой со свинцовой шайбой и латунной гильзой для создания протяжного соединяя.
Сжимающее усилие создается высокопрочными шпильками фланцевом соединение
растянутых элементов трубопровода со скошенными торцами, с упругими
демпферами сухого трения, с вбитыми в паз шпилек обожженными медными клиньями,
натягиваемыми динамометрическими ключами или гайковертами на расчетное усилие.
Количество болтов определяется с учетом воздействия собственного веса ( массы)
оборудования, сооружения, здания, моста и расчетные усилия рассчитываются по СП
16.13330.2011 ( СНиП II -23-81* ) Стальные конструкции п. 14.4, Москва, 2011, ТКТ 455.04-274-2012 (02250), https://dwg.ru/dnl/13468 «Стальные конструкции» Правила расчет,
Минск, 2013. п. 10.3.2
Сама составное стыковое соединение фланцевого стыка растянутых элементов
трубопровода со скошенными торцами с упругими демпферами сухого трения,
выполнено со скошенными торцами в виде , стаканчато-трубного вида на фланцевых,
фрикционно – подвижных соединениях с болтовых соединений .
Фланцевое соединение растянутых элементов трубопровода со скошенными торцами
соединяется , на изготовлено из фрикци-болтах, с тросовой втулкой (гильзой) - это
вибропоглотитель пиковых ускорений (ВПУ) с помощью которого поглощается
вибрационная, взрывная, ветровая, сейсмическая, вибрационная энергия. Фрикци-болт
снижает на 2-3 балла импульсные растягивающие нагрузки при землетрясениях и
взрывной нагрузки от ударной воздушной волны. Фрикци–болт повышает надежность
работы вентиляционного оборудования, сохраняет каркас здания, мосты, ЛЭП,
магистральные трубопроводы за счет уменьшения пиковых ускорений, за счет
протяжных фрикционных соединений, работающих на растяжение. ( ТКП 45-5.04-2742012 (02250) п. 10.3.2 стр. 74 , Минск, 2013, https://dwg.ru/dnl/13468 СП 16.13330.2011,СНиП
II-23-81* п. 14.3- 15.2).
Упругая втулка (гильза) фрикци-болта использующая для фланцевое соединение
растянутых элементов трубопровода со скошенными торцами , состоящая из
стального троса в пластмассовой оплетке или без пластмассовой оплетки, пружинит
за счет трения между тросами, поглощает при этом вибрационные, взрывной,
сейсмической нагрузки , что исключает разрушения сейсмоизолирующего основания ,
опор под агрегатов, мостов , разрушении теплотрасс горячего водоснабжения от
тяжелого автотранспорта и вибрации от ж/д . Надежность friction-boltа
достигается путем обеспечения многокаскадного демпфирования при динамических
нагрузках, преимущественно при импульсных растягивающих нагрузках на здание,
сооружение, оборудование,труопровоы, которое устанавливается на
сейсмоизолирующих опорах, с упругими демпферами сухого трения, на фланцевых
фрикционно- подвижных соединениях (ФФПС) по изобретению "Опора сейсмостойкая"
№ 165076 E 04 9/02 , опубликовано: 10.10.2016 № 28 от 22.01.2016 ФИПС (Роспатент)
Авт. Андреев. Б.А. Коваленко А.И, RU 2413098 F 16 B 31/02 "Способ для обеспечения
несущей способности металлоконструкций с высокопрочными болтами"
В основе термических компенсаторов - гасителей температурных колебаний СПб ГАСУ
используются
фланцевые соединения растянутых элементов строительных конструкций,
трубопровода со скошенными торцами ,с упругими демпферами сухого трения, на
14
15.
фрикционных фланцевых соединениях, на фрикци-болтах (поглотители энергии)лежит принцип который называется "рассеивание", "поглощение" вибрационной,
сейсмической, взрывной, энергии.
Использования фланцевых фрикционно - подвижных соединений (ФФПС) для фланцевых
соединений растянутых элементов трубопровода со скошенными торцами , с упругими
демпферами сухого трения, на фрикционно –болтовых и протяжных соединениях с
демпфирующими узлами крепления (ДУК с тросовым зажимом-фрикци-болтом ), имеет
пару структурных элементов, соединяющих эти структурные элементы со
скольжением, разной шероховатостью поверхностей в виде демпфирующих тросов (
обладающие значительными фрикционными характеристиками, с многокаскадным
рассеиванием сейсмической, взрывной, вибрационной энергии. Совместное скольжение
включает зажимные средства на основе friktion-bolt ( аналог американского Hollo Bolt ),
заставляющие указанные поверхности, проскальзывать, при применении силы.
В результате пожара, взрыва, вибрации при землетрясении, происходит перемещение
(скольжение), сдвиг фрагментов фланцевых фрикционно-подвижных соединений (
ФФПС) фланцевого соединение растянутых элементов строительных конструкций ,
трубопровода со скошенными торцами, с упругими демпферами сухого трения,
скользящих и демпфирующих фрагментами , по продольным длинным овальным
отверстиям .
Происходит поглощение термической, тепловой энергии, за счет трения частей
корпуса опоры при сейсмической, ветровой, взрывной нагрузки, что позволяет
перемещаться и раскачиваться демпфирующей и пружинистого фланцевого соединение
растянутых элементов трубопровода со скошенными торцами на расчетное
допустимое перемещение, до 1-2 см ( по расчету на сдвиг в SCAD Office , и фланцевое
соединение растянутых элементов трубопровода со скошенными торцами, рассчитана
на одно, два землетрясения или на одну взрывную нагрузку от ударной взрывной волны.
После длительной вибрационной, взрывной, сейсмической нагрузки, на фланцевое
соединение растянутых элементов строительных конструкций, трубопровода со
скошенными торцами с упругими демпферами сухого трения, необходимо заменить,
смятые троса ,вынуть из контактирующих поверхностей, вставить опять в новые
втулки (гильзы) , забить в паз латунной шпильки демпфирующего узла крепления,
новые упругопластичный стопорные обожженные медный многослойный клин (клинья),
с помощью домкрата поднять и выровнять фланцевое соединение растянутых
элементов трубопровода со скошенными торцами трубопровод и затянуть новые
фланцевые фрикци- болтовые соединения, с контрольным натяжением, на начальное
положение конструкции с фрикционными соединениями, восстановить протяжного
соединения на фланцевое соединение растянутых элементов трубопровода со
скошенными торцами , для дальнейшей эксплуатации после взрыва, аварии,
землетрясения для надежной сейсмозащиты, виброизоляции от многокаскадного
демпфирования фланцевого соединение растянутых элементов трубопровода со
скошенными торцами трубопровода с упругими демпферами сухого трения и усилить
основания под строительные конструкции, трубопровод, теплотрассу, агрегаты,
оборудования, задний и сооружений
15
16.
1617.
1718.
1819.
Описание изобретения Термический компенсатор гасительтемпературных колебаний СПб ГАСУ F16L 23/00
Предлагаемое техническое решение предназначено для защиты
строительных конструкций от термических и температурных
колебаний при пожарных нагрузках , температурных напряжениях ,
динамических , многокаскадных нагрузках на строительные
конструкции , металлических ферм , магистральных
трубопроводов, агрегатов, оборудования, зданий, мостов,
сооружений, линий электропередач, рекламных щитов от
сейсмических воздействий за счет использования фланцевого
соединение растянутых элементов использование термического
компенсатора гасителя температурных колебаний строительных
конструкций , трубопровода строительных конструкция, со
скошенными торцами, с упругими демпферами сухого трения
установленных на пружинистую гофру с ломающимися
19
20.
демпфирующими ножками при многокаскадном демпфировании идинамических нагрузках на протяжных фрикционное- податливых
соединений проф. ПГУПС дтн Уздина А М "Болтовое соединение"
№№ 1143895 , 1168755 , 1174616 "Болтовое соединение плоских
деталей".
Известны фрикционные соединения для защиты строительных
конструкций, объектов от динамических воздействий. Известно,
например, болтовое соединение плоских деталей встык, патент
Фланцевое соединение растянутых элементов замкнутого профиля
№ 2413820, «Стыковое соединение растянутых элементов» № 887748
и RU №1174616, F15B5/02 с пр. от 11.11.1983, RU 2249557 D 66C 7/00 "
Узел упругого соединения трехглавного рельса с подкрановой балкой
", RU № 2148 805 G 01 L 5/24 "Способ определения коэффициента
закручивания резьбового соединения "
Изобретение относится к области огнестойкости
строительства, магистральных трубопроводов, и может быть
использовано для фланцевых соединение растянутых элементов
трубопровода со скошенными торцами для технологических ,
магистральных трубопроводов. Система содержит фланцевое
соединение растянутых элементов трубопровода со скошенными
торцами с разной жесткостью, демпфирующий элемент с зазором
50 -100 мм(для сдвига ) . Использование изобретения позволяет
повысить огнестойкость металлоконструкций, трубопроводов с
косым стыком для сейсмозащиты и виброизоляции в резонансном
режиме фланцевые соединения в растянутых элементов и
трубопровода со скошенными торцами
Изобретение относится к огнестойкости строительных
конструкций, трубопроводов, строительству и машиностроению
и может быть использовано для виброизоляции магистральных
трубопроводов, технологического оборудования, агрегатов
трубопроводов и со смещенным центром масс и др.
Наиболее близким техническим решением к заявляемому объекту
является фланцевое соединение растянутых элементов
замкнутого профиля № 2413820 , стыковое соединение
растянутых элементов № 887748 система по патенту РФ
20
21.
(прототип), содержащая и описание работы фланцевого соединениерастянутых элементов трубопровода со скошенными торцами
Недостатком известного устройства является недостаточная
эффективность огнестойкости из-за отсутствия демпфирования
колебаний. Технический результат - повышение эффективности
термической и демпфирующей сейсмоизоляции в резонансном
режиме и упрощение конструкции и монтажа термического
компенсатора гасителя температурных колебаний строительных
конструкций , трубопровода
Это достигается тем, что в демпфирующем фланцевом соединение
растянутых элементов строительных конструкций, трубопровода
со скошенными торцами , содержащей по крайней мер, за счет
демпфирующего фланцевого соединение растянутых элементов
трубопровода со скошенными торцами трубопровод и сухого трения
установлена с использованием фрикци-болта с забитым
обожженным медным упругопластичным клином, конце
демпфирующий элемент, а демпфирующий элемент выполнен в
виде медного клина забитым в паз латунной шпильки с медной
втулкой, при этом нижняя часть штока соединена с основанием
строительных конструкции, трубопровода , опоры , жестко
соединенным с демпирующей на фрикционно –подвижных
болтовых соединениях для обеспечения демпфирования фланцевого
соединение растянутых элементов строительных конструкций ,
кровли, трубопровода со скошенными торцами для термического
компенсатора гасителя температурных колебаний строительных
конструкций , трубопровода
На фиг. 1 представлена стальная ферма с термическими
компенсаторами гасителями температурных колебаний СПб ГАСУ
с фланцевыми соединениями в растянутых элементов
трубопровода со скошенными торцами с упругими демпферами
сухого трения с пружинистыми демпферами сухого трения в
овальных отверстиях для монтажа, крепления термического
компенсатора гасителя температурных колебаний строительных
конструкций , трубопровода
21
22.
Фланцевое соединение растянутых элементов строительныхконструкций, трубопровода со скошенными торцами с упругими
демпферами сухого трения, виброизолирующая система для зданий
и сооружений, содержит основание и овальные отверстия , для
болтов и имеющих одинаковую жесткость и связанных с
строительными конструкциями и опорными элементами верхней
части пояса зданий или сооружения я с использованием
термического компенсатора гасителя температурных колебаний
строительных конструкций , трубопровода
Система дополнительно содержит фланцевого соединение
растянутых элементов трубопровода со скошенными торцами, к
которая крепится фрикци-болтом с пропиленным пазов в латунной
шпильки для забитого медного обожженного стопорного клина ( не
показан на фигуре 2 ) и которая опирается на нижний пояс
основания и демпфирующий элемент, в виде строительных
конструкций, трубопровода с упругими демпферами сухого трения
за счет применения фрикционно –подвижных болтовых
соединениях, выполненных по изобретению проф дтн ПУГУПС
№1143895, 1168755, 1174616, 2010136746 «Способ защиты зданий»,
165076 «Опора сейсмостойкая»
Демпфирующий элемент фланцевого соединение растянутых
элементов строительные конструкции, трубопровода со
скошенными торцами, с упругими демпферами сухого трения за
счет фрикционно-подвижных соединениях (ФПС)и термического
компенсатора гасителя температурных колебаний строительных
конструкций , трубопровода
При термических нагрузках , колебаниях и колебаниях грунта
сейсмоизолирующая и виброизолирующее фланцевое соединение
растянутых элементов строительных конструкций, трубопровода
со скошенными торцами, для демпфирующей сейсмоизоляции
трубопровода (на чертеже не показан) с упругими демпферами
сухого трения , с упругими демпферами сухого трения , элементы и
воспринимают как вертикальные, так и горизонтальные нагрузки,
ослабляя тем самым динамическое воздействие на демпфирующею
сейсмоизоляцию объект, т.е. обеспечивается пространственную
22
23.
сейсмозащиту, виброзащиту и защита от термической ударнойнагрузки
Термический компенсатор гаситель температурных колебаний СПб
ГАСУ с упругими демпферами сухого трения, поглощает как
термическую, так и сейсмическую энергию и так же работает ,
как виброизолирующая система работает следующим образом.
При колебаниях температурных колебаний , используется для как
виброизоляция объекта , фланцеве соединение растянутых
элементов трубопровода со скошенными торцами на основе
фрикционо-подвижных болтовых соединениях , расположенные в
длинных овальных отверстиях воспринимают вертикальные
нагрузки, ослабляя тем самым динамическое воздействие на здание,
сооружение, трубопровод, за счет зазора 50-100 мм между стыками
на болтовых креплениях
Упругодемпфирующая фланцевого соединение растянутых
элементов строительных конструкций, трубопровода со
скошенными торцами с упругими демпферами сухого трения
работает следующим образом.
При колебаниях объекта фланцевое соединение растянутых
элементов строительных конструкций трубопровода со
скошенными торцами с упругими демпферами сухого трения ,
которые воспринимает вертикальные нагрузки, ослабляя тем
самым динамическое воздействие на здание , сооружение .
Горизонтальные колебания гасятся за счет фрикци-болта
расположенного в при креплении опоры к основанию фрикциболтом , что дает ему определенную степень свободы колебаний в
горизонтальной плоскости.
При малых горизонтальных нагрузках фланцевого соединение
растянутых элементов строительных конструкций, трубопровода
со скошенными торцами и силы трения между листами пакета и
болтами не преодолеваются. С увеличением нагрузки происходит
взаимное проскальзывание листов фланцевого соединение
растянутых элементов строительных конструкций трубопровода
23
24.
со скошенными торцами или прокладок относительно накладокконтакта листов с меньшей шероховатостью.
Взаимное смещение листов происходит до упора болтов в края
длинных овальных отверстий для скольжения при многокаскадном
демпфировании и после разрушения при импульсных
растягивающих нагрузках или при многокаскадном демпфировании,
уже не работают упруго. После того как все болты соединения
дойдут до упора края, в длинных овальных отверстий, соединение
начинает работать упруго за счет трения, а затем происходит
разрушение соединения за счет смятия листов и среза болтов, что
нельзя допускать . Сдвиг по вертикали допускается 1 - 2 см или более
и пожарных нагрузках, термического компенсатора гасителя
температурных колебаний строительных конструкций ,
трубопровода
Недостатками известного решения аналога являются: не
возможность использовать фланцевого соединение растянутых
элементов строительных конструкций, трубопровода со
скошенными торцами, ограничение демпфирования по направлению
воздействия только по горизонтали и вдоль овальных отверстий; а
также неопределенности при расчетах из-за разброса по трению.
Известно также устройство для фрикционного демпфирования
антиветровых и антисейсмических воздействий, патент
TW201400676(A)-2014-01-01. Restraint anti-wind and anti-seismic friction
damping device, E04B1/98, F16F15/10, патент США Structural stel
bulding frame having resilient connectors № 4094111 E 04 B 1/98, RU №
2148805 G 01 L 5/24 "Способ определения коэффициента
закручивания резьбового соединения" , RU № 2413820 "Фланцевое
соединение растянутых элементов замкнутого профиля", Украина
№ 40190 А "Устройство для измерения сил трения по поверхностям
болтового соединения" , Украина патент № 2148805 РФ "Способ
определения коэффициента закручивания резьбового соединения"
Таким образом получаем термический компенсатор гаситель
температурных колебаний СПб ГАСУ как фланцевое соединение
растянутых элементов строительных конструкций, трубопровода
со скошенными торцами с упругими демпферами сухого трения и
виброизолирующею конструкцию кинематической или маятниковой
опоры, которая выдерживает вибрационные и сейсмические нагрузки
24
25.
но, при возникновении динамических, импульсных растягивающихнагрузок, взрывных, сейсмических нагрузок, превышающих расчетные
силы трения в сопряжениях, смещается от своего начального
положения в термическом компенсаторе, гасителе
температурных колебаний в строительных конструкций ,
трубопроводе
Недостатками указанной конструкции являются: сложность
конструкции и сложность расчетов из-за наличия большого
количества сопрягаемых трущихся поверхностей и надежность
болтовых креплений
Целью предлагаемого решения является упрощение конструкции,
уменьшение количества сопрягаемых трущихся поверхностей до
одного или нескольких сопряжений отверстий фланцевого
соединение растянутых элементов строительных конструкций,
трубопровода со скошенными торцами, а также повышение
точности расчета при использования тросовой втулки (гильзы) на
фрикци- болтовых демпфирующих податливых креплений и
прокладки между контактирующими поверхностями упругую
обмотку из тонкого троса ( диаметр 2 мм ) в пластмассовой
оплетке или без оплетки, скрученного в два или три слоя
пружинистого троса.
Сущность предлагаемого решения заключается в том, что
фланцевого соединение растянутых элементов строительных
конструкций ,трубопровода со скошенными торцами с упругими
демпферами сухого трения, выполнена из разных частей: нижней корпус, закрепленный на фундаменте с помощью подвижного
фрикци –болта с пропиленным пазом, в который забит медный
обожженный клин, с бронзовой втулкой (гильзой) и свинцовой
шайбой и верхней - шток сборный в виде, фланцевого соединение
растянутых элементов трубопровода со скошенными торцами с
упругими демпферами сухого трения, установленный с
возможностью перемещения вдоль оси и с ограничением
перемещения за счет деформации и виброизолирующего фланцевого
соединение растянутых элементов трубопровода со скошенными
торцами, под действием запорного элемента в виде стопорного
фрикци-болта с тросовой виброизолирующей втулкой (гильзой) с
25
26.
пропиленным пазом в стальной шпильке и забитым в паз меднымобожженным клином.
В верхней и нижней частях фланцевого соединение растянутых
элементов строительных конструкций, трубопровода со
скошенными торцами выполнены овальные длинные отверстия, и
поперечные отверстия (перпендикулярные к центральной оси), в
которые скрепляются фланцевыми соединениями в растянутых
элементов трубопровода со скошенными торцами с установлением
запирающий элемент- стопорный фрикци-болт с контролируемым
натяжением, с медным клином, забитым в пропиленный паз
стальной шпильки и с бронзовой или латунной втулкой ( гильзой), с
тонкой свинцовой шайбой.
Кроме того во фланцевом соединении растянутых элементов
трубопровода со скошенными торцами, параллельно центральной
оси, выполнены восемь открытых длинных пазов, которые
обеспечивают корпусу возможность деформироваться за счет
протяжных соединений с фрикци- болтовыми демпфирующими,
виброизолирующими креплениями в радиальном направлении
строительных конструкций.
В теле фланцевого соединение растянутых элементов трубопровода
со скошенными торцами с упругими демпферами сухого трения в
конструкциях термического компенсатора гасителя
температурных колебаний строительных конструкций ,
трубопровода
Фланцевое соединение растянутых элементов трубопровода со
скошенными торцами, вдоль центральной оси, выполнен длинный паз
ширина которого соответствует диаметру запирающего элемента
(фрикци- болта), а длина соответствует заданному перемещению
трубчатой, квадратной или крестообразной опоры. Запирающий
элемент создает нагрузку в сопряжении опоры - корпуса, с
продольными протяжными пазами с контролируемым натяжением
фрикци-болта с медным клином обмотанным тросовой
виброизолирующей втулкой (пружинистой гильзой) , забитым в
пропиленный паз стальной шпильки и обеспечивает возможность
деформации корпуса и «переход» сопряжения из состояния
возможного перемещения в состояние «запирания» с возможностью
26
27.
перемещения только под вибрационные, сейсмической нагрузкой,взрывные от воздушной волны.
Сущность предлагаемой конструкции термического
компенсатора гасителя температурных колебаний строительных
конструкций , трубопровода , поясняется чертежами, где на
фиг.1 изображено термический компенсатор гаситель
температурных колебаний СПб ГАСУ для строительных
конструкций испытанный в США американскими инженерами на
Аляске, как фланцевое соединение растянутых элементов
строительных конструкций используемо и испытанной в США,
Канаде для строительных конструкций и трубопровода со
скошенными торцами, с упругими демпферами сухого трения на
фрикционных соединениях с контрольным натяжением для
строительных конструкций ;
на фиг.2 изображены виды термического компенсатора
американской фермы смонтированной на болтах , гасителя
температурных колебаний СПб ГАСУ , с боку фланцевого
соединение растянутых элементов трубопровода со скошенными
торцами с упругими демпферами сухого трения со стопорным
(тормозным) фрикци –болт с забитым в пропиленный паз стальной
шпильки обожженным медным стопорным клином;
На фиг 3 изображен вид с верху , фланцевого соединение растянутых
элементов трубопровода со скошенными торцами для
строительных конструкций, стальных ферм на фланцевых
креплениях
фиг. 4 изображен разрез фланцевого соединение растянутых
элементов трубопровода со скошенными торцами с упругими
демпферами сухого трения виброизолирующею, сейсмоизлирующею
опору;
фиг. 5 изображена вид с боку фланцевого соединение растянутых
элементов строительных конструкций трубопровода со скошенными
торцами термического компенсатора гасителя температурных
колебаний строительных конструкций , трубопровода
фиг. 6 изображен демпфирующие фрикци –болты с тросовой гильзой
(пружинистой втулкой) термического компенсатора гасителя
27
28.
температурных колебаний строительных конструкций ,трубопровода
фиг. 7 изображены Японские гасители динамических колебаний, вид
медной или тросовой гильзу для латунной шпильки –болта в
тросовой обмотке два раза, с верху фланцевого соединение с
овальными отверстиями растянутых элементов трубопровода со
скошенными торцами
фиг. 8 изображено фото само фланцевое косого соединение по
замкнутому контуру растянутых элементов трубопровода со
скошенными торцами
фиг. 9 изображен косое фланцевое соединение растянутых
элементов трубопровода со скошенными торцами
фиг. 10 изображено фланцевое Канадское соединение растянутых
элементов трубопровода
фиг. 11 изображено изготовленное фланцевого соединение
растянутых элементов косого компенсатора для трубопровода со
скошенными торцами с косым демпфирующим компенсатором и с
овальными отверстиями ( не показаны )
фиг. 12 изображено протяжное фланцевого соединение растянутых
элементов трубопровода со скошенными торцами термического
компенсатора гасителя температурных колебаний строительных
конструкций , трубопровода
фиг. 13 изображен способ определения коэффициента закручивания
резьбового соединения" по изобретении. № 2148805 МПК G 01 L
5/25 " Способ определения коэффициента закручивания резьбового
соединения" и № 2413098 "Способ для обеспечения несущей
способности металлических конструкций с высокопрочными
болтами"
фиг. 14 изображено Украинское устройство для определения силы
трения по подготовленным поверхностям для болтового соединения
по Украинскому изобретению № 40190 А, заявление на выдачу
патента № 2000105588 от 02.10.2000, опубликован 16.07.2001 Бюл 8
и в статье Рабера Л.М. Червинский А.Е "Пути совершенствования
технологии выполнения фрикционных соединений на высокопрочных
болтах" Национальная металлургический Академия Украины ,
28
29.
журнал Металлургическая и горная промышленность" 2010№ 4 стр109-112
На фиг 15 изображен термический компенсатор гаситель
температурных колебаний СПб ГАСУ и используемые в США разные
термические компенсаторы и графики на английском языке
.Изображен образец для испытания Канадского демпфера и
американские (США) затяжные болты для определение
коэффициента трения в ПК SCAD между контактными
поверхностями соединяемых элементов СТП 006-97 Устройство
соединений на высокопрочных болтах в стальных конструкциях
мостов, СТАНДАРТ ПРЕДПРИЯТИЯ УСТРОЙСТВО
СОЕДИНЕНИЙ НА ВЫСОКОПРОЧНЫХ БОЛТАХ В СТАЛЬНЫХ
КОНСТРУКЦИЯХ МОСТОВ КОРПОРАЦИЯ «ТРАНССТРОЙ»
МОСКВА 1998, РАЗРАБОТАНого Научно-исследовательским
центром «Мосты» ОАО «ЦНИИС» (канд. техн. наук А.С.
Платонов,канд. техн. наук И.Б. Ройзман, инж. А.В. Кручинкин, канд.
техн. наук М.Л. Лобков, инж. М.М. Мещеряков) для испытаний на
вибростойкость, сейсмостойкость образца, фрагмента, узлов
крепления протяжных фрикционно подвижных соединений (ФПС) по
изобретениям проф ПГУПС А .М Уздина №№ 1143895, 1168755,
1174616, 165076 «Опора сейсмостойкая»
Термический компенсатор гаситель температурных колебаний СПб
ГАСУ как аналог огнестойкости фланцевого соединение растянутых
элементов строительных конструкций, трубопровода со
скошенными торцами с упругими демпферами сухого трения,
состоит из двух фланцев (нижний целевой), (верхний составной), в
которых выполнены вертикальные длинные овальные отверстия
диаметром «D», шириной «Z» и длиной . Нижний фланец
охватывает верхний корпус строительных конструкций, трубы
(трубопровода) . При монтаже демпфирующего компенсатора,
поднимается до верхнего предела, фиксируется фрикци-болтами с
контрольным натяжением, со стальной шпилькой болта, с
пропиленным в ней пазом и предварительно забитым в шпильке
обожженным медным клином. и тросовой пружинистой втулкой
(гильзой) В стенке корпусов строительных конструкций и
виброизолирующей, сейсмоизолирующей кинематической опоры или
строительных конструкций, перпендикулярно оси корпусов
29
30.
строительных конструкций выполнено восемь или более длинныховальных отверстий строительных конструкций, в которых
установлен запирающий элемент-калиброванный фрикци –болт с
тросовой демпирующей втулкой, пружинистой гильзой, с забитым в
паз стальной шпильки болта стопорным ( пружинистым )
обожженным медным многослойным упругопластичнм клином, с
демпфирующей свинцовой шайбой и латунной втулкой (гильзой).
Во фланцевом соединении растянутых элементов строительных
конструкций, трубопровода со скошенными торцами , с упругими
демпферами сухого трения, трубно вида в виде скользящих пластин
, вдоль оси выполнен продольный глухой паз длиной «h» (допустимый
ход болта –шпильки ) соответствующий по ширине диаметру
калиброванного фрикци - болта, проходящего через этот паз. В
нижней части демпфирующего компенсатора, выполнен фланец для
фланцевого подвижного соединения с длинными овальными
отверстиями для крепления на фундаменте, а в верхней части
корпуса выполнен фланец для сопряжения с защищаемым
объектом, строительных конструкций ,сооружением, мостом
Сборка фланцевого соединение растянутых элементов строительных
конструкций, трубопровода со скошенными торцами , заключается
в том, что составной ( сборный) фланцевое соединение растянутых
элементов трубопровода со скошенными торцами, в виде основного
компенсатора по подвижной посадке с фланцевыми фрикционноподвижными соединениям (ФФПС). Паз фланцевого соединение
растянутых элементов строительных конструкций, трубопровода
со скошенными торцами, совмещают, скрепленных фрикци-болтом
(высота опоры максимальна).
После этого гайку затягивают тарировочным ключом с
контрольным натяжением до заданного усилия в зависимости от
массы строительных конструкций, трубопровода, агрегата.
Увеличение усилия затяжки гайки на фрикци-болтах приводит к
деформации корпуса и уменьшению зазоров от «Z» до «Z1» в
демпфирующем компенсаторе , что в свою очередь приводит к
увеличению допустимого усилия сдвига (усилия трения) в сопряжении
отверстие в крестообразной, трубчатой, квадратной опоре корпуса.
30
31.
Величина усилия трения в сопряжении внутреннего и наружногокорпусов для фланцевого соединение растянутых элементов
строительных конструкций, трубопровода со скошенными торцами,
зависит от величины усилия затяжки гайки (болта) с
контролируемым натяжением и для каждой конкретной
конструкции и фланцевого соединение растянутых элементов
трубопровода со скошенными торцами (компоновки, габаритов,
материалов, шероховатости и пружинистости стального тонкого
троса уложенного между контактирующими поверхностями
деталей поверхностей, направления нагрузок и др.) определяется
экспериментально или расчетным машинным способом в ПК SCAD.
Виброизоляция, сейсмоизолирующая фланцевого соединение
растянутых элементов строительных конструкций, трубопровода
со скошенными торцами демпфирующего компенсатора , сверху и
снизу закреплена на фланцевых фрикционо-подвижных соединениях
(ФФПС). Во время вибрационных нагрузок или взрыве за счет трения
между верхним и нижним фланцевым соединением растянутых
элементов трубопровода со скошенными торцами, происходит
поглощение вибрационной, взрывной и сейсмической энергии.
Фрикционно- подвижные соединения состоят из скрученных
пружинистых тросов- демпферов сухого трения и свинцовыми
(возможен вариант использования латунной втулки или свинцовых
шайб) поглотителями вибрационной , термической, сейсмической,
взрывной энергии за счет демпфирующих фланцевых соединений в
растянутых элементов строительных конструкций, трубопровода
со скошенными торцами с тросовой втулки из скрученного тонкого
стального троса, пружинистых многослойных медных клиньев и
сухого трения, которые обеспечивают смещение опорных частей
фрикционных соединений на расчетную величину при превышении
горизонтальных вибрационных, взрывных, сейсмических нагрузок от
вибрационных воздействий или величин, определяемых расчетом на
основные сочетания расчетных нагрузок, сама кинематическая
опора при этом начет раскачиваться, за счет выхода обожженных
медных клиньев, которые предварительно забиты в пропиленный паз
стальной шпильки при креплении опоры к нижнему и верхнему
виброизолирующему поясу .
Податливые демпферы фланцевого соединение растянутых
элементов строительных конструкций, трубопровода со
31
32.
скошенными торцами, представляют собой двойную фрикционнуюпару, имеющую стабильный коэффициент трения для термического
компенсатора гасителя температурных колебаний строительных
конструкций , трубопровода .
Сжимающее усилие создается высокопрочными шпильками,
натягиваемыми динамометрическими ключами или гайковертами на
расчетное усилие. Количество болтов определяется с учетом
воздействия собственного веса строительных конструкций,
трубопровода
Сама составное фланцевое соединение растянутых элементов
строительных конструкций, трубопровода со скошенными торцами
с фланцевыми фрикционно - подвижными болтовыми соединениями
должна испытываться на сдвиг 1- 2 см всего, термического
компенсатора гасителя температурных колебаний строительных
конструкций , трубопровода
Сжимающее усилие создается высокопрочными шпильками с
обожженными медными клиньями забитыми в пропиленный паз
стальной шпильки, натягиваемыми динамометрическими ключами
или гайковертами на расчетное усилие с контрольным натяжением
термического компенсатора гасителя температурных колебаний
строительных конструкций , трубопровода
Количество болтов определяется с учетом воздействия
собственного веса (массы) оборудования, сооружения, здания,
моста, Расчетные усилия рассчитываются по СП 16.13330.2011 (
СНиП II -23-81* ) Стальные конструкции п. 14.4, Москва, 2011, ТКТ
45-5.04-274-2012 (02250), «Стальные конструкции» Правила расчет,
Минск, 2013. п. 10.3.2
Фрикци-болт для строительных конструкций, стыкового
демпфирующего косого соединения , фланцевого соединение
растянутых элементов трубопровода со скошенными торцами,
является энергопоглотителем пиковых ускорений (ЭПУ), с помощью
которого, поглощается термическая, вибрационная, взрывная,
ветровая, сейсмическая, вибрационная энергия. Фрикци-болт
снижает пожарную нагрузкуи сейсмическу. на 2-3 балла импульсные
32
33.
растягивающие нагрузки при землетрясении и при взрывной,ударной воздушной волне. Фрикци –болт повышает надежность
работы строительных конструкций, трубопровода, за счет
уменьшения пиковых ускорений, за счет использования протяжных
фрикционных соединений, работающих на растяжение на фрикциболтах, установленных в длинные овальные отверстия с
контролируемым натяжением в протяжных соединениях согласно
ТКП 45-5.04-274-2012 (02250) п. 10.3.2 стр. 74 , Минск, 2013, СП
16.13330.2011,СНиП II-23-81* п. 14.3- 15.2.
Тросовая скрученная из стального тонкого троса ( диаметр 2 мм)
втулка (гильза) фрикци-болта при виброизоляции нагревается за
счет трения между верхней составной и нижней целевой
пластинами (фрагменты опоры) до температуры плавления и
плавится, при этом поглощаются пиковые ускорения температурных
напряжений, пожарной нагрузки, взрывной, сейсмической энергии и
исключается разрушение оборудования, ЛЭП, опор электропередач,
мостов, также исключается разрушение строительных
конструкций ,теплотрасс горячего водоснабжения от тяжелого
автотранспорта и вибрации от ж/д.
В основе повышения огнестойкости строительных конструкций,
виброзащиты с использованием фланцевого соединение растянутых
элементов строительных конструкций, трубопровода со
скошенными торцами, с упругими демпферами сухого трения на
фрикционных соединениях, на фрикци-болтах с тросовой втулкой,
лежит принцип который, на научном языке называется
"рассеивание", "поглощение" сейсмической, взрывной, вибрационной
энергии.
Огнезащита, виброизолирующая , сейсмоизолирующая
кинематическая строительных конструкций, трубопровод, опора
рассчитана на одну сейсмическую нагрузку (9 баллов), либо на одно
температурное напряжение или взрывную нагрузку. После
пожарной нагрузки, температурных напряжений, взрывной или
сейсмической нагрузки необходимо заменить смятые или сломанные
гофрированное виброиозирующее основание, в паз шпильки фрикциболта, демпфирующего узла забить новые демпфирующий и
пружинистый медные клинья, с помощью домкрата поднять,
33
34.
выровнять строительные конструкции, кровлю, опору и затянутьболты на проектное контролируемое протяжное натяжение.
При воздействии пожарной нагрузки, температурных напряжений ,
вибрационных, взрывных нагрузок , сейсмических нагрузок
превышающих силы трения в сопряжении в фланцевом соединение
растянутых элементов трубопровода со скошенными торцами, с
упругими демпферами сухого трения, трубчатого вида , происходит
сдвиг трущихся элементов типа, как шток, строительных
конструкций, стыков металлической фермы, корпуса опоры, в
пределах длины паза, без разрушения строительных конструкций,
оборудования, здания, сооружения, моста.
О характеристиках пожарной нагрузки , температурных
напряжений в строительных конструкций виброизолирующего
демпфирующего компенсатора - фланцевого соединение растянутых
элементов трубопровода со скошенными торцами, сообщалось на
научной XXVI Международной конференции «Математическое и
компьютерное моделирование в механике деформируемых сред и
конструкций», 28.09 -30-09.2015, СПб ГАСУ: «Испытание
математических моделей температурных напряжений
строительных конструкций на фланцевых фрикционноподвижных соединениях (ФФПС) и их реализация в ПК SCAD Office»
(руководитель испытательной лабораторией ОО "Сейсмофонд" при
СПб ГАСУ Мажиев Х Н, можно ознакомиться на сайте:
https://www.youtube.com/watch?v=B-YaYyw-B6s&t=779s
С решениями фланцевого соединение растянутых элементов
трубопровода со скошенными торцами на фланцевых фрикционноподвижных соединений (ФПС) строительных конструкций и
демпфирующих узлов крепления (ДУК), можно ознакомиться: см.
изобретения №№ 1143895, 1174616,1168755 SU, № 4,094,111 US
Structural steel building frame having resilient connectors, TW201400676
Restraint anti-wind and anti-seismic friction damping device (Тайвань).
https://www.maurer.eu/fileadmin/mediapool/01_products/Erdbebenschutzvor
richtungen/Broschueren_TechnischeInfo/MSO_SeismicBrochure_A4_2017_Online.pdf
С лабораторными испытаниями термического компенсатора
гасителя температурных колебаний строительных конструкций ,
трубопровода и лабораторными испытаниями демпфирующего
34
35.
косого компенсатора на основе фланцевого соединение растянутыхэлементов трубопровода со скошенными торцами на основе
фланцевых фрикционно –подвижных соединений для
виброизоирующей кинематической опоры в ПКТИ Строй Тест , ул
Афонская дом 2 можно ознакомиться по ссылке :
https://www.youtube.com/watch?v=XCQl5k_637E
https://www.youtube.com/watch?v=trhtS2tWUZo
https://www.youtube.com/watch?v=ktET4MHW-a8&t=756s
https://www.youtube.com/watch?v=rbO_ZQ3Iud8
https://www.youtube.com/watch?v=qH5ddqeDvE4
https://www.youtube.com/watch?v=sKeW_0jsSLg
Сопоставление с аналогами демпфирующих строительных
конструкций, трубопровода, косого компенсатора для
трубопроводов на основе фланцевого соединение растянутых
элементов трубопровода со скошенными торцами с упругими
демпферами сухого трения, показаны следующие существенные
отличия:
1. Термический компенсатора гасителя температурных колебаний
строительных конструкций , трубопровода при пожарной нагрузке
косого фланцевое соединение растянутых элементов строительных
конструкций, трубопровода со скошенными торцами с упругими
демпферами сухого трения выдерживает термические нагрузки от
перепада температуры при транспортировке по трубопроводу
газа, кислорода в больницах
2. Термического компенсатора гасителя температурных колебаний
строительных конструкций , трубопровода и упругая
податливость демпфирующего фланцевого соединение растянутых
элементов строительных конструкций , трубопровода со
скошенными торцами регулируется повышает огнестойкость
строительных конструкций , трубопровода
4. В отличие от монтажа строительных конструкций без
термических компенсаторов гасителей температурных колебаний
, огнестойкость каркаса здания увеличивается в разы, и свойства
которой ухудшаются со временем, из-за отсутствия огнезащиты ,а
свойства фланцевое косое демпфирующее соединение растянутых
элементов строительных конструкций. трубопровода со
скошенными торцами, остаются неизменными во времени, а при
35
36.
температурном напряжении, пожарная нагрузка возрастает иогнестойкость строительных конструкций падают .
Огнестойкость достигнут за счет использования термического
компенсатора гасителя температурных колебаний строительных
конструкций , трубопровода , что повышает долговечность
демпфирующей упругого фланцевого соединение растянутых
элементов строительных конструкций, трубопровода со
скошенными торцами , так как прокладки на фланцах быстро
изнашивающаяся и стареющая резина , пружинные сложны при
расчет и монтаже. Пожарная безопасность достигнут также из-за
удобства обслуживания узла при эксплуатации строительных
конструкций , фланцевого косого компенсатора соединение
растянутых элементов строительных конструкций, трубопровода
со скошенными торцами
Литература которая использовалась для составления заявки на
изобретение: термического компенсатора гасителя
температурных колебаний строительных конструкций ,
трубопровода с использованием фланцевых соединений,
растянутых элементов трубопровода со скошенными торцами с
упругими демпферами сухого трения косого компенсатора
1. Сабуров В.Ф. Закономерности усталостных повреждений и
разработка методов расчетной оценки долговечности подкрановых
путей производственных зданий. Автореферат диссертации докт.
техн. наук. - ЮУрГУ, Челябинск, 2002. - 40 с.
2. Подкрановые конструкции. Патент 2067075. Россия МКИ В 66 С
7/00, 18.10.93. Бюл.№27, 1997.
3. Нежданов К.К., Туманов В.А., Нежданов А.К., Карев М.А.
Патент России. RU №2192383 С1 (Заявка №2000 119289/28 (020257),
Подкрановая транспортная конструкция. Опубликован 10.11.2002.
1. "СПОСОБ ЗАЩИТЫ ЗДАНИЯ И СООРУЖЕНИЯ ПРИ ВЗРЫВЕ С
ИСПОЛЬЗОВАНИЕМ
СДВИГОУСТОЙЧИВЫХ
И
ЛЕГКОСБРАСЫВАЕМЫХ
СОЕДИНЕНИЙ,
ИСПОЛЬЗУЮЩИЕ
СИСТЕМУ
ДЕМПФИРОВАНИЯ
ФРИКЦИОННОСТИ
И
СЕЙСМОИЗОЛЯЦИЮ ДЛЯ ПОГЛОЩЕНИЯ ВЗРЫВНОЙ И
СЕЙСМИЧЕСКОЙ ЭНЕРГИИ" № 2010136746 E 04 C 2/09 Дата
опубликования 20.01.2013
2. Патент на полезную модель № 165 076 " Опора сейсмостойкая"
10.10.2016 Б.л 28
36
37.
3. Патент на полезную модель № 154506 "Панель противовзрывная"27.08.2015 бюл № 28
4.Изобретение № 1760020 "Сейсмостойкий фундамент" 07.09.1992
5. Изобретение № 1011847 "Башня" 30.08.1982
6. Изобретение № 1038457 "Сферический резервуар" 30.08.1982
7. Изобретение № 1395500 "Способ изготовления
ячеистобетонных изделий на пористых заполнителях" 15.05.1988 8.
Изобретение № 998300 "Захватное устройство для колонн"
23.02.1983
9.
Захватное устройство сэндвич-панелей № 24717800 опуб 05 05.2011
10. Стена и способ ее возведения № 1728414 опул 19.06.1989
11. Заявки на изобретение № 20181229421/20(47400) от 10.08.2018
«Опора сейсмоизолирующая «гармошка». Используется Японии.
12. Заявки на изобретение № 2018105803/20 (008844) от 11.05.2018
«Антисейсмическое фланцевое фрикционно-подвижное соединение
для трубопроводов» F 16L 23/02 ,
13. Заявка на изобретение № 2016119967/20 ( 031416) от 23.05.2016
«Опора сейсмоизолирующая маятниковая» E04 H 9/02.
1.. Журнал «Сельское строительство» № 9/95 стр.30 «Отвести
опасность»
2. Журнал «Жилищное строительство» № 4/95 стр.18
«Использование сейсмоизолирующего пояса для существующих
зданий».
3. Журнал «Жилищное строительство» № 9/95 стр.13
«Сейсмоизоляция малоэтажных жилых зданий»,
4. Журнал «Монтажные и специальные работы в строительстве»
№ 4/95 стр. 24-25 «Сейсмоизоляция малоэтажных зданий»,
5. Российская газета от 26.07.95 стр.3 «Секреты
сейсмостойкости». .
6. Российская газета от 11.06.95 «Землетрясение: предсказание на
завтра»
8. Газета «Грозненский рабочий» № 5 февраль 1996 «Честь мундира
или сэкономленные миллиарды»,
9. «Голос Чеченской Республики» 1 февраль 1996 «Башни и баллы» .
10. Республика ЧР № 7 август 1995 «Удар невиданной звезды или
через четыре года».
11. Газета «Земля России» за октябрь 1998 стр. 3 «Уникальные
технологии возведения фундаментов без заглубления –
дом на
грунте. Строительство на пучинистых и просадочных грунтах»
37
38.
12. Газета «Земля России» № 2 ( 26 ) стр. 2-3 « Предложение ученыхобщественной организации инженеров «Сейсмофонд» –
Фонда
«Защита и безопасность городов» в области реформы ЖКХ.
13. Журнал «Жизнь и безопасность « № 3/96 стр. 290-294
«Землетрясение по графику» Ждут ли через четыре года планету
«Земля глобальные и разрушительные потрясения «звездотрясения» .
14. Журнал «Монтажные и специальные работы в строительстве»
№ 11/95 стр. 25 «Датчик регистрации электромагнитных
волн,
предупреждающий о землетрясении - гарантия сохранения вашей
жизни!» и другие зарубежные научные издания и
журналах за
1994- 2004 гг. изданиях С брошюрой «Как построить сейсмостойкий
дом с учетом народного опыта сейсмостойкого строительства
горцами Северного
Кавказа сторожевых башен» с.79 г. Грозный
–1996. в ГПБ им Ленина г. Москва и РНБ СПб пл. Островского, д.3
Формула изобретения термического компенсатора гасителя
температурных и динамических колебаний СПб ГАСУ , косого и
традиционного фланцевого соединение растянутых элементов
трубопровода со скошенными торцами с упругими
демпферами сухого трения
1. Термический компенсатор- гаситель температурных
колебаний СПб ГАСУ , как и фланцевое соединение,
растянутых элементов строительных конструкций ,
трубопровода со скошенными торцами с упругими
демпферами сухого трения, демпфирующего косого
компенсатора для строительных конструкций и
магистрального трубопровода , содержащая: фланцевое
соединение растянутых элементов трубопровода со
скошенными и не скошенными торцами с упругими демпферами
сухого трения на фрикционно-подвижных болтовых
соединениях, с одинаковой жесткостью с демпфирующий
элементов при многокаскадном демпфировании, для
термической защиты и сейсмоизоляции строительных
конструкций трубопровода и поглощение сейсмической
38
39.
энергии, в горизонтальнойи вертикальной плоскости по лининагрузки, при этом упругие демпфирующие косые
компенсаторы , выполнено в виде фланцевого соединение
растянутых элементов трубопровода со скошенными торцами
2. Термический компенсатор гаситель- температурных
колебаний СПб ГАСУ, фланцевое соединение растянутых
элементов трубопровода со скошенными и не скошенными
торцами с упругими демпферами сухого трения , повышенной
надежности с улучшенными демпфирующими свойствами,
содержащая , сопряженный с ним подвижный узел с
фланцевыми фрикционно-подвижными соединениями и упругой
втулкой (гильзой), закрепленные запорными элементами в виде
протяжного соединения контактирующих поверхности детали
и накладок выполнены из пружинистого троса между
контактирующими поверхностями, с разных сторон,
отличающийся тем, что с целью повышения надежности к
термическим и температурным колебаниям при пожаре для
строительных конструкций, за счет демпфирующее т
термической эффективности сухого трения при термических и
динамических колебаниях , за счет соединенныя, между собой с
помощью фрикционно-подвижных соединений с контрольным
натяжением фрикци-болтов с тросовой пружинистой втулкой
(гильзы) , расположенных в длинных овальных отверстиях , с
помощью фрикци-болтами с медным упругоплатичном,
пружинистым многослойным, склеенным клином или тросовым
пружинистым зажимом , расположенной в коротком овальном
отверстии верха и низа косого компенсатора для
трубопроводов
3. Способ работы компенсатор гаситель температурных
колебаний СПб ГАСУ, с использованием
фланцевого соединение растянутых элементов трубопровода
со скошенными и не скошенными торцами с упругими
демпферами сухого трения, для обеспечения несущей
способности при пожаре и высокой температуре
39
40.
строительных конструкций , трубопровода на фрикционно подвижного соединения с высокопрочными фрикци-болтами стросовой втулкой (гильзой), включающий, контактирующие
поверхности которых предварительно обработанные,
соединенные на высокопрочным фрикци- болтом и гайкой при
проектном значении усилия натяжения болта, устанавливают
на элемент сейсмоизолирующей опоры ( демпфирующей), для
определения усилия сдвига и постепенно увеличивают нагрузку
на накладку до момента ее сдвига, фиксируют усилие сдвига и
затем сравнивают его с нормативной величиной показателя
сравнения, далее, в зависимости от величины отклонения,
осуществляют коррекцию технологии монтажа
сейсмоизолирующей опоры, отличающийся тем, что в
качестве показателя сравнения используют проектное значение
усилия натяжения высокопрочного фрикци- болта с медным
обожженным клином забитым в пропиленный паз латунной
шпильки с втулкой -гильзы из стального тонкого троса , а
определение усилия сдвига на образце-свидетеле осуществляют
устройством, содержащим неподвижную и сдвигаемую
детали, узел сжатия и узел сдвига, выполненный в виде рычага,
установленного на валу с возможностью соединения его с
неподвижной частью устройства и имеющего отверстие под
нагрузочный болт, а между выступом рычага и тестовой
накладкой помещают самоустанавливающийся сухарик,
выполненный из закаленного материала.
4. Способ по п.1, отличающийся тем, что при отношении
усилия сдвига при термических колебаниях и нагрузках к
проектному усилию натяжения высокопрочного фрикци-болта
с втулкой и тонкого стального троса в оплетке, диапазоне
0,54-0,60 корректировку технологии монтажа, сам
термический компенсатор, гаситель температурных
колебаний СПб ГАСУ, с использованием термического
компенсатора, как антивибрационного косого или не косого
демпфирующего термического компенсатора , не производят,
40
41.
при отношении в диапазоне 0,50-0,53 при монтажеувеличивают натяжение болта, а при отношении менее 0,50,
кроме увеличения усилия натяжения, дополнительно проводят
обработку контактирующих поверхностей фланцевого
соединение растянутых элементов строительных конструкции
и трубопровода со скошенными торцами с использованием
цинконаполненной грунтовокой ЦВЭС , которая
используется при строительстве мостов https://vmpanticor.ru/publishing/265/2394/
http://docs.cntd.ru/document/1200093425.
41
42.
4243.
4344.
4445.
(21) РЕГИСТРАЦИОННЫЙ №Дата поСТУПЛЕНИЯ
оригиналов документов заявки
ВХОДЯЩИЙ №
(85) ДАТА ПЕРЕВОДА международной заявки на национальную фазу
(86)
(регистрационный номер международной заявки и дата
международной подачи, установленные получающим
АДРЕС ДЛЯ ПЕРЕПИСКИ
(полный почтовый адрес, имя или
наименование адресата)
197371, Санкт-Петербург, а/я газета «Земля РОССИИ»
Телефон: Факс: E-mail: [email protected]
ведомством)
[email protected] [email protected]
(87)
(номер и дата международной публикации международной
заявки)
моб 8 (921) 962-67-78,
Телефон:
45
(996) 798-26-54,
(911) 175-84-65
[email protected] Факс:
E-mail:
46.
ЗАЯВЛЕНИЕо выдаче патента Российской Федерации
на полезную модель
В Федеральную службу по интеллектуальной собственности,
патентам и товарным знакам
Бережковская наб., 30, корп.1, Москва, Г-59, ГСП-5, 123995
(54) НАЗВАНИЕ ПОЛЕЗНОЙ МОДЕЛИ
Термический компенсатор гаситель температурных колебаний СПб ГАСУ F16L 23/00
(71) ЗАЯВИТЕЛЬ
(Указывается полное имя или наименование (согласно учредительному документу),
место жительство или место нахождения, включая официальное наименование страны и полный
почтовый адрес)
Сталин Иосиф Виссарионович
ОГРН
КОД страны по стандарту
ВОИС ST. 3
(если он установлен)
Указанное лицо является
государственным заказчиком
муниципальным заказчиком,
исполнитель работ____________________________________________________________
( указать наименование)
исполнителем работ по
государственному
муниципальному контракту,
заказчик работ ______________________________________________________________
( указать наименование)
ПРЕДСТАВИТЕЛЬ(И) ЗАЯВИТЕЛЯ
Контракт от(74)
_________________________
№
Указанное(ые) ниже лицо(а) назначено(назначены) заявителем(заявителями) для ведения дел по получению
_________________________________________
патента
от его(их) имени в Федеральной службе по интеллектуальной собственности, патентам и товарным
знакам
Патентным(и) поверенным(и)
Иным представителем
Телефон:
Фамилия, имя, отчество (если оно имеется)
Факс:
Адрес:
E-mail:
Срок представительства
Регистрационный (е)
номер (а) патентного(ых)
поверенного(ых)
(заполняется в случае назначения иного представителя без представления доверенности)
Бланк заявления ПМ
Является
лист 1
(72) Автор
Полный почтовый адрес места жительства,
включающий официальное наименование
страны и ее код по стандарту ВОИС ST. 3
(указывается полное имя)
46
47.
Сталин Иосиф Виссарионович197371, СПб , а/я газета «Земля
РОССИИ»
Я __________________________________________________________________________________________
(полное имя)
прошу не упоминать меня как автора при публикации сведений
Подпись автора
ПЕРЕЧЕНЬ ПРИЛАГАЕМЫХ ДОКУМЕНТОВ:
о заявке
о выдаче патента.
Кол-во л. в 1 экз.
Кол-во экз.
описание полезной модели
8
2
формула полезной модели
1
2
чертеж(и) и иные материалы
8
2
реферат
6
2
1
1
документ об уплате патентной пошлины
(указать)
документ, подтверждающий наличие оснований
для освобождения от уплаты патентной пошлины
для уменьшения размера патентной
пошлины
для отсрочки уплаты патентной пошлины
копия первой заявки
(при испрашивании конвенционного приоритета)
перевод заявки на русский язык
доверенность
другой документ (указать)
Фигуры чертежей, предлагаемые для публикации с рефератом ______________________________________________
47
Бланк заявления ПМ
лист 2
(указать)
48.
ЗАЯВЛЕНИЕ НА ПРИОРИТЕТ (Заполняется только при испрашивании приоритета более раннего, чем дата подачизаявки)
Прошу установить приоритет полезной модели по дате
1
подачи первой заявки в государстве-участнике Парижской конвенции по охране промышленной собственности
(п.1 ст.1382 Гражданского кодекса Российской Федерации) (далее - Кодекс)
2
поступления дополнительных материалов к более ранней заявке (п.2 ст. 1381 Кодекса)
3
подачи более ранней заявки (п.3 ст.1381 Кодекса)
(более ранняя заявка считается отозванной на дату подачи настоящей заявки)
4
подачи/приоритета первоначальной заявки (п. 4 ст. 1381 Кодекса), из которой выделена настоящая заявка
№ первой (более ранней, первоначальной)
заявки
Дата
испрашиваемого
приоритета
(33) Код страны
подачи
по стандарту
ВОИС ST. 3
(при испрашивании конвенционного
приоритета)
1.
2.
3.
ХОДАТАЙСТВО ЗАЯВИТЕЛЯ: Прикладывается об освобождении от государственной
пошлины, как ветеран боевых действий
начать рассмотрение международной заявки ранее установленного срока (п.1 ст. 1396 Кодекса)
Подпись
48
49.
Подпись заявителя или патентного поверенного, или иного представителя заявителя, дата подписи (при подписании отимени юридического лица подпись руководителя или иного уполномоченного на это лица удостоверяется печатью)
Бланк заявления ПМ
лист 3
Дата отправки 28.01.22
Оплата услуг ФИПС per заявки на выд патента РФ на
полезную модель и принятия решения по результатам
формальной экспертизы госпошлина на плезн. модель
"Опора
сейсмоизолирующая Об
"гармошка"
Е04Н9/02 от уплаты патентной пошлины как
ХОДАТАЙСТВО
освобождении
2500.000 ветеран
Заявка № 2018129421/20(047400)
боевых действий ,отсогласно ст 13 Положение о пошлинах
29.08.2018<неиДве тысячи 500 руб Опора
сейсмоизолирующая "гармошка" Зам зав отд. ФИПС
Почт. адр. 197371, СПб, а/я газета «Земля РОССИИ»)
Е.П.Мурзина (499) 240-34-76
Заявитель физические лица
Представитель: Сталин Иосиф Виссарионович
Сталин Иосиф Виссарионович
адрес: 197371, Санкт-Петерубург, 197371, СПб, а/я «Газета Земля России»
ИНОЙ ПРЕДСТАВИТЕЛЬ (полное имя, местонахождение)
Телефон: моб: 89117626150
Телекс: моб: 89218718396
Факс: 3780709
Адрес для переписки: 197371, Санкт-Петербург, а/я газета «Земля РОССИИ»
49
+ 7 ( 911) 175-84-65, (996) 798-26-54, (921) 962-67-78
50.
Руководителю ФИПС г Москва 125993, Бережковская наб , 30 корп 1 ГСП -3 и гл специалистуотдела формальной экспертизы заявок на изобртения ФИПС Е.С.Нефедова тел 8 (495) 531-65-63
, факс: (8-495) 531-63-18, тел (8-499) 240-60-15
ЗАЯВЛЕНИЕ О освобождении от патентной пошлины согласно пункта 13 Положение о пошлине в РФ
О выдачи патента РФ на изобретение: Термический компенсатор гаситель температурных колебаний СПб ГАСУ F16L 23/00
Согласно п 13 Положения о пошлинах от уплаты пошлины Федеральный институт промышленной собственности ФМПС освобождается автор полезной
модели , являющийся ветераном боевых действий испрашиваемый патент
http://www.consultant.ru/document/cons_doc_LAW_82755/df190ef722d41661ade3e070a259dad5aa252656/
От уплаты пошлин, указанных в пункте 12 настоящего Положения,освобождается: физическое лицо, указанное в пункте 12 , настоящего
Положения, являющееся ветераном Великой Отечественной войны,ветераном боевых действий на территории СССР, на территории Российской
Федерации и на территориях других государств (далее -ветераны боевых действий); коллектив авторов, испрашивающихпатент на свое имя, или
патентообладателей, каждый из которыхявляется ветераном Великой Отечественной войны, ветераном
Термический компенсатор гаситель температурных колебаний СПб ГАСУ F16L 23/00 И изобретение на
полезную модель Термический компенсатор гаситель температурных колебаний СПб ГАСУ F16L 23/00
Заявление Прошу предоставить мне льготы и
освобождении от патентной пошлины
согласно указанных в пункте 12 настоящего Положения, освобождается: физическое лицо,
указанное в пункте 12 и пункта 1 статья 296 Налогового кодекса Республики Беларусь и РФ о
выдачи патента РФ и Республики Беларусь на изобретение , так как я отношусь к
следующей льготной категории налогоплательщиков, для которых
установлена льгота, как инвалиды I, групп и ветеран боевых действий на
Северном Кавказе 1994-1995 гг
Приложение(я) к заявлению:
документ об уплате пошлины
Кол- во
1
экз.
Кол-во
1
стр.
1
1
листы для продолжения
заменяющие листы Заявления о выдаче патента
Ходатайство (указать):
Подпись изобретателя
Печать
Дата 28.01.2021
50
51.
5152.
5253.
5354.
5455.
5556.
5657.
5758.
5859.
5960.
6061.
6162.
6263.
6364.
РОССИЙСКАЯ ФЕДЕРАЦИЯ(19)
RU 2010136746
(11)
20
(13)
ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ
A
(51) МПК
(12)
E04C 2/00 (2006.01)
ЗАЯВКА НА ИЗОБРЕТЕНИЕ
Состояние делопроизводства: Экспертиза завершена (последнее изменение статуса: 02.10.2013)
(21)(22) Заявка: 2010136746/03, 01.09.2010
(71) Заявитель(и):
Открытое акционерное общество "Теплан
Приоритет(ы):
(22) Дата подачи заявки: 01.09.2010
(72) Автор(ы):
Подгорный Олег Александрович (RU),
(43) Дата публикации заявки: 20.01.2013 Бюл. № 2
Акифьев Александр Анатольевич (RU),
Адрес для переписки:
Тихонов Вячеслав Юрьевич (RU),
443004, г.Самара, ул.Заводская, 5, ОАО "Теплант"
Родионов Владимир Викторович (RU),
Гусев Михаил Владимирович (RU),
Коваленко Александр Иванович (RU)
(54) СПОСОБ ЗАЩИТЫ ЗДАНИЯ И СООРУЖЕНИЯ ПРИ ВЗРЫВЕ С ИСПОЛЬЗОВАНИЕМ
СДВИГОУСТОЙЧИВЫХ И ЛЕГКОСБРАСЫВАЕМЫХ СОЕДИНЕНИЙ, ИСПОЛЬЗУЮЩИЕ
СИСТЕМУ ДЕМПФИРОВАНИЯ ФРИКЦИОННОСТИ И СЕЙСМОИЗОЛЯЦИЮ ДЛЯ ПОГЛОЩЕНИЯ
ВЗРЫВНОЙ И СЕЙСМИЧЕСКОЙ ЭНЕРГИИ
(57) Формула изобретения
1. Способ защиты здания от разрушений при взрыве или землетрясении, включающий
выполнение проема/проемов рассчитанной площади для снижения до допустимой величины
взрывного давления, возникающего во взрывоопасных помещениях при аварийных
внутренних взрывах, отличающийся тем, что в объеме каждого проема организуют зону,
представленную в виде одной или нескольких полостей, ограниченных эластичным
огнестойким материалом и установленных на легкосбрасываемых фрикционных соединениях
при избыточном давлении воздухом и землетрясении, при этом обеспечивают плотную
посадку полости/полостей во всем объеме проема, а в момент взрыва и землетрясения под
действием взрывного давления обеспечивают изгибающий момент полости/полостей и
осуществляют их выброс из проема и соскальзывают с болтового соединения за счет
ослабленной подпиленной гайки.
2. Способ по п.1, отличающийся тем, что «сэндвич»-панели, щитовые панели
смонтированы на высокоподатливых с высокой степенью подвижности фрикционных,
скользящих соединениях с сухим трением с включением в работу фрикционных гибких
стальных затяжек диафрагм жесткости, состоящих из стальных регулируемых натяжений
64
65.
затяжек сухим трением и повышенной подвижности, позволяющие перемещатьсяперекрытиям и «сэндвич»-панелям в горизонтали в районе перекрытия 115 мм, т.е. до 12 см,
по максимальному отклонению от вертикали 65 мм, т.е. до 7 см (подъем пятки на уровне
фундамента), не подвергая разрушению и обрушению конструкции при аварийных взрывах и
сильных землетрясениях.
3. Способ по п.2, отличающийся тем, что каждая «сэндвич»-панель крепится на
сдвигоустойчивых соединениях со свинцовой, медной или зубчатой шайбой, которая
распределяет одинаковое напряжение на все четыре-восемь гаек и способствует
одновременному поглощению сейсмической и взрывной энергии, не позволяя разрушиться
основным несущим конструкциям здания, уменьшая вес здания и амплитуду колебания
здания.
4. Способ по п.3, отличающийся тем, что за счет новой конструкции сдвигоустойчивого
податливого соединения на шарнирных узлах и гибких диафрагмах «сэндвич»-панели могут
монтироваться как самонесущие без стального каркаса для малоэтажных зданий и
сооружений.
5. Способ по п.4, отличающийся тем, что система демпфирования и фрикционности и
поглощения сейсмической энергии может определить величину горизонтального и
вертикального перемещения «сэндвич»-панели и определить ее несущую способность при
землетрясении или взрыве прямо на строительной площадке, пригрузив «сэндвич»-панель и
создавая расчетное перемещение по вертикали лебедкой с испытанием на сдвиг и
перемещение до землетрясения и аварийного взрыва прямо при монтаже здания и
сооружения.
6. Способ по п.5, отличающийся тем, что расчетные опасные перемещения определяются,
проверяются и затем испытываются на программном комплексе ВК SCAD 7/31 r5, ABAQUS
6.9, MONOMAX 4.2, ANSYS, PLAKSIS, STARK ES 2006, SoliddWorks 2008, Ing+2006,
FondationPL 3d, SivilFem 10, STAAD.Pro, а затем на испытательном при объектном
строительном полигоне прямо на строительной площадке испытываются фрагменты и узлы,
и проверяются экспериментальным путем допустимые расчетные перемещения строительных
конструкций (стеновых «сэндвич»-панелей, щитовых деревянных панелей, колонн,
перекрытий, перегородок) на возможные при аварийном взрыве и при землетрясении более 9
баллов перемещение по методике разработанной испытательным центром ОО «Сейсмофонд»
- «Защита и безопасность городов».
Изобретение полезная модель Опора сейсмостойкая Сейсмофонд Андреев Б А Коваленко А И
Опора сейсмостойкая состоит из корпуса 1 в котором выполнено вертикальное отверстие диаметром « D»,
которое охватывает цилиндрическую поверхность штока 2 по подвижной посадке, например Н9/f9. В стенке
корпуса перпендикулярно его оси, выполнено два отверстия в которых установлен калиброванный болт
3.Кроме того, вдоль оси отверстия корпуса, выполнены два паза шириной «z» и длиной «l». В штоке
вдоль оси выполнен продольный (глухой) паз длиной «h» (допустимый ход штока) соответствующий по
ширине диаметру калиброванного болта 3 , проходящего через паз штока.
В нижней части корпуса 1 выполнен фланец с отверстиями для крепления на фундаменте, а в верхней
части штока 2 выполнен фланец для сопряжения с защищаемым объектом. Сборка опоры заключается в
том, что шток 2 сопрягается с отверстием «D» корпуса по подвижной посадке. Паз штока совмещают с
поперечными отверстиями корпуса и соединяют калиброванным болтом 3 , с шайбами 4, на который с
предварительным усилием (вручную) навинчивают гайку 5, скрепляя шток и корпус в положении при
котором нижняя поверхность паза штока контактирует с поверхностью болта (высота опоры
максимальна).
После этого гайку 5 затягивают тарировочным ключом до заданного усилия. Увеличение усилия затяжки
гайки (болта) приводит к уменьшению зазоров « z» корпуса и увеличению усилия сдвига в сопряжении
отверстие корпуса-цилиндр штока. Зависимость усилия трения в сопряжении корпус-шток от величины
усилия затяжки гайки(болта) определяется для каждой конкретной конструкции (компоновки, габаритов,
материалов, шероховатости поверхностей и др.) экспериментально
65
66.
Е04Н9/02Опора сейсмостойкая
Предлагаемое техническое решение предназначено для защиты
сооружений, объектов и оборудования от сейсмических воздействий за
счет использования фрикционно податливых соединений. Известны
фрикционные соединения для защиты объектов от динамических
воздействий. Известно, например Болтовое соединение плоских деталей
встык по Патенту RU 1174616 , F15B5/02 с пр. от 11.11.1983.
Соединение содержит металлические листы, накладки и прокладки. В
листах, накладках и прокладках выполнены овальные отверстия через
которые пропущены болты, объединяющие листы, прокладки и накладки
в пакет. При малых горизонтальных нагрузках силы трения между
листами пакета и болтами не преодолеваются. С увеличением нагрузки
происходит взаимное проскальзывание листов или прокладок
относительно накладок контакта листов с меньшей шероховатостью.
Взаимное смещение листов происходит до упора болтов в края овальных
отверстий после чего соединения работают упруго. После того как все
болты соединения дойдут до упора в края овальных отверстий,
соединение начинает работать упруго, а затем происходит разрушение
соединения за счет смятия листов и среза болтов. Недостатками
известного являются: ограничение демпфирования по направлению
воздействия только по горизонтали и вдоль овальных отверстий; а также
неопределенности при расчетах из-за разброса по трению.
Известно также Устройство для фрикционного демпфирования
антиветровых и антисейсмических воздействий по Патенту
TW201400676(A)-2014-01-01. Restraint anti-wind and anti-seismic friction
damping device, E04B1/98, F16F15/10.
Устройство содержит базовое основание, поддерживающее защищаемый
объект, нескольких сегментов (крыльев) и несколько внешних пластин. В
сегментах выполнены продольные пазы.
Трение демпфирования создается между пластинами и наружными
поверхностями сегментов. Перпендикулярно вертикальной поверхности
сегментов, через пазы, проходят запирающие элементы-болты, которые
фиксируют сегменты и пластины друг относительно друга. Кроме того,
запирающие элементы проходят через блок поддержки, две пластины,
через паз сегмента и фиксируют конструкцию в заданном положении.
Таким образом получаем конструкцию опоры, которая выдерживает
66
67.
ветровые нагрузки но, при возникновении сейсмических нагрузок,превышающих расчетные силы трения в сопряжениях, смещается от
своего начального положения, при этом сохраняет конструкцию без
разрушения.
Недостатками указанной конструкции являются: сложность конструкции
и сложность расчетов из-за наличия большого количества сопрягаемых
трущихся поверхностей.
Целью предлагаемого решения является упрощение конструкции,
уменьшение количества сопрягаемых трущихся поверхностей до одного
сопряжения отверстие корпуса-цилиндр штока, а также повышение
точности расчета.
Сущность предлагаемого решения заключается в том, что опора
сейсмостойкая выполнена из двух частей: нижней-корпуса,
закрепленного на фундаменте и верхней-штока, установленного с
возможностью перемещения вдоль общей оси и с возможностью
ограничения перемещения за счет деформации корпуса под действием
запорного элемента. В корпусе выполнено центральное отверстие,
сопрягаемое с цилиндрической поверхностью штока, и поперечные
отверстия (перпендикулярные к центральной оси) в которые
устанавливают запирающий элемент-болт. Кроме того в корпусе,
параллельно центральной оси, выполнены два открытых паза, которые
обеспечивают корпусу возможность деформироваться в радиальном
направлении.
В теле штока, вдоль центральной оси, выполнен паз ширина которого
соответствует диаметру запирающего элемента (болта), а длина
соответствует заданному перемещению штока. Запирающий элемент
создает нагрузку в сопряжении шток-отверстие корпуса, а продольные
пазы обеспечивают возможность деформации корпуса и «переход»
сопряжения из состояния возможного перемещения в состояние
«запирания» с возможностью перемещения только под сейсмической
нагрузкой.
Сущность предлагаемой конструкции поясняется чертежами, где на
фиг.1 изображен разрез А-А (фиг.2); на фиг.2 изображен поперечный
разрез Б-Б (фиг.1); на фиг.3 изображен разрез В-В (фиг.1); на фиг.4
изображен выносной элемент 1 (фиг.2) в увеличенном масштабе.
67
68.
Опора сейсмостойкая состоит из корпуса 1 в котором выполненовертикальное отверстие диаметром «D», которое охватывает
цилиндрическую поверхность штока 2 предварительно по подвижной
посадке, например H7/f7.
В стенке корпуса перпендикулярно его оси, выполнено два отверстия в
которых установлен запирающий элемент-калиброванный болт 3. Кроме
того, вдоль оси отверстия корпуса, выполнены два паза шириной «Z» и
длиной «l».
В теле штока вдоль оси выполнен продольный глухой паз длиной «h»
(допустмый ход штока) соответствующий по ширине диаметру
калиброванного болта, проходящего через этот паз. В нижней части
корпуса 1 выполнен фланец с отверстиями для крепления на фундаменте,
а в верхней части штока 2 выполнен фланец для сопряжения с
защищаемым объектом. Сборка опоры заключается в том, что шток 2
сопрягается с отверстием «D» корпуса по подвижной посадке. Паз штока
совмещают с поперечными отверстиями корпуса и соединяют
калиброванным болтом 3, с шайбами 4, на с предварительным усилием
(вручную) навинчивают гайку 5, скрепляя шток и корпус в положении
при котором нижняя поверхность паза штока контактирует с
поверхностью болта (высота опоры максимальна).
После этого гайку 5 затягивают тарировочным ключом до заданного
усилия. Увеличение усилия затяжки гайки (болта) приводит к
деформации корпуса и уменьшению зазоров от «Z» до «Z1» в корпусе,
что в свою очередь приводит к увеличению допустимого усилия сдвига
(усилия трения) в сопряжении отверстие корпуса – цилиндр штока.
Величина усилия трения в сопряжении корпус-шток зависит от величины
усилия затяжки гайки (болта) и для каждой конкретной конструкции
(компоновки, габаритов, материалов, шероховатости поверхностей,
направления нагрузок и др.) определяется экспериментально. При
воздействии сейсмических нагрузок превышающих силы трения в
сопряжении корпус-шток, происходит сдвиг штока, в пределах длины
паза выполненного в теле штока, без разрушения конструкции.
Формула (черновик) Е04Н9
Опора сейсмостойкая, содержащая корпус и сопряженный с ним
подвижный узел (…) закрепленный запорным элементом
отличающийся тем, что в корпусе выполнено центральное
68
69.
вертикальное отверстие, сопряженное с цилиндрическойповерхностью штока, при этом шток зафиксирован запорным
элементом, выполненным в виде калиброванного болта, проходящего
через поперечные отверстия корпуса и через вертикальный паз,
выполненный в теле штока и закрепленный гайкой с заданным
усилием, кроме того в корпусе, параллельно центральной оси,
выполнено два открытых паза длина которых, от торца корпуса,
больше расстояния до нижней точки паза штока.
69
70.
7071.
F 16 L 23/02 F 16 L 51/00Антисейсмическое фланцевое соединение трубопроводов
Реферат
Техническое решение относится к области строительства
магистральных трубопроводов и предназнечено для защиты шаровых
кранов и трубопровода от возможных вибрационных , сейсмических и
взрывных воздействий Конструкция фрикци -болт выполненный из
латунной шпильки с забитмы медным обожженным клином позволяет
71
72.
обеспечить надежный и быстрый погашение сейсмической нагрузки приземлетрясении, вибрационных вождействий от железнодорожного и
автомобильно транспорта и взрыве .Конструкция фрикци -болт,
состоит их латунной шпильки , с забитым в пропиленный паз медного
клина, которая жестко крепится на фланцевом фрикционноподвижном соединении (ФФПС) . Кроме того между
энергопоглощаюим клином вставляютмс свинффцовые шайбы с двух
сторо, а латунная шпилька вставлдяетт фв ФФПС с медным
ободдженным кгильзоц или втулкой ( на чертеже не показана) 1-4 ил.
Описание изобретения Антисейсмическое фланцевое соединение
трубопроводов
Патент Великобритании № 1260143, кл. F 2 G, фиг. 2, 1972.
Бергер И. А. и др. Расчет на прочность деталей машин. М.,
«Машиностроение», 1966, с. 491. (54) (57) 1.
Антисейсмическое фланцевое соединение трубопроводов
Предлагаемое техническое решение предназначено для защиты шаровых
кранов и трубопроводов от сейсмических воздействий за счет
использования фрикционное- податливых соединений. Известны
фрикционные соединения для защиты объектов от динамических
воздействий. Известно, например, болтовое фланцевое соединение ,
патент RU №1425406, F16 L 23/02.
Соединение содержит металлические тарелки и прокладки. С
увеличением нагрузки происходит взаимное демпфирование колец тарелок.
Взаимное смещение происходит до упора фланцевого фрикционно
подвижного соедиения (ФФПС), при импульсных растягивающих
нагрузках при многокаскадном демпфировании, корые работают
упруго.
Недостатками известного решения являются: ограничение
демпфирования по направлению воздействия только по горизонтали и
вдоль овальных отверстий; а также неопределенности при расчетах
из-за разброса по трению. Известно также устройство для
фрикционного демпфирования и антисейсмических воздействий,
патент SU 1145204, F 16 L 23/02 Антивибрационное фланцевое
соединение трубопроводов
Устройство содержит базовое основание, нескольких сегментов пружин и несколько внешних пластин. В сегментах выполнены
продольные пазы. Сжатие пружин создает демпфирование
72
73.
Таким образом получаем фрикционно -подвижное соединение напружинах, которые выдерживает сейсмические нагрузки но, при
возникновении динамических, импульсных растягивающих нагрузок,
взрывных, сейсмических нагрузок, превышающих расчетные силы
трения в сопряжениях, смещается от своего начального положения, при
этом сохраняет трубопровод без разрушения.
Недостатками указанной конструкции являются: сложность
конструкции и дороговизна, из-за наличия большого количества
сопрягаемых трущихся поверхностей и надежность болтовых креплений
с пружинами
Целью предлагаемого решения является упрощение конструкции,
уменьшение количества сопрягаемых трущихся поверхностей до одного
или нескольких сопряжений в виде фрикци -болта , а также
повышение точности расчета при использования фрикци- болтовых
демпфирующих податливых креплений для шаровых кранов и
трубопровода.
Сущность предлагаемого решения заключается в том, что с помощью
подвижного фрикци –болта с пропиленным пазом, в который забит
медный обожженный клин, с бронзовой втулкой (гильзой) и свинцовой
шайбой , установленный с возможностью перемещения вдоль оси и с
ограничением перемещения за счет деформации трубопровода под
действием запорного элемента в виде стопорного фрикци-болта с
пропиленным пазом в стальной шпильке и забитым в паз медным
обожженным клином.
Фрикционно- подвижные соединения состоят из демпферов сухого
трения с использованием латунной втулки или свинцовых шайб)
поглотителями сейсмической и взрывной энергии за счет сухого трения,
которые обеспечивают смещение опорных частей фрикционных
соединений на расчетную величину при превышении горизонтальных
сейсмических нагрузок от сейсмических воздействий или величин,
определяемых расчетом на основные сочетания расчетных нагрузок,
сама опора при этом начет раскачиваться за счет выхода обожженных
медных клиньев, которые предварительно забиты в пропиленный паз
стальной шпильки.
Фрикци-болт, является энергопоглотителем пиковых ускорений (ЭПУ),
с помощью которого, поглощается взрывная, ветровая, сейсмическая,
вибрационная энергия. Фрикци-болт снижает на 2-3 балла импульсные
растягивающие нагрузки при землетрясении и при взрывной, ударной
воздушной волне. Фрикци –болт повышает надежность работы
73
74.
оборудования, сохраняет каркас здания, моста, ЛЭП, магистральноготрубопровода, за счет уменьшения пиковых ускорений, за счет
использования протяжных фрикционных соединений, работающих на
растяжение на фрикци- болтах, установленных в длинные овальные
отверстия с контролируемым натяжением в протяжных соединениях
согласно ТКП 45-5.04-274-2012 (02250) п. 10.3.2 стр. 74 , Минск, 2013,
СП 16.13330.2011,СНиП II-23-81* п. 14.3- 15.2.
Изобретение относится к машиностроению, а именно к соединениям
трубчатых элементов
Цель изобретения расширение области использования соединения в
сейсмоопасных районах .
На чертеже показано предлагаемое соединение, общий вид.
Соединение состоит из фланцев 1 и 2,латунного фрикци -болтов 3, гаек
4, кольцевого уплотнителя 5.
Фланцы выполнены с помощью латунной шпильки с пропиленным
пазом куж забивается медный обожженный клин и снабжен
энергопоглощением .
Антисейсмический виброизоляторы выполнены в виде латунного
фрикци -болта с пропиленныым пазом , кужа забиваенься стопорный
обожженный медный, установленных на стержнях фрикци- болтов
Медный обожженный клин может быть также установлен с двух
сторон крана шарового
Болты снабжены амортизирующими шайбами из свинца:
расположенными в отверстиях фланцев.
Однако устройство в равной степени работоспособно, если
антисейсмическим или виброизолирующим является медный
обожженный клин .
Гашение многокаскадного демпфирования или вибраций, действующих в
продольном направлении, осуществляется смянанием с
энергопоглощением забитого медного обожженного клина
Виброизоляция в поперечном направлении обеспечивается свинцовыми
шайбами , расположенными между цилиндрическими выступами . При
этом промежуток между выступами, должен быть больше амплитуды
колебаний вибрирующего трубчатого элемента, Для обеспечения более
74
75.
надежной виброизоляции и сейсмозащиты шарового кран струбопроводом в поперечном направлении, можно установить медный
втулки или гильзы ( на чертеже не показаны), которые служат
амортизирующие дополнительными упругими элементы
Упругими элементами , одновременно повышают герметичность
соединения, может служить стальной трос ( на чертеже не показан) .
Устройство работает следующим образом.
В пропиленный паз латунно шпильки, плотно забивается медный
обожженный клин , который является амортизирующим элементом
при многокаскадном демпфировании .
Латунная шпилька с пропиленным пазом , располагается во фланцевом
соединени , выполненные из латунной шпильки с забиты с одинаковым
усилием медный обожженный клин , например латунная шпилька , по
названием фрикци-болт . Одновременно с уплотнением соединения оно
выполняет роль упругого элемента, воспринимающего вибрационные и
сейсмические нагрузки. Между выступами устанавливаются также
дополнительные упругие свинцовые шайбы , повышающие надежность
виброизоляции и герметичность соединения в условиях повышенных
вибронагрузок и сейсмонагрузки и давлений рабочей среды.
Затем монтируются подбиваются медный обожженные клинья с
одинаковым усилием , после чего производится стягивание соединения
гайками с контролируемым натяжением .
В процессе стягивания фланцы сдвигаются и сжимают медный
обожженный клин на строго определенную величину, обеспечивающую
рабочее состояние медного обожженного клина . свинцовые шайбы
применяются с одинаковой жесткостью с двух сторон .
Материалы медного обожженного клина и медных обожженных
втулок выбираются исходя из условия, чтобы их жесткость
соответствовала расчетной, обеспечивающей надежную
сейсмомозащиту и виброизоляцию и герметичность фланцевого
соединения трубопровода и шаровых кранов.
Наличие дополнительных упругих свинцовых шайб ( на чертеже не
показаны) повышает герметичность соединения и надежность его
работы в тяжелых условиях вибронагрузок при моногкаскадном
демпфировании
75
76.
Жесткость сейсмозащиты и виброизоляторов в виде латунногофрикци -болта определяется исходя из, частоты вынужденных
колебаний вибрирующего трубчатого элемента с учетом частоты
собственных колебаний всего соединения по следующей формуле:
Виброизоляция и сейсмоизоляция обеспечивается при условии, если
коэффициент динамичности фрикци -болта будет меньше единицы.
Формула
Антисейсмическое фланцевое соединение трубопроводов
Антисейсмическое ФЛАНЦЕВОЕ СОЕДИНЕНИЕ ТРУБОПРОВОДОВ,
содержащее крепежные элементы, подпружиненные и
энергопоглощающие со стороны одного из фланцев, амортизирующие в
виде латунного фрикци -болта с пропиленным пазом и забитым медным
обожженным клином с медной обожженной втулкой или гильзой ,
охватывающие крепежные элементы и установленные в отверстиях
фланцев, и уплотнительный элемент, фрикци-болт , отличающееся тем,
что, с целью расширения области использования соединения, фланцы
выполнены с помощью энергопоглощающего фрикци -болта , с
забитимы с одинаковм усилеи м медым обожженм коллином
расположенными во фоанцемом фрикционно-подвижном соедиении
(ФФПС) , уплотнительными элемент выполнен в виде свинцовых
тонких шайб , установленного между цилиндрическими выступами
фланцев, а крепежные элементы подпружинены также на участке
между фланцами, за счет протяжности соединения по линии нагрузки .
2. Соединение по и. 1, отличающееся тем, что между медным
обожженным энергопоголощающим клином установлены тонкие
свинцовые или обожженные медные шайбы, а в латунную шпильку
устанавливает медная обожженная гильза или втулка .
Фиг 1
76
77.
Фиг 2Фиг 3
Фиг 4
Фиг 5
Фиг 6
Фиг 7
Фиг 8
Фиг 9
77
78.
7879.
7980.
8081.
СПОСОБ ЭКСПЛУАТАЦИИ ТРУБОПРОВОДОВ С ФЛАНЦЕВЫМИ СОЕДИНЕНИЯМИ ИМЕЖФЛАНЦЕВЫЙ КОМПЕНСАТОР ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2381407
РОССИЙСКАЯ ФЕДЕРАЦИЯ
(19)
RU
ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ
СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
(11)
(13)
C1
(12)
(51) МПК
F16L 23/00 (2006.01)
ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ
Статус: действует (последнее изменение статуса: 27.07.2020)
Пошлина: учтена за 13 год с 02.07.2020 по 01.07.2021
(21)(22) Заявка: 2008126791/06, 01.07.2008
(24) Дата начала отсчета срока действия патента:
01.07.2008
(45) Опубликовано: 10.02.2010 Бюл. № 4
(72) Автор(ы):
Белоногов Алексей Владимирович
(73) Патентообладатель(и):
Общество с ограниченной ответст
(56) Список документов, цитированных в отчете о поиске: SU 813073 А,
15.03.1981. US 5244237 А, 14.09.1993. US 4662660 А, 05.05.1987. US 4550743
А, 05.11.1985.
Адрес для переписки:
614990, г.Пермь, ул. Ленина, 62, ООО "ЛУКОЙЛ-ПЕРМЬ", отдел
управления проектами, Г.И. Селезневой
(54) СПОСОБ ЭКСПЛУАТАЦИИ ТРУБОПРОВОДОВ С ФЛАНЦЕВЫМИ СОЕДИНЕНИЯМИ И
МЕЖФЛАНЦЕВЫЙ КОМПЕНСАТОР ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ
(57) Реферат:
Изобретение относится к области машиностроения. Из общей системы трубопроводов
выделяют участки трубопроводов с подключенными к ним аппаратами и фланцевой
арматурой, подлежащей по правилам эксплуатации периодической замене. В пределах
выделенных участков фиксируют фланцевые соединения, которые обеспечивают отключение
участков трубопроводов с аппаратами и заменяемой арматурой, ввод и вывод их из
технологического процесса при профилактических ремонтно-технологических работах. При
монтаже трубопроводов и профилактических ремонтно-технологических работах в каждом
зафиксированном фланцевом соединении используют для установки между фланцами
межфланцевый компенсатор, который выполнен в виде кольца с уплотнительными
81
82.
прокладками с обеих его сторон. Общая толщина межфланцевого компенсатора выполненане менее толщины комплекта регламентированной к установке правилами эксплуатации
традиционной заглушки с прокладками. Расстояние от фланцевого соединения с
межфланцевым компенсатором до первой опоры под трубой выдерживают в пределах от
половины до двух наружных диаметров указанных фланцев, а на вертикальных участках
трубопроводов устанавливают устройства, разгружающие трубопровод от собственного веса.
Изобретение упрощает ремонтно-технологические работы по обслуживанию трубопроводов.
2 н. и 3 з.п. ф-лы, 1 ил.
Изобретение относится к области эксплуатации трубопроводов, имеющих фланцевые
соединения, и предназначается к использованию в первую очередь в
нефтегазодобывающей и нефтегазоперерабатывающей промышленности, конкретно - в
нефтепромысловых трубопроводных системах добычи, сбора и внутрипромыслового
транспорта нефти, газа и попутно добываемой пластовой воды.
Известно, например, изобретение со съемными фланцами по авторскому свидетельству
СССР №813073, М.Кл. (3) F16L 23/02 (заявлено 04.06.79; опубликовано 15.03.81) под
названием «Разъемное соединение трубопроводов», согласно которому при монтаже
фланцевого соединения вначале свинчивают и отодвигают в сторону один фланец и в
образованный зазор между концами труб вводят линзу. При этом поверхности линзы и
концы труб выполняют концентричными между собой. После введения линзы производят
стягивание фланцев.
Однако способ монтажа и конструктивное выполнение элементов разъемного
соединения по указанному изобретению требует значительного осевого сдвига одного из
съемных фланцев и соединяемых труб, что в условиях ограниченного пространства
трудновыполнимо.
Среди имеющихся технических решений, характеризуемых совокупностью признаков,
сходных с совокупностью существенных признаков заявляемого изобретения,
аналогичных объектов техники нами не обнаружено.
Из практики работы, например, нефтегазодобывающих предприятий известен лишь
традиционный способ монтажа и ремонта трубопроводов в трубопроводных системах
добычи, сбора и внутрипромыслового транспорта нефти, газа и попутно добываемой
пластовой воды, согласно которому вначале производят сборку фланцевых соединений.
При этом между фланцами перед их стягиванием устанавливают прокладки, например, из
паронита. Затем при собранном фланцевом соединении концы труб вваривают в обвязку
трубопроводов.
Смонтированная указанным способом обвязка трубопроводов имеет высокую жесткость
и очень малую податливость в осевом направлении, которая необходима при установке
заглушек при проведении профилактических ремонтно-технологических работ в процессе
эксплуатации таких трубопроводов.
Это увеличивает время подготовки оборудования к ремонту, увеличивает трудоемкость
и время проведения работ, увеличивает опасность травмирования персонал а, требует
применять дополнительное оборудование, затрудняет выполнение требуемой технологии
выполнения ремонтных работ и правил безопасности.
Единым техническим результатом, достигаемым при осуществлении предлагаемой
группы изобретений, являются:
- упрощение и облегчение работ по установке и снятию заглушек и замене прокладок
во фланцевых соединениях при проведении ремонтно -профилактических работ в процессе
эксплуатации трубопровода;
- исключение необходимости использовать дополнительное оборудование и
приспособления (специальные раздвижные приспособления, разъемные клинья,
разгонщики фланцев, кувалды, ломы и т.п.);
82
83.
- сокращение времени на проведение ремонтно-профилактических работ при замене иустановке прокладок и заглушек во фланцевых соединениях и замен е арматуры и
аппаратов;
- снижение физической трудоемкости работ обслуживающего персонала и снижение
опасности травмирования;
- облегчение выполнения требований правил техники безопасности и условий
технологии ремонта;
- снижение нагрузок на элементы трубопроводов и оборудования при проведении
ремонтно-профилактических работ за счет исключения необходимости принудительно
раздвигать в осевом направлении фланцы с трубами при замене и установке прокладок и
заглушек между фланцами.
Указанный технический результат достигается тем, что в заявляемом способе
эксплуатации трубопроводов с фланцевыми соединениями вначале из общей системы
трубопроводов выделяют участки трубопроводов с подключенными к ним аппаратами и
фланцевой арматурой, подлежащей по правилам эксплуата ции периодической замене,
затем в пределах выделенных участков фиксируют фланцевые соединения, которые
обеспечивают отключение участков трубопроводов с аппаратами и заменяемой арматурой,
ввод и вывод их из технологического процесса при профилактических рем онтнотехнологических работах путем установки и снятия заглушек в зафиксированных
фланцевых соединениях, а при монтаже трубопроводов и профилактических ремонтно технологических работах в каждом зафиксированном фланцевом соединении используют
для установки между фланцами межфланцевый компенсатор, который выполнен в виде
кольца с уплотнительными прокладками с обеих его сторон, причем общая толщина
межфланцевого компенсатора выполнена не менее толщины комплекта
регламентированной к установке правилами эксплуатации традиционной заглушки с
прокладками, при этом расстояние от фланцевого соединения с межфланцевым
компенсатором до первой опоры под трубой выдерживают в пределах от половины до
двух наружных диаметров указанных фланцев, а на вертикальных участках трубо проводов
устанавливают устройства, разгружающие трубопровод от собственного веса.
Указанные выше признаки заявляемого способа эксплуатации трубопроводов с
фланцевыми соединениями являются существенными и новыми.
Указанный технический результат совокупно достигается еще и тем, что нами
предложен вновь межфланцевый компенсатор для осуществления заявляемого способа
эксплуатации трубопроводов с фланцевыми соединениями, включающий кольцо, по обе
боковые поверхности которого установлены уплотнительные элементы, в ыполненные в
виде кольцевых прокладок, при этом общая толщина межфланцевого компенсатора
выполнена не менее толщины комплекта регламентированной к установке правилами
эксплуатации традиционной заглушки с прокладками.
А также тем, что:
- кольцо компенсатора выполнено, например, металлическим;
- кольцо компенсатора снабжено хвостовиком, свободный конец которого выведен за
пределы наружного диаметра соединяемых фланцев;
- профиль боковых поверхностей кольца компенсатора выполнен адекватно профилю
сопрягаемых поверхностей фланцев.
Указанные выше конструктивные признаки предлагаемого межфланцевого
компенсатора для осуществления заявляемого способа эксплуатации трубопроводов с
фланцевыми соединениями являются существенными и новыми.
Приведенные выше новые существенные признаки способа и межфланцевого
компенсатора обеспечивают заявляемой группе изобретений при осуществлении
достижение указанного выше нового технического результата.
На чертеже представлен продольный разрез узла фланцевого соединения концов труб с
предлагаемым межфланцевым компенсатором. Межфланцевый компенсатор включает в
83
84.
себя кольцо 1, с обеих боковых поверхностей которого установлены уплотнительныеэлементы 2, выполненные в виде кольцевых прокладок. Общая толщина - Sмежфланцевого компенсатора выполнена не менее толщины комплекта традиционной
заглушки с прокладками, которая выбирается для установки исходя из требований правил
эксплуатации. Кольцо 1 может быть выполнено металлическим или из иного прочного
материала. Кольцо 1 компенсатора снабжено хвос товиком 3, свободный конец которого
выведен за пределы наружных диаметров фланцев 4, стягиваемых между собой
шпильками 5. Если сопрягаемые поверхности фланцев выполнены не плоскими, а
фигурными, например, типа «шип-паз», то профиль боковых поверхностей кольца 1
компенсатора выполняют адекватным профилю сопрягаемых поверхностей фланцев (на
чертеже не показано).
Осуществляют предлагаемый способ следующим образом.
Вначале в общей системе трубопроводов выделяют те участки трубопроводов, в
которые подключены аппараты технологического назначения и фланцевая арматура,
подлежащая по правилам эксплуатации периодической замене. Выделение таких участков
можно провести на стадиях проектирования и монтажа, а также при эксплуатации уже
пущенных в работу систем трубопроводов при проведении профилактических ремонтно технологических работ.
Затем в пределах выделенных участков трубопроводов фиксируют (обозначают, ставят
метки) фланцевые соединения, которые обеспечивают отключение участков
трубопроводов с аппаратами и заменяемой фланцевой арматурой и обеспечивают их ввод
и вывод из технологического процесса во время проведения профилактических ремонтно технологических работ путем установки и снятия заглушек в таких фланцевых
соединениях.
При монтаже трубопроводов (при строительс тве вновь, при их замене) и
профилактических ремонтно-технологических работах на участках трубопроводов в
каждое зафиксированное фланцевое соединение между фланцами (до их стягивания)
устанавливают предлагаемый межфланцевый компенсатор.
При этом расстояние от фланцевого соединения с межфланцевым компенсатором до
первой опоры под трубой обеспечивают в пределах от половины до двух наружных
диаметров соединяемых фланцев. На вертикальных участках трубопроводов
устанавливают устройства, разгружающие трубопровод от собственного веса.
Благодаря установке между фланцами труб межфланцевых компенсаторов
предлагаемых параметров (его толщина не менее толщины традиционной заглушки)
исключается необходимость принудительно раздвигать в осевом направлении фланцы с
трубами при замене и установке прокладок и заглушек, что облегчает и упрощает такие
работы, сокращает время и их трудоемкость, не требует дополнительного оборудования.
А благодаря тому, что в предлагаемом способе предложено из общей системы
трубопроводов выделять те участки, которые подлежат периодической замене, и в
пределах выделенных участков фиксировать фланцевые соединения, обеспечивающие
отключение, ввод и вывод из технологического процесса таких участков путем установки
и снятия заглушек во фланцевые соединения, то совместно с установкой межфланцевых
компенсаторов в зафиксированные фланцевые соединения, при том, что расстояние от
фланцевого соединения с межфланцевым компенсатором до первой опоры под трубой
выдерживают в пределах от половины до двух наружных диаметров таких фланцев, а на
вертикальных участках трубопроводов устанавливают устройства разгрузки от их
собственного веса, то в совокупности это позволяет на протяжении всего времени
эксплуатации трубопроводов (от монтажа до его замены) наиболее полно обе спечить
выполнение требований правил техники безопасности и условий технологии ремонта,
снизить опасность травмирования и в целом продляет срок безопасной эксплуатации
трубопроводов при снижении материальных средств и трудовых затрат на проведение
профилактических ремонтно-технологических работ.
84
85.
Формула изобретения1. Способ эксплуатации трубопроводов с фланцевыми соединениями,
характеризующийся тем, что из общей системы трубопроводов выделяют участки
трубопроводов с подключенными к ним аппаратами и фланцевой арматурой, подлежащей
по правилам эксплуатации периодической замене, в пределах выделенных участков
фиксируют фланцевые соединения, которые обеспечивают отключение участков
трубопроводов с аппаратами и заменяемой арматурой, ввод и вывод их из
технологического процесса при профилактических ремонтно -технологических работах
путем установки и снятия заглушек в зафиксированных фланцевых соединениях, при
монтаже трубопроводов и профилактических ремонтно -технологических работах в
каждом зафиксированном фланцевом соединении используют для установки между
фланцами межфланцевый компенсатор, который выполнен в виде кольца с
уплотнительными прокладками с обеих его сторон, причем общая толщина
межфланцевого компенсатора выполнена не менее толщины комплекта
регламентированной к установке правилами эксплуатации традиционной заглушки с
прокладками, при этом расстояние от фланцевого соединения с межфланцевым
компенсатором до первой опоры под трубой выдерживают в пределах от половины до
двух наружных диаметров указанных фланцев, а на вертикальных участках трубопроводов
устанавливают устройства, разгружающие трубопровод от собственного веса.
2. Межфланцевый компенсатор для эксплуатации трубопроводов с фланцевыми
соединениями, включающий кольцо, по обе боковые поверхнос ти которого установлены
уплотнительные элементы, выполненные в виде кольцевых прокладок, при этом общая
толщина межфланцевого компенсатора выполнена не менее толщины комплекта
регламентированной к установке правилами эксплуатации традиционной заглушки с
прокладками.
3. Межфланцевый компенсатор по п.2, отличающийся тем, что кольцо компенсатора
выполнено, например, металлическим.
4. Межфланцевый компенсатор по п.2, отличающийся тем, что кольцо компенсатора
снабжено хвостовиком, свободный конец которого выведе н за пределы наружного
диаметра соединяемых фланцев.
5. Межфланцевый компенсатор по п.2, отличающийся тем, что профиль боковых
поверхностей кольца компенсатора выполнен адекватно профилю сопрягаемых
поверхностей фланцев.
85
86.
8687.
8788.
8889.
ФЛАНЦЕВОЕ СОЕДИНЕНИЕ РАСТЯНУТЫХ ЭЛЕМЕНТОВ ЗАМКНУТОГО ПРОФИЛЯизобретение патент
(19)
РОССИЙСКАЯ ФЕДЕРАЦИЯ
RU
89
90.
ФЕДЕРАЛЬНАЯ СЛУЖБАПО ИНТЕЛЛЕКТУАЛЬНОЙ
СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
(11)
2 413 820
(13)
C1
(51) МПК
E04B 1/58 (2006.01)
(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ
Статус:не действует (последнее изменение статуса: 27.10.2014)
(21)(22) Заявка: 2009139553/03, 26.10.2009
(24) Дата начала отсчета срока действия патента:
26.10.2009
(72) Автор(ы):
Марутян Александр
Суренович (RU),
Першин Иван
Митрофанович (RU),
Павленко Юрий Ильич
(RU)
Приоритет(ы):
(22) Дата подачи заявки: 26.10.2009
(45) Опубликовано: 10.03.2011 Бюл. № 7
(56) Список документов, цитированных в отчете о поиске: КУЗНЕЦОВ
В.В. Металлические конструкции. В 3 т. - Стальные конструкции
зданий и сооружений (Справочник проектировщика). - М.: АСВ,
1998, т.2. с.157, рис.7.6. б). SU 68853 A1, 31.07.1947. SU 1534152 A1,
07.01.1990.
(73)
Патентообладатель(и):
Марутян Александр
Суренович (RU)
Адрес для переписки:
357212, Ставропольский край, г. Минеральные Воды, ул.
Советская, 90, кв.4, Ю.И. Павленко
(54) ФЛАНЦЕВОЕ СОЕДИНЕНИЕ РАСТЯНУТЫХ ЭЛЕМЕНТОВ ЗАМКНУТОГО
ПРОФИЛЯ
(57) Реферат:
Изобретение относится к области строительства, в частности к фланцевому соединению
растянутых элементов замкнутого профиля. Технический результат заключается в уменьшении
массы конструкционного материала. Фланцевое соединение растянутых элементов замкнутого
профиля включает концы стержней с фланцами, стяжные болты и листовую прокладку между
фланцами. Фланцы установлены под углом 30° относительно продольных осей стержневых
элементов. Листовую прокладку составляют парные опорные столики. Столики жестко скреплены
с фланцами и в собранном соединении взаимно уперты друг в друга. 7 ил., 1 табл.
Предлагаемое изобретение относится к области строительства, а именно к фланцевым
соединениям растянутых элементов замкнутого профиля, и может быть использовано в
монтажных стыках поясов решетчатых конструкций.
90
91.
Известно стыковое соединение растянутых элементов замкнутого профиля, включающее концыстержневых элементов с фланцами, дополнительные ребра и стяжные болты, установленные по
периметру замкнутого профиля попарно симметрично относительно ребер (Металлические
конструкции. В 3 т. Т.1. Общая часть. (Справочник проектировщика) / Под общ. ред.
В.В.Кузнецова. - М.: Изд-во АСВ, 1998. - С.188, рис.3.10, б).
Недостаток соединения состоит в больших габаритах фланца и значительном числе
соединительных деталей, что увеличивает расход материала и трудоемкость конструкции.
Наиболее близким к предлагаемому изобретению является монтажное стыковое соединение
нижнего (растянутого) пояса ферм из гнутосварных замкнутых профилей, включающее концы
стержневых элементов с фланцами, дополнительные ребра, стяжные болты и листовую прокладку
между фланцами для прикрепления стержней решетки фермы и связей между фермами (1.
Металлические конструкции: Учебник для вузов / Под ред. Ю.И.Кудишина. - М.: Изд. центр
«Академия», 2007. - С.295, рис.9.27; 2. Металлические конструкции. В 3 т. Т.1. Элементы
конструкций: Учебник для вузов / Под ред. В.В.Горева. - М.: Высшая школа, 2001. - С.462,
рис.7.28, в).
Недостаток соединения, как и в предыдущем случае, состоит в материалоемкости и трудоемкости
монтажного стыка на фланцах.
Основной задачей, на решение которой направлено фланцевое соединение растянутых элементов
замкнутого профиля, является уменьшение массы (расхода) конструкционного материала.
Результат достигается тем, что во фланцевом соединении растянутых элементов замкнутого
профиля, включающем концы стержней с фланцами, стяжные болты и листовую прокладку между
фланцами, фланцы установлены под углом 30° относительно продольных осей стержневых
элементов, а листовую прокладку составляют парные опорные столики, жестко скрепленные с
фланцами и в собранном соединении взаимно упертые друг в друга.
Предлагаемое фланцевое соединение имеет достаточно универсальное техническое решение. Так,
его можно применить в монтажных стыках решетчатых конструкций из труб круглых, овальных,
эллиптических, прямоугольных, квадратных, пятиугольных и других замкнутых сечений. В
качестве еще одного примера использования предлагаемого соединения можно привести
аналогичные стыки на монтаже элементов конструкций из парных и одиночных уголков,
швеллеров, двутавров, тавров, Z-, Н-,
U-, V-, Λ-, Х-, С-, П-образных и других незамкнутых профилей.
Предлагаемое изобретение поясняется графическими материалами, где на фиг.1 показано
предлагаемое фланцевое соединение растянутых элементов замкнутого профиля, вид сверху; на
фиг.2 - то же, вид сбоку; на фиг.3 - предлагаемое соединение для случая прикрепления элемента
решетки, вид сбоку; на фиг.4 - фланцевое соединение растянутых элементов незамкнутого
профиля, вид сверху; на фиг.5 - то же, вид сбоку; на фиг.6 - то же, при полном отсутствии стяжных
болтов в наружных зонах незамкнутого профиля; на фиг.7 - расчетная схема растянутого элемента
замкнутого профиля с фланцем и опорным столиком.
Предлагаемое фланцевое соединение растянутых элементов замкнутого профиля 1 содержит
прикрепленные с помощью сварных швов цельнолистовые фланцы 2, установленные под углом
30° относительно продольных осей растянутых элементов. С фланцами 2 посредством сварных
швов жестко скреплены опорные столики 3. В выступающих частях 4 фланцев 2 и опорных
91
92.
столиков 3 размещены соосные отверстия 5, в которых после сборки соединения на монтажеустановлены стяжные болты 6.
Для прикрепления стержневого элемента решетки 7 в предлагаемом фланцевом соединении
опорные столики 3 продолжены за пределы выступающих частей 4 фланцев 2 таким образом, что
в них можно разместить дополнительные болты 8, как это сделано в типовом монтажном стыке на
фланцах.
В случае использования предлагаемого фланцевого соединения для растянутых элементов
незамкнутого профиля 9, соосные отверстия 5 во фланцах 2 и опорных столиках 3, а также
стяжные болты 6 могут быть расположены не только за пределами сечения (поперечного или
косого) незамкнутого (открытого) профиля, но и в его внутренних зонах. При полном отсутствии
стяжных болтов 6 в наружных (внешних) зонах открытого профиля 9 предлагаемое фланцевое
соединение более компактно.
В фермах из прямоугольных и квадратных труб (гнутосварных замкнутых профилей - ГСП) углы
примыкания раскосов к поясу должны быть не менее 30° для обеспечения плотности участка
сварного шва со стороны острого угла (Металлические конструкции: Учебник для вузов / Под ред.
Ю.И.Кудишина. - М.: Изд. центр «Академия», 2007. - С.296). Поэтому в предлагаемом фланцевом
соединении растянутых элементов замкнутого профиля 1 фланцы 2 и скрепленные с ними
опорные столики 3 установлены под углом 30° относительно продольных осей. В таком случае
продольная сила F, вызывающая растяжение элемента замкнутого профиля 1, раскладывается на
две составляющие: нормальную N=0,5 F, воспринимаемую стяжными болтами 6, и касательную
T=0,866 F, передающуюся на опорные столики 3. Уменьшение болтовых усилий в два раза во
столько же раз снижает моменты, изгибающие фланцы, а это позволяет применять для них более
тонкие листы, сокращая тем самым расход конструкционного материала. Кроме того, на
материалоемкость предлагаемого соединения позитивно влияют возможные уменьшение
диаметров стяжных болтов 6, снижение их количества или комбинация первого и второго.
Для сравнения предлагаемого (нового) технического решения с известным в качестве базового
объекта принято типовое монтажное соединение на фланцах ферм покрытий из гнутосварных
замкнутых профилей системы «Молодечно» (Стальные конструкции покрытий производственных
зданий пролетами 18, 24, 30 м с применением замкнутых гнутосварных профилей прямоугольного
сечения типа «Молодечно». Серия 1.460.3-14. Чертежи КМ. Лист 44). Расход материала
сравниваемых вариантов приведен в таблице, из которой видно, что в новом решении он
уменьшился в 47,1/26,8=1,76 раза.
Наименование Размеры, мм Кол-во, шт.
Масса, кг
1 шт. всех стыка
Фланец
300×300×30
2
21,2 42,4
Ребро
140×110×8
8
0,5* 4,0
Сварные швы (1,5%)
Известное решение
0,7
Фланец
300×250×18
2
10,6 21,2
Столик
27×150×8
2
2,6
Сварные швы (1,5%)
47,1
Примеч.
5,2
0,4
*Учтена треугольная форма
92
26,8 Предлагаемое решение
93.
Кроме того, здесь необходимо учесть расход материала на стяжные болты. В известном ипредлагаемом фланцевых соединениях количество стяжных болтов одинаково и составляет 8 шт.
Если в первом из них использованы болты М24, то во втором - M18 того же класса прочности.
Тогда очевидно, что в новом решении расход материала снижен пропорционально уменьшению
площади сечения болта нетто, то есть в 3,52/1,92=1,83 раза.
Формула изобретения
Фланцевое соединение растянутых элементов замкнутого профиля, включающее концы стержней
с фланцами, стяжные болты и листовую прокладку между фланцами, отличающееся тем, что
фланцы установлены под углом 30° относительно продольных осей стержневых элементов, а
листовую прокладку составляют парные опорные столики, жестко скрепленные с фланцами и в
собранном соединении взаимно упертые друг в друга.
93
94.
9495.
9596.
9697.
9798.
9899.
99100.
100101.
101102.
102103.
103104.
104105.
105106.
106107.
107108.
108109.
109110.
110111.
111112.
ЭЛЕМЕНТЫ ТЕОРИИ ТРЕНИЯ,112
113.
РАСЧЕТ И ТЕХНОЛОГИЯ ПРИМЕНЕНИЯФРИКЦИОННО-ПОДВИЖНЫХ СОЕДИНЕНИЙ
УЗДИН А.М., ЕЛИСЕЕВ О.Н., , НИКИТИН А.А., ПАВЛОВ В.Е., СИМКИН А.Ю.,
КУЗНЕЦОВА И.О.
ЭЛЕМЕНТЫ ТЕОРИИ ТРЕНИЯ,
РАСЧЕТ И ТЕХНОЛОГИЯ ПРИМЕНЕНИЯ
ФРИКЦИОННО-ПОДВИЖНЫХ СОЕДИНЕНИЙ
113
114.
СОДЕРЖАНИЕ1
Введение
3
2
Элементы теории трения и износа
6
3
Методика расчета одноболтовых ФПС
18
3.1
Исходные посылки для разработки методики расчета ФПС
18
3.2
Общее уравнение для определения несущей способности ФПС.
20
3.3
Решение общего уравнения для стыковых ФПС
21
3.4
Решение общего уравнения для нахлесточных ФПС
22
4
Анализ экспериментальных исследований работы ФПС
26
5
Оценка
параметров
диаграммы
деформирования
многоболтовых
фрикционно-подвижных соединений (ФПС)
31
5.1
Общие положения методики расчета многоболтовых ФПС
31
5.2
Построение уравнений деформирования стыковых многоболтовых ФПС
32
5.3
Построение уравнений деформирования нахлесточных многоболтовых 38
ФПС
6
Рекомендации по технологии изготовления ФПС и сооружений с такими
соединениями
6.1
42
Материалы болтов, гаек, шайб и покрытий контактных поверхностей
стальных деталей ФПС и опорных поверхностей шайб
42
6.2
Конструктивные требования к соединениям
43
6.3
Подготовка
контактных
поверхностей
элементов
и
методы
контроля
6.4
45
Приготовление и нанесение протекторной грунтовки ВЖС 83-0287. Требования к загрунтованной поверхности. Методы контроля
6.4.1
Основные требования по технике безопасности при работе с
грунтовкой ВЖС 83-02-87
6.4.2
Транспортировка
и
47
хранение
элементов
законсервированных грунтовкой ВЖС 83-02-87
6.5
46
и
деталей,
49
Подготовка и нанесение антифрикционного покрытия на опорные 49
поверхности шайб
6.6
7
Сборка ФПС
49
Список литературы
51
114
115.
1. ВВЕДЕНИЕСовременный подход к проектированию сооружений, подверженных экстремальным, в
частности, сейсмическим нагрузкам исходит из целенаправленного проектирования предельных
состояний конструкций. В литературе [1, 2, 11, 18] такой подход получил название
проектирования сооружений с заданными параметрами предельных состояний. Возможны
различные технические реализации отмеченного подхода. Во всех случаях в конструкции
создаются узлы, в которых от экстремальных нагрузок могут возникать неупругие смещения
элементов. Вследствие этих смещений нормальная эксплуатация сооружения, как правило,
нарушается, однако исключается его обрушение. Эксплуатационные качества сооружения должны
легко восстанавливаться после экстремальных воздействий. Для обеспечения указанного
принципа проектирования и были предложены фрикционно-подвижные болтовые соединения.
Под
фрикционно-подвижными
соединениями
(ФПС)
понимаются
соединения
металлоконструкций высокопрочными болтами, отличающиеся тем, что отверстия под болты в
соединяемых деталях выполнены овальными вдоль направления действия экстремальных
нагрузок. При экстремальных нагрузках происходит взаимная сдвижка соединяемых деталей на
величину до 3-4 диаметров используемых высокопрочных болтов. Работа таких соединений имеет
целый ряд особенностей и существенно влияет на поведение конструкции в целом. При этом во
многих случаях оказывается возможным снизить затраты на усиление сооружения, подверженного
сейсмическим и другим интенсивным нагрузкам.
ФПС были предложены в НИИ мостов ЛИИЖТа в 1980 г. для реализации принципа
проектирования мостовых конструкций с заданными параметрами предельных состояний. В 198586 г.г. эти соединения были защищены авторскими свидетельствами [16-19]. Простейшее
стыковое и нахлесточное соединения приведены на рис.1.1. Как видно из рисунка, от обычных
соединений на высокопрочных болтах предложенные в упомянутых работах отличаются тем, что
болты пропущены через овальные отверстия. По замыслу авторов при экстремальных нагрузках
должна происходить взаимная подвижка соединяемых деталей вдоль овала, и за счет этого
уменьшаться пиковое значение усилий, передаваемое соединением. Соединение с овальными
отверстиями применялись в строительных конструкциях и ранее, например, можно указать
предложения [8, 10 и др]. Однако в упомянутых работах овальные отверстия устраивались с целью
упрощения монтажных работ. Для реализации принципа проектирования конструкций с
заданными параметрами предельных состояний необходимо фиксировать предельную силу трения
(несущую способность) соединения.
При использовании обычных болтов их натяжение N не превосходит 80-100 кН, а разброс
натяжения N=20-50 кН, что не позволяет прогнозировать несущую способность такого
115
116.
соединения по трению. При использовании же высокопрочных болтов при том же N натяжениеN= 200 - 400 кН, что в принципе может позволить задание и регулирование несущей способности
соединения. Именно эту цель преследовали предложения [3,14-17].
116
117.
117118.
118119.
119120.
120121.
121122.
122123.
123124.
124125.
125126.
126127.
127128.
128129.
УТВЕРЖДАЮГенеральный директор
АО «НИЦ «Строительство»
_________________ А.В. Кузьмин
« »____________2016г
ПРОЕКТ ПЕРЕСМОТРЕННОГО СП 14.13330.2014
«СНИП II-7-81* СТРОИТЕЛЬСТВО В СЕЙСМИЧЕСКИХ РАЙОНАХ»
СВОДКА ОТВЕТОВ НА ЗАМЕЧАНИЯ И КОММЕНТАРИЕВ К ПРЕДЛОЖЕНИЯМ,
ПОСТУПИВШИМ В ПРОЦЕССЕ ОБЩЕСТВЕННОГО ОБСУЖДЕНИЯ ПЕРВОЙ РЕДАКЦИИ
ДОКУМЕНТА.
Москва 2016г.
129
130.
1.П. 2.
Исключить п.2 Приложений к таблице 1,
стр. 11, поскольку он противоречит п.1
Параметры
грунта
и
категория
определяются средними значениями
30-метровой толщи.
Алешин
А.С. ИФЗ
РАН
Принципиально согласны, однако скорости
даны справочно, определяются они при
изысканиях не всегда, в случае отсутствия
материалов геофизических исследований,
применяется п. 2. На усмотрение РГ.
Принята
редакция
разработчика
2
Таблица 11.
Таблица 11, стр.60 осталась прежней, как в
нормах СНиП, 1982, хотя аналогичная
таблица 1 уже менялась 2 раза. В таблице
11, в частности, нет IV категории грунта с
разжижаемыми грунтами, нет
инструментально определяемых параметров
- сейсмической жесткости, скоростей
продольных и поперечных волн и т.д.
Алешин
А.С. ИФЗ
РАН
Принято. Следует принять решение о
изъятии из СП раздела 8 или его
корректировке.
Принято
решение
оставить в
неизменном
виде разделы
7 и 8.
Заменить
справочные
приложения В
и Г.
3
Таблица 12
Таблица 13
5
Приложение Г.
Алешин
А.С. ИФЗ
РАН
Алешин
А.С. ИФЗ
РАН
Алешин
А.С. ИФЗ
РАН
Беляев В.С
Белаш Т.А.
Уздин А.М.
Принято. Следует принять решение о
изъятии из СП раздела 8 или его
корректировке.
Принято. Следует принять решение о
изъятии из СП раздела 8 или его
корректировке.
Принято. Следует принять решение о
изъятии из СП Приложения Г или его
корректировке.
То же
4
Таблица 12. Введены промежуточные
категории грунта I - II, II - III, которые нигде
и никак не определены.
То же относится к таблице 13 и рис.3,
стр.67.
Заглавие Приложения Г* стр.116
неправильное, и его следует поменять.
6
1 Область применения
Настоящий
свод
правил
устанавливает требования по расчету
с учетом сейсмических нагрузок, по
объемно-планировочным решениям
и конструированию элементов и их
соединений, зданий и сооружений,
обеспечивающие
их
сейсмостойкость.
Настоящий
свод
правил
распространяется
на
область
проектирования
на
площадках
сейсмичностью 7, 8 и 9 баллов
1 Область применения
1.1
Настоящий
свод
правил
устанавливает требования по расчету с
учетом сейсмических нагрузок, по объемнопланировочным
решениям
и
конструированию
элементов
и
их
соединений,
зданий
и
сооружений,
обеспечивающие их сейсмостойкость.
1.2
Настоящий
свод
правил
распространяется
на
область
проектирования
на
площадках
сейсмичностью 7, 8 и 9 баллов зданий и
сооружений. На площадках, сейсмичность
130
Предлагается в редакции:
1 Область применения
1.1
Настоящий
свод
правил
устанавливает требования по расчету с
учетом
сейсмических
нагрузок,
по
объемно-планировочным
решениям
и
конструированию
элементов
и
их
соединений,
зданий
и
сооружений,
обеспечивающие их сейсмостойкость.
1.2
Настоящий
свод
правил
распространяется
на
область
То же
То же
Принята
редакция
разработчика
131.
зданий и сооружений.На площадках, сейсмичность
которых
превышает
9 баллов,
возводить здания и сооружения, как
правило,
не
допускается.
Проектирование и строительство
здания или сооружения на таких
площадках
осуществляются
в
порядке,
установленном
уполномоченным
федеральным
органом исполнительной власти.
П р и м е ч а н и е – Разделы
4, 5 и 6 относятся к проектированию
жилых,
общественных,
производственных
зданий
и
сооружений,
раздел
7 распространяется на транспортные
сооружения,
раздел
8 на
гидротехнические
сооружения,
раздел 9 на все объекты, при
проектировании которых следует
предусматривать
меры
противопожарной защиты.
которых превышает 9 баллов, возводить
здания и сооружения, как правило, не
допускается.
Проектирование
и
строительство здания или сооружения на
таких площадках осуществляются
в
порядке, установленном уполномоченным
федеральным органом исполнительной
власти.
1.3 Антисейсмические мероприятия
для зданий и сооружений включают:
- специальные проектные требования при
разработке строительных конструкций,
оборудования, инженерных коммуникаций,
минимизирующие возможности отказа
(разрушения)
элементов
зданий
и
сооружений или их систем;
- выбор объемно-планировочного решения
зданий и сооружений для снижения
требуемой
расчетной
сейсмостойкости
конструкций и оборудования;
- инженерно-строительные мероприятия,
предусматривающие применение систем
сейсмоизоляции, систем динамического
демпфирования, динамических гасителей
колебаний для регулирования сейсмической
реакции конструкций;
- раскрепление оборудования, ограничение
деформации инженерных коммуникаций,
изменение свойств прилегающей грунтовой
среды для трансформации сейсмического
воздействия.
Целесообразность
использования
конкретных
мероприятий
или
их
комбинаций определяется на основе
технико-экономического анализа;
контроль
состояния
строительных
конструкций, оборудования и инженерных
коммуникаций.
П р и м е ч а н и е – Разделы 4, 5 и
6 относятся к проектированию жилых,
131
проектирования на площадках с расчетной
сейсмичностью 7, 8 и 9 баллов зданий и
сооружений.
Проектирование
и
строительство здания или сооружения на
площадках,
сейсмичность
которых
превышает 9 баллов осуществляются в
порядке, установленном уполномоченным
федеральным органом исполнительной
власти.
По п. 1.3. Не рекомендуем к
включению в СП. Пункт не содержит
требований в виде, возможном для
контроля
его
исполнения
в
установленном порядке.
П р и м е ч а н и е – Разделы 4, 5 и
6 относятся к проектированию жилых,
общественных, производственных зданий и
сооружений, раздел 7 распространяется на
транспортные сооружения, раздел 8 на
гидротехнические сооружения, раздел 9 на
все объекты, при проектировании которых
следует предусматривать меры
противопожарной защиты.
132.
7новый
8
Новый
9
Новый
10
3.23 нелинейный временной
динамический
анализ
(нелинейный
динамический
анализ): Временной динамический
анализ, при котором учитывают
зависимость
механических
характеристик
материалов
общественных, производственных зданий и
сооружений, раздел 7 распространяется на
транспортные сооружения, раздел 8 на
гидротехнические сооружения, раздел 9 на
все объекты, при проектировании которых
следует
предусматривать
меры
противопожарной защиты.
3.5
активная
система
сейсмоизоляции:
Система,
осуществляющая антисейсмическую защиту
сооружений с помощью дополнительных
источников
энергии,
генерирующих
воздействия, уменьшающие эффекты от
сейсмических воздействий и базирующаяся
на компьютерном управлении процессом
колебаний сооружения при землетрясении.
3.20 коэффициент надежности по
ответственности
сооружений:
Коэффициент, учитывающий надежность
сооружений в зависимости от уровня
ответственности,
характеризуемой
социальными,
экологическими
и
экономическими последствиями.
3.21 коэффициент условий работы:
Коэффициент, используемый при
проектировании для снижения расчетных
усилий, полученных в результате линейного
анализа, с целью учета нелинейного
поведения сооружения, обусловленного
особенностями материала, конструктивной
системы и принятой методики
проектирования.
3.27 нелинейный
временной
динамический
анализ
(нелинейный
динамический
анализ):
Временной
динамический
анализ,
при
котором
учитывают
зависимость
механических
характеристик материалов сооружения и
грунтов основания от уровня напряжений и
132
Беляев В.С
Белаш Т.А.
Уздин А.М.
Предлагается принять
Принята
редакция
разработчика
Беляев В.С
Белаш Т.А.
Уздин А.М.
Не рекомендуется принять. Есть ФЗ-384 и
ГОСТ 27751-2014, определяющие данный
коэффициент.
Принята
редакция
разработчика
Беляев В.С
Белаш Т.А.
Уздин А.М.
Не рекомендуется принять. Есть ГОСТ
27751-2014, определяющий данный
коэффициент.
Принята
редакция
разработчика
Беляев В.С
Белаш Т.А.
Уздин А.М.
предлагаем принять предложенную
редакцию
Принята
редакция
разработчика
133.
характера динамического воздействий.Также возможно учесть геометрическую и
конструктивную нелинейности в поведении
системы «сооружение–основание».
3.33 осциллятор:
Одномассовая
линейно-упругая динамическая система,
состоящая из массы, пружины и вязкого
демпфера.
3.28 ненесущий элемент: Архитектурный,
механический или электрический элемент,
система или конструкция, которые из-за
своей недостаточной прочности или из-за
способа соединения с сооружением не
рассматриваются при проектировании в
качестве элемента, воспринимающего
сейсмическую нагрузку.
Беляев В.С
Белаш Т.А.
Уздин А.М.
Не рекомендуем к корректировке, демпфер
м.б вязко-упругий, вязкий, упругопластический и т.д.
Принята
редакция
разработчика
12
сооружения и грунтов основания от
уровня напряжений и характера
динамического воздействий, а также
возможны
геометрическая
и
конструктивная нелинейность в
поведении
системы
«сооружение–основание».
3.27 осциллятор:
Одномассовая
линейно-упругая
динамическая система, состоящая из
массы, пружины и демпфера.
новый
Беляев В.С
Белаш Т.А.
Уздин А.М.
Принята
редакция
разработчика
13
Новый
3.31 нормированный спектр отклика:
Спектр отклика ускорений упругой
системы, максимальные амплитудные
составляющие которого поделены на
максимальную амплитуду данной
акселерограммы (нормированы по
максимальному значению).
Беляев В.С
Белаш Т.А.
Уздин А.М.
14
3.32 прямой динамический метод
расчета сейсмостойкости (ПДМ):
Метод численного интегрирования
уравнений движения, применяемый
для анализа вынужденных колебаний
конструкций при сейсмическом
воздействии, заданном
акселерограммами землетрясений.
3.41 прямой динамический метод расчета
сейсмостойкости (ПДМ): Метод
численного интегрирования уравнений
движения, применяемый для анализа
вынужденных колебаний конструкций при
сейсмическом воздействии, заданном
акселерограммами землетрясений. При
ПДМ матрицы жесткости и масс системы
используются в исходном виде, без
модальных преобразований.
Беляев В.С
Белаш Т.А.
Уздин А.М.
Рекомендуем принять следующую
редакцию:
3.28 ненесущий элемент: элемент сетей,
коммуникаций, ограждения, отделки,
система или конструкция, которые ввиду
своей недостаточной прочности или
способа соединения с несущим каркасом
здания или сооружения не рассматриваются
при проектировании в качестве элемента,
воспринимающего сейсмическую нагрузку.
Рекомендуем принять следующую
редакцию:
3.50 спектр отклика нормированный:
Спектр отклика упругой системы,
максимальные амплитудные составляющие
которого поделены на максимальную
амплитуду данной акселерограммы
(нормированы по максимальному
значению).
Рекомендуем принять предложенную
редакцию
11
133
Принята
редакция
разработчика
Принята
редакция
разработчика
134.
15Новый
3.35 пассивная система сейсмоизоляции:
Система, параметры которой зависят
только от свойств образующих ее
сейсмоизолирующих элементов,
обеспечивающих снижение механической
энергии, передающейся конструктивной
системе при землетрясении, без
использования дополнительных
источников энергии.
3.38 полная сейсмоизоляция сооружения:
Часть здания считается полностью
сейсмоизолированной, если при
сейсмической расчетной ситуации она
работает в области упругих деформаций. В
противном случае, часть здания считается
частично сейсмоизолированной.
3.39 Предельное состояние по ограничению
ущерба: Состояние, связанное с
повреждениями конструкций, при котором
выполняется требование эксплуатационной
пригодности и/или сохранения окружающей
среды.
Беляев В.С
Белаш Т.А.
Уздин А.М.
Рекомендуем принять предложенную
редакцию
Принята
редакция
разработчика
16
Новый
Беляев В.С
Белаш Т.А.
Уздин А.М.
Рекомендуем принять предложенную
редакцию
Принята
редакция
разработчика
17
Новый
Беляев В.С
Белаш Т.А.
Уздин А.М.
Принята
редакция
разработчика
Новый
3.48 сейсмическая изоляция: Изоляция
сооружений от сейсмических колебаний
грунта.
Беляев В.С
Белаш Т.А.
Уздин А.М.
19
Новый
3.49 сейсмически изолированное
сооружение: Сооружение, оснащенное
системой сейсмоизоляции.
Беляев В.С
Белаш Т.А.
Уздин А.М.
20
3.49 спектр отклика
однокомпонентной
акселерограммы: Функция,
связывающая между собой
максимальное по модулю ускорение
3.62 спектр отклика однокомпонентной
акселерограммы: Функция, связывающая
между собой максимальное по модулю
ускорение осциллятора и соответствующий
этому ускорению период (либо частоту)
Беляев В.С
Белаш Т.А.
Уздин А.М.
Рекомендуем принять следующую
редакцию
3.39 Предельное состояние по ограничению
ущерба: Состояние сейсмоизолированного
здания или сооружения, при котором
выполняется требование эксплуатационной
пригодности и/или сохранения
окружающей среды.
Предлагаемая редакция
3.48 сейсмическая изоляция: Изменение
сейсмической реакции здания или
сооружения от сейсмических колебаний
грунта достигаемое за счет снижения их
взаимодействия и повышения затухания
колебаний изолированного сооружения.
Не рекомендуем к принятию, сооружение с
системой СИ в части здания, с системой СИ
в верхних уровнях не является сейсмически
изолированным зданием.
Предлагаемая редакция 3.62 спектр
отклика однокомпонентной
акселерограммы: Функция, связывающая
между собой максимальное по модулю
ускорение осциллятора и соответствующий
18
134
Принята
редакция
разработчика
Принята
редакция
разработчика
Принята
редакция
разработчика
135.
одномассового линейногоосциллятора и соответствующий
этому ускорению период (либо
частоту) собственных колебаний
того же осциллятора, основание
которого движется по закону,
определенному данной
акселерограммой.
собственных колебаний того же
осциллятора, основание которого движется
по закону, определенному данной
акселерограммой. Кроме периода (частоты)
спектр отклика зависит также от
демпфирования осциллятора.
135
этому ускорению период (либо частоту)
собственных колебаний того же
осциллятора, основание которого движется
по закону, определенному данной
акселерограммой. Зависит также от
величины затухания осциллятора.
136.
6.17 Здания и сооружения с сейсмоизоляцией6.17.1 При проектировании сооружений с системой сейсмоизоляции следует
обеспечить:
- снижение сейсмических воздействий на сейсмоизолированную часть сооружения, в
том числе его расчетную сейсмичность при ограничении взаимных перемещений
сейсмоизолированной и несейсмоизолированной частей сооружения;
- восприятие расчетных вертикальных нагрузок при высокой горизонтальной
податливости и контролируемой вертикальной жесткости сейсмоизолирующего слоя;
- непрерывность конструктивной системы сейсмоизолированной части сооружения по
высоте;
- необходимое вязкое и/или гистерезисное затухание энергии;
- необходимый уровень первых собственных
частот
(периодов) сооружения
относительно частотного состава исходного сейсмического воздействия;
- ограничение горизонтальных перемещений, возникающих в процессе эксплуатации
сооружений при несейсмических воздействиях (например, ветровых);
- возвращение
сейсмоизолированной части сооружения в исходное положение
устойчивого равновесия за счет постоянно действующей восстанавливающей силы после
прекращения действия сейсмических сил с возможностью восприятия возможных
афтершоков;
- наличие экспериментально подтвержденных характеристик жесткости и демпфирования,
полученных на натурных образцах элементов системы сейсмоизоляции;
- удобство монтажа, замены изолирующих элементов и возможность центрирования
сейсмоизолированной части сооружения в пространстве;
- стабильность жесткостных и демпфирующих свойств при длительной эксплуатации и
повторных циклических нагружениях при заданных проектом уровнях и колебаниях
температуры и влажности;
- защиту системы в случае пожара и других, предусмотренных проектом, природных и
техногенных воздействиях.
П р и м е ч а н и е — Свойства сейсмоизолирующих элементов в процессе эксплуатации и
повторных циклических нагружениях могут изменяться и находиться в диапазоне заранее
определенных допускаемых значений, заданном в проектной документации.
6.17.2 В проектируемых сооружениях допускается применять пассивные системы
сейсмоизоляции одного или нескольких типов, в том числе сейсмоизолирующие устройства,
представленные в Приложении Д.
6.17.3 Повышенная надежность сейсмоизолирующих устройств обеспечивается путем
умножения:
а) расчетных
горизонтальных
сейсмических
перемещений
каждого
сейсмоизолирующего элемента на коэффициент надежности по прочности γх = 1,2;
б) расчетных вертикальных сейсмических сил в каждом сейсмоизолирующем
элементе от гравитационных и сейсмических воздействий на коэффициент надежности по
прочности γz = 1,3.
6.17.4 Между сейсмоизолированной частью сооружения и окружающим грунтом или
сооружениями, следует предусматривать зазоры, достаточные для перемещений
сейсмоизолированной части во всех направлениях при расчетных сейсмических
воздействиях наряду с другими необходимыми мероприятиями, обеспечивающими
возможность размещения, осмотра, технического обслуживания, центрирования и замены
сейсмоизолирующих устройств в течение срока службы сооружения.
6.17.5 Сейсмоизолирующие устройства должны быть надежно закреплены к
конструкциям сейсмоизолированной и несейсмоизолированной частей сооружения.
6.17.6 Для минимизации разного поведения сейсмоизолирующих устройств и более
равномерного распределения нагрузок на сейсмоизолированную и несейсмоизолированную
части сооружения сжимающие напряжения, вызываемые в них постоянной нагрузкой,
136
137.
должны быть как можно более близкими.6.17.7 Система сейсмоизоляции должна быть запроектирована так, чтобы возможные
чрезмерные смещения
и
крутильные колебания ограничивались конструктивными
мероприятиями. Для этого следует использовать соответствующие устройства (упоры,
сейсмогасители, демпферы, амортизаторы и т.п.).
6.17.8 Сейсмоизолирующие устройства должны быть защищены от потенциально
возможных воздействий, таких как резкий перепад температур и влажности при
эксплуатации, пожар, обводнение, химическое или биологическое воздействие в случае
необходимости (ГОСТ 2.13130).
6.17.9 Фундаменты сооружений должны быть спроектированы в соответствии с
требованиями норм на проектирование оснований и фундаментов (СП 22.13330,
СП 24.13330).
6.17.10 Фундаменты под сейсмическими изоляторами могут быть ленточными,
отдельно стоящими столбчатыми, плитными, сваями с ростверком и т.п. Отдельно стоящие
столбчатые фундаменты должны быть соединены между собой жесткими связями. Не
следует использовать разные типы фундаментов в одном сооружении.
6.17.11 Конструктивные элементы, расположенные выше и ниже сейсмоизолирующего
слоя, должны быть жесткими в горизонтальном и вертикальном направлениях для того,
чтобы минимизировать влияние точечного приложение нагрузки от сейсмоизолирующих
устройств и влияние неравномерных сейсмических колебаний грунта.
6.17.12 Сооружение должно проектироваться с учетом положений пп.6.1-6.16
настоящего СП, при этом сейсмоизолированная часть сооружения должна проектироваться
при пониженном системой сейсмоизоляции сейсмическом воздействии.
6.17.13 При МРЗ расчет и конструирование сооружения должно обеспечить
устойчивость его сейсмоизолированной части против опрокидывания и неконтролируемого
скольжения.
6.17.13.1 Необходимо выполнить расчет элементов фундамента и грунтового основания
на усилия, возникающие в результате реакции надземной части сооружения, с анализом
допускаемых остаточных деформаций. При определении реакции необходимо учесть
фактическое сопротивление, которое может развить передающий воздействие элемент
конструкции.
6.17.13.2 Поведение ненесущих элементов не должно представлять опасность для
людей и оказывать отрицательное влияние на реакцию несущих элементов сооружения.
6.17.13.3 Усилия в сейсмоизолирующих устройствах могут быть равными или ниже
расчетной предельной несущей способности, в то время как сейсмоизолированная и
несейсмоизолированная части сооружения должны оставаться в области упругих
деформаций.
Для зданий нормального уровня ответственности допускается проектировать
сейсмоизолированную часть сооружения с коэффициентом условий работы К1 не менее 0,7,
учитывающим возможность развития неупругих деформаций в конструкциях сооружения.
6.17.13.4 Предельная несущая способность по показателям проектной документации не
должна быть превышена при соответствующих коэффициентах надежности по прочности в
6.17.3.
6.17.13.5 Газопроводы, распределительные системы и другие коммуникации,
пересекающие стыки между надземной частью и окружающим грунтом или сооружениями,
должны
рассчитываться
на
безопасное
относительное
перемещение
между
сейсмоизолированной частью сооружения и окружающим грунтом или сооружениями с
учетом коэффициента γх в 6.17.3.
6.17.14 При ПЗ конструктивная система должна бать проверена расчетом, чтобы
гарантировать прочность и жесткость, достаточные для сохранения функций объектов.
Величина коэффициента условий работы должна приниматься равной К1 = 1.
6.17.14.1 Междуэтажные перекосы по вертикали должны быть ограничены в
137
138.
сейсмоизолированной и не сейсмоизолированной частях сооружения.6.17.14.2 Если производится линейный расчет, средние горизонтальные перемещения
dei в верхней и нижней частей данного этажа, получаемые в результате действия расчетной
сейсмической силы, необходимо вычислять на основе упругого деформирования
конструктивной системы и расчетного спектра отклика ускорений.
6.17.14.3 При определении перемещений dei необходимо учитывать эффекты кручения
при сейсмическом воздействии.
6.17.14.4 Необходимо соблюдать следующие ограничения междуэтажного перекоса по
вертикали:
a)
сооружения с ненесущими элементами из хрупких материалов, имеющих
соединения с несущими конструкциями:
d
r 0,005h
K1
(11)
б)
сооружения, имеющие пластически деформируемые ненесущие элементы,
соединенные с несущими конструкциями:
d
r 0,0075h
K1
(12)
в)
сооружения, имеющие ненесущие элементы, не влияющие на деформации
несущих конструкций, или без ненесущих элементов:
d
r 0,01h
K1
(13)
где
dr – расчетный междуэтажный перекос, определяемый как разница средних
горизонтальных перемещений dei в верхней и нижней частей данного этажа;
h – высота этажа;
K1 – коэффициент, принимаемый согласно примечанию к таблице 1.
6.17.14.5 Для статических и динамических нелинейных расчетов на сейсмические
воздействия принимаются перемещения, полученные непосредственно на основе
выполненных расчетов.
6.17.14.6 Все жизненно важные коммуникации, пересекающие швы в пределах
сейсмически изолированного сооружения должны оставаться в области упругого
деформирования, а соединения и распределительные системы, связывающие
сейсмоизолированную и несейсмоизолированную части сооружения, должны сохранять свою
целостность.
6.17.15 С целью обеспечения максимально высокого рассеивания энергии колебаний
необходимо исключить хрупкое разрушение элементов либо преждевременное
формирование неустойчивых механизмов. С этой целью необходимо применить процедуру
проектирования по несущей способности, которая используется для получения иерархии
сопротивлений различных элементов сооружения и последовательности разрушения,
необходимых для обеспечения оптимального пластического механизма и минимизации
условий для хрупкого разрушения.
6.17.16 Как правило, сооружение должно иметь простые архитектурно-планировочные
решения в плане и по высоте. Указанные требования реализуются при разделении
сооружения антисейсмическими швами на динамически независимые блоки.
Не запрещено проектирование сейсмоизолированных сооружений со сложной
планировкой.
6.17.17 Сооружения с сейсмоизоляцией следует характеризовать как сооружения
регулярного или нерегулярного типа на основе конфигурации конструкций над
сейсмоизолирующим слоем.
П р и м е ч а н и е — Для сооружений, состоящих из более, чем одного динамически
независимого блока, классификация и соответствующие признаки относятся к одному
138
139.
отдельному динамически независимому блоку. Под «отдельным динамическим независимымблоком» подразумевается «сооружение».
6.17.18 Сейсмоизолированная часть должна быть симметрична в плане с равномерно
распределенными жесткостями и массами в двух ортогональных направлениях.
6.17.18.1 Конфигурация плана должна быть компактной, т.е., каждое перекрытие
должно быть разграничено многоугольной выпуклой линией. Если имеются выступы в плане
перекрытия (входящие углы или разрывы по периметру), то регулярность в плане следует
считать удовлетворительной при условии, что эти нерегулярности не оказывают влияние на
жесткость перекрытия в плане и что разница в площадях, полученных с учетом каждой
нерегулярности фактического очертания перекрытия и выпуклой многоугольной линией,
окружающей площадь перекрытия, не превышает 5 %.
6.17.18.2 Жесткость перекрытий в плане должна быть большой в сравнении с
поперечной жесткостью вертикальных несущих элементов сооружения, поскольку
деформации перекрытий не должны влиять на распределение сил между вертикальными
несущими элементами. Особое внимание должно быть уделено сооружениям, имеющим в
плане Г, C, H, I и X-образные формы. Жесткость конструкций по контуру сооружения
должна быть сопоставима с жесткостью конструкций центральной части.
6.17.18.3 Вытянутость сооружения в плане λ = Lmax/Lmin должна быть не более 4, где Lmax
и Lmin соответственно больший и меньший размеры сооружения в плане, измеренные в
ортогональных направлениях.
6.17.18.4 При расчете сооружения эксцентриситет и радиус кручения на каждом уровне
и для каждого из направлений Х и У должны соответствовать двум условиям (выражения
приведены для расчета по оси у):
eox ≤ 0,30rx,
(14)
rx ≥ ls,
(15)
где
eox – расстояние между центром масс и центром жесткостей по оси Х, нормальное к
анализируемому направлению;
rx - квадратный корень из отношения значений крутильной жесткости к горизонтальной
жесткости в направлении оси У (радиус кручения);
ls - радиус вращения массы перекрытия в плане (корень квадратный отношения
полярного момента инерции массы перекрытия в плане относительно центра масс
перекрытия к массе перекрытия).
В одноэтажном сооружении центр жесткости определяется как центр жесткости всех
основных элементов, воспринимающих сейсмическое воздействие. Радиус кручения r
определяется как корень квадратный отношения общей жесткости при кручении
относительно центра горизонтальной жесткости к общей горизонтальной жесткости по
одному из направлений, принимая во внимание все основные элементы, воспринимающие
сейсмическое воздействие в этом направлении.
В многоэтажном сооружении возможно только приблизительно определить центр
жесткости и радиус кручения. Упрощенное определение этих понятий для классификации
регулярности сооружения в плане и приближенного анализа крутильных эффектов в частных
случаях определяется, если выполняются следующие два условия:
а)
все несущие элементы, такие как диафрагмы, стены, рамы (каркасы),
воспринимающие горизонтальную нагрузку непрерывны по всей высоте сооружения от
фундамента до крыши;
б)
формы деформирования отдельных систем при горизонтальных нагрузках
отличаются незначительно. Это условие выполняется в случае каркасных или стеновых
систем. Для каркасно-стеновых систем это условие в общем случае не выполняется.
В каркасных и стеновых системах, в которых преобладают изгибные деформации,
положение центров жесткостей и радиусов кручения всех этажей сооружения следует
вычислять так же, как и положения моментов инерции горизонтальных сечений
139
140.
вертикальных элементов. Если наравне с изгибными деформациями возникаютсущественные деформации сдвига, то их следует учесть с помощью эквивалентного момента
инерции поперечного сечения.
6.17.19 Несущие элементы, такие как ядра жесткости, стеновые системы или рамы,
воспринимающие горизонтальную нагрузку, должны быть непрерывными по всей высоте
сооружения от фундамента до покрытия.
6.17.19.1 Поперечную жесткость и массы отдельных этажей допускается изменять
постепенно, без резких изменений по высоте сооружения.
6.17.19.2 В каркасных зданиях отношение фактической несущей способности одного
этажа к требуемой несущей способности, полученной расчетным путем, не должно меняться
между соседними этажами.
6.17.19.3 При наличии выступов необходимо выполнить следующие дополнительные
условия:
a)
при выступах, расположенных симметрично относительно оси, выступ на
любом этаже не должен превышать 20% предыдущего размера в плане в направлении
выступа (рисунки 2,а и 2,б);
б)
для отдельных выступов при высоте менее 15 % от общей высоты основной
конструктивной системы выступ должен быть не больше 50 % основного размера в плане
(рисунок 2,в). В этом случае, конструкция зоны основания в пределах периметра в
вертикальной проекции верхних этажей должна быть запроектирована в расчете на
восприятие не менее 75 % горизонтальной силы, которая может возникнуть в этой зоне в
подобном сооружении без увеличения основания;
в)
если выступы на каждом фасаде расположены несимметрично, то сумма
поверхности выступов на всех этажах должна быть не больше 30 % размера в плане на
первом этаже над фундаментом или над верхней частью жесткого основания, а отдельные
выступы не должны превышать 10 % предыдущего размера в плане (рисунок 2,г).
Рисунок 2 - Критерии регулярности по высоте
6.17.20 Ненесущие конструкции (выступающие части) сооружений (например,
парапеты, фронтоны, антенны, механическое оборудование, перегородки, перемычки,
балюстрада), которые в случае обрушения могут представлять риск для людей или оказать
влияние на основные конструкции сооружения или функционирование опасных сооружений,
140
141.
должны проверяться вместе с их опиранием на восприятие расчетного сейсмическоговоздействия.
П р и м е ч а н и е – Необходимо учитывать местную передачу воздействий и их
влияние на поведение сооружения, закрепляя ненесущие элементы.
6.17.20.1 Для ненесущих конструкций с высокой степенью ответственности или для
особо ответственных элементов сейсмический анализ должен основываться на реальной
модели соответствующих сооружений и на использовании соответствующих спектров
реакции, которые получены, используя реакции несущих конструктивных элементов
основной системы, воспринимающей сейсмическое воздействие.
6.17.20.2 Во всех остальных случаях разрешается использовать упрощенные
процедуры, соответствующим образом обоснованные.
6.17.20.3 Коэффициент надежности по материалу для ненесущих элементов во всех
случаях может быть принят равным 1,0.
6.17.21 Коммуникации между сейсмоизолированной и несейсмоизолированной частями
сооружения не должны препятствовать относительным перемещениям этих частей.
Следует убедиться, что податливость таких коммуникаций достаточно велика по
сравнению с податливостью системы сейсмоизоляции и что суммарная реакция
коммуникаций не будет вносить заметных возмущений в движение сейсмоизолированной
части здания.
При необходимости в коммуникации следует включать гибкие соединения и
компенсаторы в уровне сейсмоизолирующего слоя.
6.17.22 Устройства сопротивления ветровой нагрузке, установленные в
сейсмоизолирующем слое, должны быть расположены по периметру здания симметрично и
равномерно.
6.17.23 Степень огнестойкости системы сейсмоизоляции должна соответствовать
требованиям норм по пожарной безопасности зданий – ГОСТ 30247.0, ГОСТ 30403,
ГОСТ Р 53292, ГОСТ Р 53295, СП 2.13130.
6.17.24 Для сооружений с сейсмоизоляцией должна быть разработана инструкция для
периодического мониторинга, контроля и эксплуатации системы сейсмоизоляции, которая
должна храниться.
Приложение Д
(справочное)
Сейсмоизолирующие элементы
Д.1 Общие положения
Д.1.1 Способность сейсмоизолирующих систем снижать и ограничивать реакцию
сооружений на сейсмические воздействия зависит от свойств сейсмоизолирующих
элементов, образующих эти системы.
Д.1.2 В приложении рассматриваются только апробированные системы
сейсмоизоляции, получившие признание в мировой практике сейсмостойкого строительства.
Д.1.3 Наиболее широкое распространение в мировой практике сейсмостойкого
строительства получили системы сейсмоизоляции, образованные сейсмоизолирующими
элементами в виде:
а)
эластомерных опор;
б)
эластомерных опор со свинцовыми сердечниками;
в)
опор фрикционно-подвижного типа с плоскими горизонтальными
поверхностями скольжения;
г) кинематических систем с качающимися опорами (как правило, из железобетона).
д)
опор фрикционно-подвижного типа со сферическими поверхностями
скольжения;
141
142.
е) трехкомпонентная пружинно-демпферная система (ТПДС), состоящая из упругихвитых пружин и параллельно установленных многокомпонентных (3D) вязкоупругих
демпферов (ВД).
Д.1.4 Сейсмоизолирующие опоры, указанные в:
а) Д.1.3,а, Д.1.3,б, и Д.1.3,г применяются в сейсмоизолирующих системах первого типа:
системы сейсмоизоляции, уменьшающие величины горизонтальных сейсмических нагрузок
на сейсмоизолированную часть здания за счет изменения частотного спектра ее собственных
колебаний – увеличения периодов колебаний сейсмоизолированной части сооружения по
основному тону;
б) Д.1.3,в и Д.1.3,д применяются в сейсмоизолирующих системах второго типа:
системы сейсмоизоляции, ограничивающие уровень горизонтальных сейсмических нагрузок,
действующих на сейсмоизолированную часть здания;
в) Д.1.3,в применяются в сейсмоизолирующих системах третьего типа: системы
сейсмоизоляции, сочетающие способность изменять частотный спектр собственных
колебаний сейсмоизолированной части сооружения со способностью ограничивать уровень
горизонтальных сейсмических нагрузок, воздействующих на сейсмоизолированную часть
сооружения.
г) Д.1.3,е) применяются в сейсмоизолирующих системах четвертого типа: системы
сейсмоизоляции, сочетающие способность изменять частотный состав собственных
колебаний сейсмоизолированной части сооружения со способностью ограничивать уровень
как горизонтальных, так и вертикальных сейсмических нагрузок, воздействующих на
сейсмоизолированную часть сооружения.
Д.1.5 Определенное распространение в практике сейсмостойкого строительства
получили комбинированные системы сейсмоизоляции, сочетающие сейсмоизолирующие
элементы разных типов (например, указанные в Д.1.3,а и Д.1.3,в или в Д.1.3,в и Д.1.3,д).
Д.2 Эластомерные опоры
Д.2.1 Эластомерные опоры, применяемые для защиты сооружений от сейсмических
воздействий, представляют собой слоистые конструкции из поочередно уложенных друг на
друга листов натуральной или искусственной резины толщиной 5-20 мм, и листов металла
толщиной 1,5-5,0 мм. Сверху и снизу устанавливают фланцевые пластины толщиной 20-40
мм. Листы резины и металла соединены между собой путем вулканизации или с помощью
специальных связующих материалов. По торцам эластомерных опор предусмотрены
опорные стальные пластины, через которые опоры крепятся к конструкциям
несейсмоизолированных и сейсмоизолированных частей сооружения сооружения.
Д.2.2 Общий вид одного из возможных вариантов конструктивных решений
эластомерных опор (иначе их называют резинометаллическими) показан на
рисунке Д.1.
1 – опорные пластины, закрепляемые к несейсмоизолированной и и сейсмоизолированной
частям сооружения; 2 – листы резины; 3 – стальные пластины, расположенные между
листами резины;
4 – резиновая оболочка, защищающая внутренние слои резины и металла;
142
143.
5 – отверстия под анкерные болты, необходимые для закрепления опоры кнесейсмоизолированной и сейсмоизолированной частям сооружения
Рисунок Д.1 – Эластомерная сейсмоизолирующая опора
Д.2.3 Физико-механические свойства резины и металла, а также толщины и размеры в
плане листов, выполненных из этих материалов, принимаются в зависимости от требований,
предъявляемых к эластомерным опорам в части: диссипативных свойств, прочности,
вертикальной и горизонтальной жесткости, долговечности и ряда других эксплуатационных
показателей.
Д.2.4 Стальные листы в эластомерных опорах препятствуют выпучиванию резиновых
листов при действии вертикальных нагрузок и обеспечивают вертикальную жесткость и
прочность опор. Резиновые листы, обладающие низкой сдвиговой жесткостью, обеспечивают
горизонтальную податливость эластомерных опор.
Д.2.5 Эластомерные опоры, благодаря их низкой сдвиговой жесткости, изменяют
частотный спектр собственных горизонтальных колебаний сейсмоизолированной части
сооружения, а восстанавливающие силы, возникающие при деформациях опор, стремятся
возвратить сейсмоизолированную часть сооружения в исходное положение.
Примечания
1 Эластомерные опоры могут воспринимать усилия сжатия, растяжения,
сдвига и кручения при циклических перемещениях в горизонтальном и
вертикальном направлениях.
2 При расчетных гравитационных нагрузках вертикальные деформации
эластомерных опор, как правило, не превышают нескольких миллиметров. При
горизонтальных нагрузках опоры могут деформироваться на несколько сот
миллиметров (рисунок Д.2).
Д.2.6 Эластомерные опоры, в зависимости от своих диссипативных свойств,
подразделяются на два вида:
– опоры с низкой способностью к диссипации энергии;
– опоры с высокой способностью к диссипации энергии.
Рисунок Д.2 – Деформации эластомерных опор при вертикальных и горизонтальных
нагрузках
Д.2.7 Эластомерными опорами с низкой способностью к диссипации энергии являются
опоры, диссипативные свойства которых характеризуются коэффициентом вязкого
демпфирования ξ, значения которого не превышают 5 % от критического значения.
Д.2.8 Производят эластомерные опоры с низкой способностью к диссипации энергии из
пластин натуральной или искусственной резины, изготовленной по технологиям, не
предусматривающим повышения ее демпфирующих свойств.
П р и м е ч а н и е -- Значения коэффициента ξ, характеризующего
диссипативные свойства эластомерных опор с низкой способностью к
диссипации энергии, зависят от сил внутреннего трения, возникающих в
деформирующихся опорах и, как правило, составляют 2-3 %.
143
144.
Д.2.9 Эластомерные опоры с низкой способностью к диссипации энергии просты визготовлении, малочувствительны к скоростям и истории нагружения, а также к температуре
и старению. Для них типично линейное поведение при деформациях сдвига до 100 % и более.
Д.2.10 Эластомерные опоры с низкой способностью к диссипации энергии применяют,
как правило, совместно со специальными демпферами вязкого или гистерезисного типа
(рисунок А.3), позволяющими компенсировать низкую способность эластомерных опор к
диссипации энергии сейсмических колебаний.
1 – эластомерная сейсмоизолирующая опора; 2 – демпфер; 3 – несейсмоизолированная часть
сооружения;
4 – сейсмоизолированная часть сооружения
Рисунок А.3 – Фрагмент сейсмоизолирующей системы, состоящей из эластомерной опоры с
низкой способностью к диссипации энергии и демпфера
Д.2.11 Эластомерными опорами с высокой способностью к диссипации энергии
являются опоры, диссипативные свойства которых характеризуются коэффициентом вязкого
демпфирования ξ со значениями не менее 10 % и не более 20 %.
П р и м е ч а н и е -- Диссипативные свойства таких опор зависят в
основном от гистерезисных процессов в резине (затрат энергии на ее
пластические и нелинейно-упругие деформации) и, как правило,
характеризуются значениями ξ в пределах 10-20 %.
Д.2.12 Эластомерные опоры с высокой способностью к диссипации энергии состоят из
пластин резины, изготовленной по специальным технологиям, обеспечивающим повышение
ее демпфирующих свойств до требуемого уровня.
Д.2.13 Эластомерные опоры с высокой способностью к диссипации энергии обладают
способностью к горизонтальным сдвиговым деформациям до 200-350 %. Их
эксплуатационные, жесткостные, диссипативные характеристики зависят от скоростей и
истории нагружения, температуры окружающей среды и старения.
Д.2.14 Для эластомерных опор с высокой способностью к диссипации энергии типично
нелинейное поведение.
Д.3 Эластомерные опоры со свинцовыми сердечниками
Д.3.1 Эластомерные опоры со свинцовыми сердечниками, как правило, изготавливают
из пластин резины, обладающей низкими диссипативными свойствами. Свинцовый
сердечник располагают в заранее сформированных отверстиях в центре или по периметру
опоры и имеет суммарный диаметр от 15 % до 33 % от внешнего диаметра опоры.
Общий вид одного из возможных вариантов конструктивных решений эластомерных
опор со свинцовыми сердечниками показан на рисунке А.4.
Д.3.2 Благодаря комбинации резиновых и металлических слоев в опоре со свинцовыми
сердечниками, обеспечивающими гистерезисную диссипацию энергии при горизонтальных
деформациях, они обладают:
– высокой вертикальной жесткостью при эксплуатационных нагрузках;
– высокой горизонтальной жесткостью при действии горизонтальных нагрузок низкого
уровня;
– низкой горизонтальной жесткостью при действии горизонтальных нагрузок высокого
уровня;
144
145.
– высокой способностью к диссипации энергии.1 – опорные пластины, закрепляемые к несейсмоизолированной и и сейсмоизолированной
частям сооружения;
2 – фланцевые стальные пластины; 3 – стальные пластины, расположенные между
пластинами резины; 4 – пластины резины; 5 – резиновая оболочка, защищающая
внутренние слои резины и металла; 6 – отверстия под анкерные болты, необходимые для
закрепления опоры к несейсмоизолированной и и сейсмоизолированной частям сооружения;
7 – отверстия под шпонки;
8 – свинцовый сердечник
Рисунок А.4 – Эластомерная опора со свинцовым сердечником
Д.3.3 Диссипативные свойства эластомерных опор со свинцовыми сердечниками
зависят от величин их горизонтальных сдвиговых деформаций и характеризуются
коэффициентом эффективного вязкого демпфирования ξ в пределах от 15 до 35 %.
Д.3.4 Эластомерные опоры со свинцовыми сердечниками способны иметь
горизонтальные сдвиговые деформации величиной до 400 %. При этом их параметры менее
чувствительны к величинам вертикальных нагрузок, скоростям и истории нагружения,
температуре окружающей среды и старению, чем параметры опор в Д.2.
Д.3.5 При низких уровнях горизонтальных воздействий (например, при ветровых или
слабых сейсмических воздействиях) эластомерные опоры со свинцовыми сердечниками
работают в горизонтальных и вертикальном направлениях как жесткие элементы, а при
высоких уровнях горизонтальных воздействий – как элементы податливые в горизонтальных
направлениях и жесткие в вертикальном.
Д.3.6 Перечисленные выше свойства делают эластомерные опоры со свинцовыми
сердечниками часто применяемым типом сейсмоизолирующих элементов в зонах с высокой
в горизональном направлении сейсмичностью.
Д.4 Опоры фрикционно-подвижного типа с плоскими горизонтальными
поверхностями скольжения
Д.4.1 Сейсмоизолирующие опоры фрикционно-подвижного типа с плоскими
горизонтальными поверхностями скольжения (или плоские скользящие опоры) выполняются
в виде верхних и нижних жестких элементов, примыкающие горизонтальные поверхности
которых имеют покрытия из слоя синтетического материала с низким значением
коэффициента трения скольжения (например, фторопласта или металлофторопласта в паре с
нержавеющей сталью).
Общий вид двух вариантов конструктивных решений плоских скользящих опор показан
на рисунке Д.5.
145
146.
1 – опорные стальные пластины, закрепляемые к несейсмоизолированной и исейсмоизолированной частям сооружения;
2 – пластины резины; 3 – внутренние стальные пластины; 4 – покрытие (например, из
фторопласта) нижней части скользящей опоры; 5 – стальная пластина (например, из
нержавеющей стали), по которой происходит скольжение; 6 – отверстия под анкерные
болты, необходимые для закрепления опоры к несейсмоизолированной и и
сейсмоизолированной частям сооружения
Рисунок Д.5 – Плоские скользящие опоры
Д.4.2 Плоские скользящие опоры имеют довольно низкий порог срабатывания и
обеспечивают намного бóльшее рассеивание энергии, чем эластомерные опоры со
свинцовым
сердечником
(ξ=63,7 %). Однако,
из-за
отсутствия
в
опорах
восстанавливающих сил, при интенсивных сейсмических воздействиях сейсмоизолированная
часть сооружения может иметь допускаемые односторонние перемещения в пределах
нижней опорной пластины после прекращения действия сейсмических нагрузок. Эти
перемещения не влияют на напряженно деформированное состояние сейсмоизолированной
части сооружения и субструктуры.
Д.4.3 Для ограничения чрезмерных односторонних горизонтальных перемещений
сейсмоизолированной части сооружения относительно субструктуры в сейсмоизолирующую
систему, образованную плоскими скользящими опорами, как правило, вводятся
дополнительные упругие элементы-ограничители (амортизаторы).
П р и м е ч а н и е – Величины допускаемых перемещений должны
устанавливаться на основе дополнительного анализа.
Д.4.4 В качестве альтернативных вариантов, обеспечивающих ограничение чрезмерных
односторонних горизонтальных перемещений сейсмоизолированной части сооружения
относительно субструктуры, рекомендуется:
– предусматривать в скользящих поясах конструктивные элементы, обеспечивающие
возможность использования соответствующего силового оборудования, возвращающего
плоские опоры скольжения в исходное положение после прекращения сейсмического
воздействия;
– в состав «скользящих поясов» включать дополнительные сейсмоизолирующие
элементы, способные ограничивать величины перемещений и возвращать плоские опоры
скольжения в исходное положение (рисунок Д.6).
1 – плоская скользящая опора; 2 – эластомерная опора; 3 – нижняя стальная пластина
(например, из нержавеющей стали), по которой происходит скольжение;
4 – пластины из резины; 5 – стальные пластины; 6 - слой из фторопласта
146
147.
Рисунок Д.6 – Фрагмент сейсмоизолирующей системы, образованной плоскими скользящимиопорами и эластомерными опорами
Д.5 Кинематические системы с качающимися опорами
Д.5.1 Качающиеся опоры, применяемые для защиты сооружений от горизонтальных
сейсмических воздействий, представляют собой подвижные стойки, выполненные из
железобетона
и
расположенные
в
зазоре
между
сейсмоизолированной
и
несейсмоизолированной частями сооружения. Опоры имеют сферические торцы, на верхней
и нижней частях каждой опоры (Рис. Д.7.а), либо только на нижней части при закреплении
верхней части опоры с помощью шарнирной связи к конструкциям сейсмоизолированной
части сооружения (Рис. Д.7.б). Шарнирная связь обеспечивает подвижность в
горизонтальной плоскости по всем направлениям.
а) 1 – фундаментная плита; 2 – опорная плита; 3 – опоры в форме стоек со
сферическими торцами;
б) 1 – фундаментная плита; 2 – сферическая опора; 3 – стойка; 4 – шарнирное крепление.
Рисунок Д.7 – Кинематические системы с качающимися опорами
Д.5.2. Кинематические системы с качающимися опорами относятся к гравитационному
типу, в котором горизонтальное сейсмическое воздействие уравновешивается суммой
моментов от веса сейсмоизолированной части сооружения. Значения опрокидывающего и
удерживающего моментов зависят от геометрических параметров, а также от величины
реактивных моментов, связанных с локальными деформациями в областях контакта и теле
опор.
Д.5.3 Геометрические параметры опор при проектировании определяются величиной
передаваемой на кинематическую систему вертикальной нагрузки, прочности используемого
при изготовлении опор материала и расчетного горизонтального перемещения
несейсмоизолированной части сооружения при сейсмическом воздействии.
Д.5.4 Качающиеся опоры применяют, как правило, совместно со специальными
демпферами вязкого или гистерезисного типа.
Д.5.5 Использование кинематической системы сейсмоизоляции с качающимися
опорами может быть рекомендовано, как правило, в зданиях с жесткой конструктивной
схемой.
Д.6 Фрикционно-подвижные опоры со сферическими поверхностями скольжения
147
148.
Д.6.1 Сейсмоизолирующие фрикционно-подвижные опоры со сферическимиповерхностями скольжения (или маятниковые скользящие опоры) – это скользящие опоры, в
которых контактные поверхности скольжения имеют сферическую форму.
Примечания
1 Сейсмоизолирующие фрикционно-подвижные опоры со сферическими
поверхностями скольжения называют маятниковыми скользящими опорами,
так как расположенная на них сейсмоизолированная часть сооружения
совершает при сейсмических воздействиях колебания, подобные движениям
маятника при наличии трения (рисунки Д.7-Д.8).
2 Маятниковые опоры, в которых энергия диссипируется за счет сил
трения качения (шаровые и катковые опоры, кинематические фундаменты и
подобные им сейсмоизолирующие элементы с низкой способностью к
диссипации энергии), в настоящем СП не рассматриваются.
Д.6.2 Конструктивные решения всех видов маятниковых скользящих опор
предусматривают наличие:
– одной или нескольких вогнутых сферических поверхностей скольжения;
– одного или нескольких ползунов;
– ограждающих бортиков, ограничивающих горизонтальные перемещения ползунов.
Элементы маятниковых скользящих опор изготавливаются, как правило, из
нержавеющей стали, а их сферические поверхности имеют покрытия из материалов,
обладающих заданными фрикционными свойствами.
Д.6.3 Маятниковые скользящие опоры, в зависимости от особенностей конструктивных
решений, подразделяются на опоры:
– с одной сферической поверхностью скольжения; далее – одномаятниковые
скользящие опоры;
– с двумя сферическими поверхностями скольжения; далее – двухмаятниковые
скользящие опоры;
– с четырьмя сферическими поверхностями скольжения; далее – трехмаятниковые
скользящие опоры.
Д.6.4 В маятниковых опорах всех типов:
– формы ползунов и плит обеспечивают однородное распределение напряжений в
местах их примыкания и исключают возможность возникновения неблагоприятных
локальных эффектов;
– при перемещениях ползунов по сферическим поверхностям, сейсмоизолированная
часть сооружения приподнимается и составляющая гравитационной силы, параллельная
горизонтальной поверхности, стремится вернуть ее в положение устойчивого равновесия;
– диссипативные свойства взаимосвязаны с фрикционными свойствами материалов,
контактирующих на сопрягаемых сферических поверхностях плит и ползунов; наиболее
часто они характеризуются коэффициентом эффективного вязкого демпфирования ξ со
значениями в пределах от 10 до 30 %.
Д.6.5 Спектр собственных колебаний сейсмоизолированных частей сооружения,
сейсмоизолированных с помощью маятниковых опор всех типов, практически не зависит от
массы сейсмоизолированных частей сооружения.
Д.6.6 Одномаятниковая скользящая опора состоит из двух горизонтальных плит, одна
из которых имеет сферическую вогнутую поверхность, и расположенного между плитами
сферического шарнирного ползуна.
Общий вид и схема поведения одномаятниковой скользящей опоры показаны на
рисунке Д.8, а принцип действия – на рисунке Д.9.
148
149.
Д.6.7 Особенности поведения и сейсмоизолирующие свойства одномаятниковойскользящей опоры зависят от радиуса кривизны сферической поверхности R и величины
коэффициента трения скольжения μ ползуна по сферической поверхности.
П р и м е ч а н и е -- Спектр собственных колебаний сейсмоизолированной
части сооружения,
сейсмоизолированной с помощью одномаятниковых
скользящих опор, зависит преимущественно от выбранного радиуса кривизны
сферической поверхности в опорной плите сейсмоизолирующей опоры и не
зависит от интенсивности внешнего воздействия, а также амплитуд колебаний
сейсмоизолированной части сооружения.
Д.6.8 Современные сейсмоизолирующие системы с одномаятниковыми скользящими
опорами способны обеспечивать:
– периоды колебаний сейсмоизолированных частей сооружения до 3 с и более;
– взаимные перемещения субструктур и сейсмоизолированных частей сооружения до 1
м и более.
2
d
d
1
R,
d
2
3
d
h
3
1
h
R,
44
1 – нижняя стальная плита со сферической вогнутой поверхностью, по которой
происходит скольжение; 2 – верхняя стальная плита; 3 – сферический шарнирный ползун; 4
– точка поворота
Рисунок Д.8 – Общий вид и схема поведения одномаятниковой опоры
а)
б)
в)
R
N
M
г)
F
R
M
Рисунок Д.9 – Принцип действия одномаятниковой опоры
149
150.
а - колебания гравитационного маятника с одной точкой подвеса; б - колебаниягравитационного маятника с двумя точками подвеса; в - маятниковые колебания при
скольжении сферического ползуна по сферической поверхности; г - сооружение на
маятниковых опорах
Д.6.9 Двухмаятниковая скользящая опора состоит из двух горизонтальных плит,
имеющих сферические вогнутые поверхности, и расположенных между ними двух ползунов.
Общий вид и схема поведения двухмаятниковой скользящей опоры показаны на
рисунке Д.10.
R 2, 2
2
d2
d1
4
d2
d1
3
h2
h1
1
R1 , 1
5
1 – нижняя стальная плита со сферической вогнутой поверхностью; 2 – верхняя стальная
плита со сферической вогнутой поверхностью; 3 – верхний ползун со сферической вогнутой
поверхностью; 4 – нижний ползун со сферической выпуклой поверхностью; 5 – точка
поворота
Рисунок Д.10 – Общий вид и схема поведения двухмаятниковой опоры
Д.6.10 Особенности поведения двухмаятниковой скользящей опоры зависят от
радиусов кривизны верхних и нижних сферических поверхностей R1 и R2, а также величин
коэффициентов трения скольжения μ1 и μ2 ползунов по сферическим поверхностям.
Д.6.11 В двухмаятниковых скользящих опорах радиусы сферических вогнутых
поверхностей и коэффициенты трения могут быть одинаковыми или разными.
Важное достоинство двухмаятниковых скользящих опор – это их более компактные
размеры, чем у одномаятниковых.
150
151.
П р и м е ч а н и е - В двухмаятниковых скользящих опорах реализованмеханизм двух маятников, последовательно включающихся в работу в
зависимости от спектрального состава и интенсивности сейсмических
воздействий.
Д.6.12 В двухмаятниковых скользящих опорах движения шарнирных ползунов могут
происходить по верхним и по нижним сферическим поверхностям (см. рисунок Д.10).
Благодаря этому, взаимные смещения двухмаятниковых скользящих опор могут быть в два
раза больше, чем у одномаятниковых скользящих опор с теми же габаритными размерами.
Д.6.13 Возможность использования в двухмаятниковых скользящих опорах верхних и
нижних сферических поверхностей с разными радиусами кривизны и коэффициентами
трения, позволяет увеличить сейсмоизолирующие свойства этих опор.
Д.6.14 Трехмаятниковая скользящая опора состоит их двух плит (верхней и нижней) со
сферическими вогнутыми поверхностями и трех ползунов (верхнего, нижнего и внутреннего)
со сферическими поверхностями. Общий вид и схема поведения трехмаятниковой
скользящей опоры показаны на рисунке Д.10.
Д.6.15 Особенности поведения трехмаятниковой скользящей опоры зависят от радиусов
кривизны верхних и нижних сферических поверхностей R1, R2, R3 и R4, а также величин
коэффициентов трения скольжения μ1, μ2, μ3 и μ4 ползунов по сферическим поверхностям.
Д.6.16 В трехмаятниковых скользящих опорах, как и в двухмаятниковых, радиусы
сферических вогнутых поверхностей и коэффициенты трения могут быть одинаковыми или
разными.
П р и м е ч а н и е - В трехмаятниковой скользящей опоре реализован
механизм трех маятников, последовательно включающихся в работу в
зависимости от спектрального состава и интенсивности сейсмических
воздействий. По мере увеличения перемещений трехмаятниковых опор будут
увеличиваться эффективная длина маятника (увеличиваться период колебаний
сейсмоизолированной части сооружения) и повышаться эффективное
демпфирование.
Д.6.17 Комбинируя значения радиусов кривизны сферических
поверхностей и коэффициентов трения скольжения можно запроектировать
трехмаятниковые скользящие опоры, способные эффективно снижать
сейсмические нагрузки на сейсмоизолированную часть сооружения при
землетрясениях с очень высокой интенсивностью и со сложным спектральным
составом.
151
152.
R 4 , 4R 4 , 4
2
2
R 3 , 3
R 3 , 3
d4
d4
d1
d1
4
4
d4
d4
d1
d1
5
5
3
3
1
1
R 1 , 1
R 1 , 1
d3
d3
6
6
h
h3 h 4 4
h3
h2
h1
h2
h1
d
d22
R 2 , 2
R 2 , 2
1 – нижняя стальная плита со сферической вогнутой поверхностью; 2 – верхняя стальная
плита со сферической вогнутой поверхностью; 3 – нижний ползун со сферической вогнутой
поверхностью; 4 – верхний ползун со сферической вогнутой поверхностью; 5 – внутренний
шарнирный ползун; 6 – точка поворота
Рисунок Д.11 – Общий вид и схема поведения трехмаятниковой опоры
Д.7 Трехкомпонентная пружинно-демпферная система. Упругие витые пружины с
многокомпонентными (3D) вязкоупругими демпферами
Д.7.1 Система ТПДС состоит из упругих витых пружин, несущих статическую и
сейсмическую нагрузку и параллельно включенных многокомпонентных вязкоупругих
демпферов, обеспечивающих в широких пределах необходимое демпфирование для
сейсмоизолированной системы (рисунки Д.12, Д.13).
152
153.
Рисунок Д.12 - Установка ТПДС при параллельном размещении блока витых пружин ивязкоупругого демпфера
Рисунок Д.13 - Принципиальная схема разрезного фундамента с сейсмоизоляцией ТПДС
Д.7.2 Варьирование параметрами витых пружин позволяет получить необходимые
первые собственные частоты сейсмоизолированной системы в горизонтальном и
вертикальном направлениях относительно доминантной частоты сейсмического воздействия
(рисунок Д.14,а), а демпферы ВД обеспечивают систему необходимым демпфированием во
всех степенях свободы, что позволяет существенно сократить перемещения
сейсмоизолированной системы при сохранении ее высокой изолирующей способности
(рисунок Д.14,б).
Д.7.3 Несущая способность блоков витых пружин находится в диапазоне от 1 кН до
7000 кН.
Блок витых пружин имеет линейную зависимость «сила – перемещение» во всем
диапазоне нагрузок и перемещений в вертикальном и горизонтальном направлениях
(рисунок Д.14,б).
Д.7.4 Максимальные сейсмические перемещения блоков пружин могут достигать 300
мм и более.
а)
б)
Рисунок Д.14 - Блок витых пружин для пространственной 3D изоляции (а); линейная
зависимость «сила-перемещение» для витой пружины (б)
153
154.
Д.7.5 Многокомпонентные вязкоупругие демпферы (рисунок Д.15) имеют нелинейнуючастотную демпфирующую характеристику. Их динамическая жесткость состоит из упругой
и неупругой (вязкой) частей и описываются 4-х звенной динамической моделью Максвелла
(рисунок Д.16).
а)
б)
Рисунок Д.15 - Вязкоупругий пространственный 3D демпфер (а); зависимость «силаперемещение» для вязкоупругого демпфера
Рисунок Д.16 - Зависимость вязкоупругой реакции демпфера от частоты нагружения
Предлагаем включить предложения в состав СП.
Сводку замечаний составил:
Зам. руководителя ЦИСС
ЦНИИСК им. В.А. Кучеренко АО «НИЦ «Строительство»
154
Бубис А.А.
155.
№21
Текущая редакция СП
табл. 1
22
раздел 3 ―Термины и определения‖
Замечание (предложение)
1. В табл. 1 категория грунтов
принимается в зависимости от скоростей и
их соотношения, т. е. необходимо
выполнить один из видов геофизических
работ. Для небольших объектов (например:
малоэтажные здания со стенами из
кирпича, блочные модульные котельные,
трансформаторные подстанции заводской
готовности,
коровники,
небольшие
пристройки к существующим зданиям при
реконструкции и т. д., а тем более для
объектов
с
финансированием
из
бюджетных средств) стоимость изысканий
и
проектных
работ
может
быть
сопоставима (тем более с учетом 30-ти
метровых скважин) и даже превышать
стоимость строительно-монтажных работ,
что
является
нерациональным
расходованием
бюджетных
средств.
Плачевное состояние бюджета Вы знаете,
тем более бюджета регионов. Необходимо
дополнить документ параметрами зданий и
сооружений
(например:
этажность,
напряжение под подошвой фундаментов,
глубина сжимаемой толщи и т. п.), для
которых категория грунтов может быть
определена по показателю консистенции и
коэффициенту пористости без определения
скоростей волн.
Указания нового СП (по изучению
грунтов на глубину 30 м) противоречат
действующим
документам.
Правила
проведения работ по сейсмическому
микрорайонированию
указаны
в
действующем документе СП 11-105-97
―Инженерно-геологические изыскания для
строительства.
Часть
VI.
Правила
производства
геофизических
исследований‖. Пункт 4.13 СП 11-105-97
указывает на необходимо соблюдения
технических
требований
для
сейсморазведки,
изложенных
в
действующем нормативном документе
РСН 66-87 ― Инженерные изыскания для
строительства. Технические требования к
производству
геофизических
работ.
Сейсморазведка‖.
Пункты 2.5 и 2.6 РСН 66-87
оговаривают
максимальную
глубину
изучения геологического разреза и глубину
горных выработок (до 20 м) для решения
задач
по
сейсмическому
микрорайонированию.
Пункт 3.12 РСН 66-87 оговаривает
мощность расчетной толщи (10 м, считая
от планировочной отметки, либо другой
обоснованной, но не более 20 м) для
оценки приращения бальности.
1. Доработать раздел 3 ―Термины и
155
Автор
А. А. Бешанов
ГАУ КК
―Краснодар
крайгосэкспертиза
‖
Коммент
В Табл. 1
справочн
материал
исследов
Использо
п. 4.3.
Глубина
рассмотр
А. А. Бешанов
Замечани
156.
23Пункт 6.2.2
24
Табл. 9 п. 3.
25
Пункт 6.19.6
определения‖.
Пункты 3.20 (МРЗ) и 3.31 (ПЗ),
данные понятия определены только для
гидротехнических сооружений. Для других
зданий и сооружений вышеуказанные
термины не определены.
Пункт 3.20 при прочтении двояко
трактуется, т. е. применим как для
объектов
повышенного
уровня
ответственности,
так
и
для
гидротехнических
сооружений.
Рекомендую:
…для
объектов
гидротехнических
сооружений
повышенной ответственности…
Пункт 3.15 определяет только 3
категории, таблица 1 – 4 категории.
В пункте 3.14 (каркасно-каменные
здания) указан только II тип зданий,
упущен I тип, различающиеся по
технологическим особенностям. Каркас I
типа обычно выполняется при применении
сборных
железобетонных
элементов
каркаса (Руководство по проектированию
для сейсмических районов каркасных
зданий
со
стеновым
заполнением.
Кишинев, 1976. Разработан ЦНИИ им. В.
А. Кучеренко).
В терминах везде ошибочно указана
ссылка на комплект карт ОСР-97, в
приложении А указан комплект карт ОСР2015.
Пункт 6.2.2 перед последним абзацем
дополнить следующим: …Уступы в
скальных
грунтах
допускается
не
устраивать…
Вышеуказанный пункт разработан для
столбчатых и ленточных фундаментов,
отсутствуют рекомендации для плитных
фундаментов. Рекомендую: …для плитных
фундаментов, выполненных без уступов,
должно выполняться условие отсутствия
выпора
грунта
из-под
подошвы
фундаментов…
В табл. 9 п. 3. Непонятно, какое отношение
имеет величина выносов карнизов в
примечании к размерам простенков и
проемов.
Предложение. Пункт 6.19.6 дополнить
следующим: …При реконструкции зданий
и сооружений II (нормального) и
III
(пониженного) уровней ответственности
допускается сохранять существующие
конструкции здания, не соответствующие
конструктивным
требованиям
действующих норм, но обладающие
необходимой
расчетной
несущей
способностью с учетом сейсмического
воздействия…
Пояснение. При внесении незначительных
изменений (например: устройство дверного
проема взамен оконного и т. п.) вид работы
156
ГАУ КК
―Краснодар
крайгосэкспертиза
‖
внесены
А. А. Бешанов
ГАУ КК
―Краснодар
крайгосэкспертиза
‖
Замечани
внесены
А. А. Бешанов
ГАУ КК
―Краснодар
крайгосэкспертиза
‖
А. А. Бешанов
ГАУ КК
―Краснодар
крайгосэкспертиза
‖
Замечани
внесены
Предлож
раздела 6
157.
263. Термины и определения
27
3.4 «... и/или спектров реальных
землетрясений с учетом местных
сейсмогеологических условий»
28
П. 3.8.
29
П. 3.11, 3.36, 6.11
30
П. 3.15
31
П. 3.20
переходит в реконструкцию и, как
следствие,
ведет
к
необходимости
выполнения сейсмостойких мероприятий
всего
здания,
имеющего
статус
работоспособного
по
результатам
обследования, что ведет к значительным
затратам.
3.2
Согласно
правилам
терминообразования под сейсмограммой
понимается
запись
сейсмических
колебаний
с
любой
частотной
характеристикой. И акселерограмма, и
велосиграмма и узкополосный фильтр-это
все сейсмограммы. Предлагается для
записей смещения использовать по
аналогии термин дисплограмма.
Неверно:
1)
По одному спектру построить
акселерограмму нельзя – необходимо знать
огибающую колебаний.
2)
Непонятно, что понимается под
местными
сейсмогеологическими
условиями. Исходя из текста СП –это
только
грунтовые
условия.
Такие
сейсмогеологические
условия
как
магнитуда землетрясения, расстояние, тип
подвижки в очаге в СП не учитываются.
Следует сказать, что все эти условия
учитываются при ДСР.
В дальнейшем в СП ДСР не упоминается.
В каких случаях проводится ДСР? В СП по
ДСР предлагается проводить этот вид
работ для объектов повышенного уровня
ответственности. Карта ДСР в этих случаях
заменяет карту ОСР. Поскольку для
объектов повышенной ответственности
также обязательно проводится СМР,
оценки сейсмической опасности при ДСР
также дискредитируются с шагом в 0,1
балла.
3.11, 3.36, 6.11 В шкале MSK-64
отсутствуют описания реакций зданий
высотой более 5 этажей, панельные здания,
здания с антисейсмическими усилениями.
Инструментальные
оценки
по
утверждению
автора
шкалы
С.В.
Медведева (1976 г.) занижены примерно в
полтора
раза.
Международным
сообществом шкала отменена. Да и у нас
шкала «отменена без замены» в 1995 г.
Поэтому лучше говорить просто о
сейсмической шкале. Все шкалы прошлого
и будущего строились и будут строиться с
сохранением преемственности оценок.
В дальнейшем упоминается и 4-я категория
(п.4.5, табл. 1). Привести в соответствие.
максимальное расчетное землетрясение
(МРЗ): упомянут не действующий с 2016
г. комплект карт ОСР-97 B и C. Кроме того
указано, что этот термин применим к
157
ИФЗ РАН
Е.А. Рогожин
Ф.Ф. Аптикаев
О.О. Эртелева
Предлага
ИФЗ РАН
Е.А. Рогожин
Ф.Ф. Аптикаев
О.О. Эртелева
1. Имеют
построен
акселеро
может ис
землетря
реализац
2. П. 4.3 у
необходи
исследов
необходи
акселлер
ИФЗ РАН
Е.А. Рогожин
Ф.Ф. Аптикаев
О.О. Эртелева
ДСР отно
частност
ИФЗ РАН
Е.А. Рогожин
Ф.Ф. Аптикаев
О.О. Эртелева
СП постр
балле, ка
количест
определе
64. При и
шкалы, о
невозмож
иной шка
выполни
переопре
сейсмиче
ИФЗ РАН
Е.А. Рогожин
Ф.Ф. Аптикаев
О.О. Эртелева
ИФЗ РАН
Е.А. Рогожин
Ф.Ф. Аптикаев
О.О. Эртелева
Замечани
категори
Замечани
-97.
158.
32П. 3.25
33
П. 3.31
34
П.п. 3.34 и 3.48
35
П. 3.41
36
4.3
37
4.3 и 5.19
38
5.2
39
Раздел 7 Транспортные сооружения
40
Приложение А
гидротехническим сооружениям, а в
разделе 5 Расчетные нагрузки он
применяется для всех типов сооружений.
нормативная сейсмичность: упомянут не
действующий с 2016 г. комплект карт ОСР97.
проектное землетрясение (ПЗ): указано,
что этот термин применим к
гидротехническим сооружениям, а в
разделе 5 Расчетные нагрузки он
применяется для всех типов сооружений.
Очень схожие определения. Неясно, куда
отнести
здания,
пришедшие
после
землетрясения в аварийное состояние.
Здания с 3-й степенью повреждений могут
как ремонтироваться, так идти под снос.
Предлагается
дать
количественную
характеристику
сейсмостойкости.
Сейсмостойкость здания (сооружения)
категории работоспособного технического
состояния оценивается в баллах, при
которых оно переходит в категорию
ограниченно работоспособного состояния,
Сейсмическая
нагрузка
не
только
инерционная, но и деформационная
Нормативную
интенсивность
сейсмических воздействий в баллах
(фоновую сейсмичность) для района
строительства следует принимать на
основе
комплекта
карт
общего
сейсмического районирования территории
Российской
Федерации
(ОСР),
утвержденных Российской академией наук.
Комментарий: с 2014 г. РАН не
уполномочена утверждать карты ОСР.
Выбор карты осуществляется заказчиком!
Этот выбор должен быть объективным и не
зависеть от желания проектировщика или,
тем более, заказчика.
Должны
существовать
правила,
по
которым определяется выбор карты.
Упоминается
необходимость
учета
вертикальной
компоненты,
но
не
указывается, как это делать.
Раздел 7 Транспортные сооружения
противоречит содержанию трех новых СП
«Транспортные
сооружения
в
сейсмических
районах.
Правила
проектирования», принятых ФАУ ФЦС в
2016 г., разработанных Обществом с
ограниченной
ответственностью
«Проектирование,
обследования,
испытания строительных конструкций»
(ООО «ПОИСК») для транспортных
объектов по заданию Минстроя РФ.
Приложение А (обязательное) Список
населенных
пунктов
Российской
Федерации,
расположенных
в
158
ИФЗ РАН
Е.А. Рогожин
Ф.Ф. Аптикаев
О.О. Эртелева
ИФЗ РАН
Е.А. Рогожин
Ф.Ф. Аптикаев
О.О. Эртелева
Замечани
-97.
ИФЗ РАН
Е.А. Рогожин
Ф.Ф. Аптикаев
О.О. Эртелева
Термины
параметр
соответст
сейсмост
расчетно
устанавл
сейсмичн
возможно
площадке
воздейств
состояни
ИФЗ РАН
Е.А. Рогожин
Ф.Ф. Аптикаев
О.О. Эртелева
ИФЗ РАН
Е.А. Рогожин
Ф.Ф. Аптикаев
О.О. Эртелева
Слово «и
слову «си
отнесено
ИФЗ РАН
Е.А. Рогожин
Ф.Ф. Аптикаев
О.О. Эртелева
Предпола
комплект
разработк
вопросе п
его работ
ИФЗ РАН
Е.А. Рогожин
Ф.Ф. Аптикаев
О.О. Эртелева
По-видим
Порядок
нагрузок
6.14.3
Приведен
редакция
имеются
предложе
указанно
14.13330
ИФЗ РАН
Е.А. Рогожин
Ф.Ф. Аптикаев
О.О. Эртелева
ИФЗ РАН
Е.А. Рогожин
Ф.Ф. Аптикаев
Откоррек
Предлага
«утвержд
порядке»
Авторств
в окончат
документ
159.
41П. 6.8.11
42
П. 4.1
43
П. 4.2
44
П. 4.3
сейсмических районах, с указанием
расчетной сейсмической интенсивности в
баллах шкалы MSK-64 для средних
грунтовых условий и трех степеней
сейсмической опасности – А (10 %), В
(5 %), С (1 %) в течение 50 лет приведено
без указания авторства этого документа.
Максимальные расстояния между осями
колонн в каждом направлении при
безбалочных плитах и безбалочных плитах
с капителями следует принимать 7,2 м –
при сейсмичности 7 баллов, 6,0 м – при
сейсмичности 8, 9 баллов.
Текст
пункта
дополнить:
Толщину перекрытий (с капителями и
без них) безригельного каркаса следует
принимать не менее 1/30 расстояния
между осями колонн и не менее 180 мм,
класс бетона – не ниже В20.
О.О. Эртелева
ФЦС. В д
усмотрен
31 ГПИИС
Филиал
Военпроект
Предлага
180 мм. В
практиче
проектов
эксперим
4.1 При
проектировании
зданий
и
сооружений надлежит:
применять материалы, конструкции
и конструктивные схемы, обеспечивающие
снижение сейсмических нагрузок;
принимать,
как
правило,
симметричные конструктивные и объемнопланировочные решения с равномерным
распределением нагрузок на перекрытия,
масс и жесткостей конструкций в плане и
по высоте;
предусматривать
условия,
облегчающие развитие в элементах
конструкций
и
их
соединениях
пластических деформаций.
При назначении зон пластических
деформаций и локальных разрушений
следует
принимать
конструктивные
решения,
снижающие
риск
прогрессирующего
разрушения
сооружения или его частей.
4.2 Проектирование зданий высотой более
75 м должно осуществляться при научном
сопровождении
компетентной
организации.
МГСУ
Пункт пр
редакции
МГСУ
Пункт пр
редакции
В картах Общего сейсмического
районирования (ОСР-2012) приводятся
данные об интенсивности землетрясений
на территории Российской Федерации
(таблица 1).
Карта Общего
Период
сейсмического
повторяемости
районирования
, лет
МГСУ
Предпола
2012 не я
документ
применен
ОСР-2012 A
100
ОСР-2012 B
500
ОСР-2012 C
1000
ОСР-2012 D
2500
159
160.
ОСР-2012 E5000
ОСР-2012 F
10000
Сейсмическими районами считаются
районы, для которых интенсивность
землетрясений по карте ОСР-2012 B не
меньше 7 баллов. Действие данных норм
распространяется на проектирование в
сейсмических районах сейсмичностью до 9
баллов включительно. Проектирование
производится
для
площадок
с
сейсмичностью 7, 8 и 9 баллов.
45
4.4
За
проектное
землетрясение
(ПЗ)
принимается
расчетный
уровень
сейсмических
воздействий
от
землетрясений, вызывающих на площадке
строительства сотрясения максимальной
интенсивности с периодом повторяемости
раз в 100 лет (карта ОСР-2012 A).
МГСУ
46
4.5
МГСУ
47
4.6
48
4.7
49
4.8
50
4.9
За максимальное расчетное землетрясение
(МРЗ) принимается расчетный уровень
сейсмических
воздействий
от
землетрясений, вызывающих на площадке
строительства сотрясение максимальной
интенсивности с периодом повторяемости
раз в 500 лет (карта ОСР-2012 B).
Непосредственно
для
площадки
строительства
следует
производить
уточнение сейсмичности на основании
сейсмического
микрорайонирования
(СМР). При отсутствии карт сейсмического
микрорайонирования,
допускается
уточнять
сейсмичность
площадки
строительства по материалам инженерногеологических
изысканий,
согласно
таблице 2.
Площадки строительства на участках с
крутизной склонов более 15°, с оползнями,
обвалами, осыпями, карстом, селями, а
также участки, сложенные грунтами IV
категорий являются неблагоприятными в
сейсмическом отношении.
При необходимости строительства зданий
и сооружений на таких площадках следует
принимать дополнительные меры по
укреплению их оснований, усилению
конструкций и инженерной защите
территории от опасных геологических
процессов.
Проектирование на данных площадках
160
Предпола
2012 не
документ
применен
действую
ОСР-201
периодом
лет. Кром
достаточ
сейсмоме
последни
объектив
консерва
практиче
превыше
норматив
Предпола
2012 не я
документ
применен
МГСУ
Пункт пр
на рассмо
МГСУ
Пункт пр
на рассмо
МГСУ
Пункт пр
на рассмо
МГСУ
Пункт пр
на рассмо
161.
строительства должно осуществляться принаучном сопровождении компетентной
организации.
51
Таблица 2, категория грунта I
При сейсмичности района 7 баллов
расчетную сейсмичность принять равной 6
баллам.
МГСУ
52
Примечания к табл. 2.
МГСУ
53
П. 5.1
1 Скорости Vp и Vs, а также
величина сейсмической жесткости грунта
являются средневзвешенными значениями
для 30-метровой толщи, считая от
планировочной отметки.
2 В случае многослойного строения
грунтовой толщи, грунтовые условия
участка относят к более неблагоприятной
категории, если в пределах верхней 30метровой толщи (считая от планировочной
отметки) слои, относящиеся к этой
категории, имеют суммарную мощность
более 10 м.
3 При отсутствии данных о
консистенции, влажности, сейсмической
жесткости, скоростях Vp и Vs глинистые и
песчаные грунты при положении уровня
грунтовых вод выше 5 м относятся к III
или IV категории по сейсмическим
свойствам.
4 При прогнозировании подъема
уровня грунтовых вод и обводнения
грунтов (в том числе просадочных)
категорию грунтов следует определять в
зависимости от свойств грунта в
замоченном состоянии.
5
При
строительстве
на
вечномерзлых грунтах по принципу II
грунты основания следует рассматривать
по фактическому их состоянию после
оттаивания.
6
При
определении
сейсмичности
площадок строительства транспортных и
гидротехнических сооружений следует
учитывать дополнительные требования,
изложенные в разделах 7 и 8.
Расчет конструкций и оснований
зданий и сооружений, проектируемых
для строительства в сейсмических
районах,
должен
выполняться
на
основные и особые сочетания нагрузок с
учетом
расчетной
сейсмической
нагрузки.
При расчете зданий и сооружений
на особое сочетание нагрузок значения
расчетных нагрузок следует умножать
на
коэффициенты
сочетаний,
принимаемые по
СП 20.13330.2011.
Нагрузки и воздействия.
Горизонтальные нагрузки от масс на
161
МГСУ
С учетом
чрезмерн
выведени
применен
основани
геологич
необходи
сделать с
Все прим
предложе
В п. 6.3 и
установл
сейсмиче
Следоват
коэффиц
указать в
14.13330
В остальн
в предлож
162.
гибкихподвесках,
температурные
климатические воздействия, ветровые
нагрузки, динамические воздействия от
оборудования и транспорта, тормозные и
боковые усилия от движения кранов при
этом не учитываются.
При
определении
расчетной
вертикальной
сейсмической
нагрузки
следует учитывать массу моста крана,
массу тележки, а также массу груза,
равного грузоподъемности крана, с
коэффициентом 0,3.
Расчетную горизонтальную сейсмическую
нагрузку от массы мостов кранов следует
учитывать
в
направлении,
перпендикулярном к оси подкрановых
балок. Снижение крановых нагрузок,
предусмотренное СП 20.13330.2011, при
этом не учитывается.
54
П. 5.2.
55
П. 5.3
56
П. 5.4
При выполнении расчетов сооружений с
учетом сейсмических воздействий следует
рассматривать две расчетные ситуации.
а) Сейсмические нагрузки соответствуют
уровню ПЗ (проектное землетрясение).
Должно быть обеспечено выполнение
условий первого предельного состояния
(ПС-1) согласно ГОСТ Р 54257-2010.
Надежность строительных конструкций и
оснований. Основные положения и
требования.
Расчеты зданий и сооружений на особые
сочетания нагрузок следует выполнять
линейно-спектральным
методом
на
нагрузки, определяемые в соответствии с
пп. 5.10, 5.12, 5.13.
б)
Сейсмические
нагрузки
соответствуют
уровню
МРЗ
(максимальное
расчетное
землетрясение).
Должно быть обеспечено выполнение
условий особого предельного состояния,
т.е. устойчивость сооружения в целом к
прогрессирующему обрушению при
локальных разрушениях, вызванных
землетрясением
Расчеты по 5.2 (уровень нагрузки,
отвечающий ПЗ и МРЗ) следует
выполнять
для
всех
зданий
и
сооружений.
При выполнении расчетов по уровням
ПЗ и МРЗ должны приниматься карты
сейсмичности района строительства в
соответствие с п. 4.3.
Расчеты, соответствующие МРЗ,
следует выполнять линейно-спектральным
методом с использованием наихудших для
данного сооружения синтезированных
акселерограмм
из
представительного
набора
(приложение
1).
Расчет
производится на акселерограммы по обоим
горизонтальным
направлениям,
162
МГСУ
Следует о
ГОСТ 54
принят Г
пункт нео
актуализи
МГСУ
Предпола
2012 не я
документ
применен
действую
ОСР-201
периодом
лет.
МГСУ
Не вполн
расчета з
с использ
чем отли
Как учест
для высо
ли апроб
подтверж
163.
совпадающимс
главными
осями
сооружения. Наихудшей следует считать
акселерограмму с доминантной частотой,
наиболее близкой к низшей частоте
поступательной
формы
по
соответствующему
горизонтальному
направлению.
Максимальные амплитуды ускорений в
уровне основания сооружения следует
принимать не менее 0,1g, 0,2g и 0,4g при
сейсмичности площадок строительства 7, 8
и 9 баллов, соответственно. При наличии
акселерограммы,
полученной
для
рассматриваемой
площадки,
следует
принять ее в качестве расчетной.
57
П. 5.5
58
П .5.6
59
П. 5.7
60
5.8
Сейсмостойкость сооружения по критерию
необрушения
(особое
предельное
состояние) обеспечивается выполнением
пп. 5.4-5.7.
61
5.9
Для зданий и сооружений:
с
балками,
арками,
фермами,
пространственными покрытиями пролетами
24 м и более;
При
расчетах
на
уровень
МРЗ
принимаются нормативные нагрузки и
нормативные
значения
прочности
материалов. Расчетную сейсмическую
нагрузку определяют по формуле (1) пп.
5.10, 5.12, 5.13.
При расчетах на уровень МРЗ должно быть
обеспечено выполнение условий первого
предельного состояния (ПС-1) согласно
ГОСТ Р 54257-2010. Сооружение должно
быть устойчиво к лавинообразному
(прогрессирующему)
обрушению
при
возможных
локальных
разрушениях,
вызванных сейсмическим воздействием.
Для
этого
рассматриваются
следующие
сценарии
локальных
сейсмических разрушений:
- разрушение одной наиболее
нагруженной колонны;
разрушение
наиболее
нагруженного пилона или стены длиной
6м;
- разрушение одного наиболее
нагруженного ригеля.
Сценарии
локальных
сейсмических
разрушений выбираются на основе анализа
результатов расчета на уровень МРЗ по п.
5.4.
Расчет на прогрессирующее обрушение
при локальных сейсмических разрушениях
допускается выполнять линейно-упругими
методами по методике, используемой при
расчете
на
устойчивость
к
прогрессирующему
обрушению
при
локальных
разрушениях,
вызванных
аварийными воздействиями.
163
методоло
МГСУ
МГСУ
МГСУ
Следует о
ГОСТ 54
принят Г
пункт нео
актуализи
Хотелось
зависимо
сейсмиче
наиболее
меняются
землетря
распреде
соответст
между эл
ФЗ-384 н
элементо
воздейств
соответст
сечения э
разрушит
воздейств
Также пр
учитывае
знакопер
воздейств
зависимо
реакцией
Методол
прогресс
также ме
определе
является
на проект
МГСУ
МГСУ
Положен
предложе
п. 5.2.2, 5
164.
с горизонтальными и наклоннымиконсольными конструкциями с вылетом 3 м и
более;
необходимо дополнительно выполнять
расчеты на вертикальную сейсмическую
нагрузку,
соответствующую
расчетным
ситуациям ПЗ и МРЗ.
При этом значение вертикальной
сейсмической нагрузки следует умножать
на 0,75.
62
5.10
63
5.11
64
5.12
При
определении
расчетных
сейсмических нагрузок на здания и
сооружения следует принимать расчетные
динамические модели конструкций (РДМ),
согласованные с расчетными статическими
моделями конструкций и учитывающие
особенности распределения нагрузок, масс и
жесткостей зданий и сооружений в плане и по
высоте, а также пространственный характер
деформирования
конструкций
при
сейсмических воздействиях.
Расчетные сейсмические нагрузки на здания и
сооружения,
имеющие
сложное
конструктивно-планировочное
решение,
следует определять с использованием
пространственных расчетных динамических
моделей зданий и с учетом пространственного
характера сейсмических воздействий по ф-ле
(1).
Значения коэффициента динамичности βi в
зависимости
от
расчетного
периода
собственных колебаний Ti здания или
сооружения по i-й форме при определении
сейсмических нагрузок следует принимать
по формулам (2) и (3) или, согласно,
рисунку 1.
Для зданий и сооружений, рассчитываемых
по пространственной РДМ, значение ikJ
МГСУ
Приводи
п. 5.5.
МГСУ
Приводи
п. 5.6
МГСУ
Приводи
иных пер
МГСУ
Приводи
иных пер
при сейсмическом воздействии следует
определять по формуле
n
ki
X i ( zk ) Q j X i ( z j ) cos X k ,i ,
x0
j 1
(4)
n
Q X
j 1
где
j
2
i
(z j )
X i ( zk ) , X i ( z j )
– перемещения
здания или сооружения при собственных
колебаниях по i-ой форме;
cos X k ,i , x 0 – косинусы углов между
направлениями
перемещения
X k ,i
вектора сейсмического воздействия
65
5.13
и
x 0 .
Расчетные значения внутренних усилий Np в
конструкциях от сейсмической нагрузки при
условии статического действия ее на
сооружение, следует определять по формуле
164
165.
nN p N i2 ,
(5)
i 1
66
5.14
67
Раздел 1 «Область применения»
Настоящий свод правил
распространяется на область
проектирования на площадках
сейсмичностью 7, 8 и 9 баллов зданий и
сооружений
68
Раздел 1 «Область применения»
Проектирование и строительство здания
или сооружения на таких площадках
осуществляются в порядке,
установленном уполномоченным
федеральным органом исполнительной
власти.
69
Раздел 2 «Нормативные ссылки»
ГОСТ 30403-96 «Конструкции
строительные. Метод определения
пожарной опасности»
Раздел 2 «Нормативные ссылки»
ГОСТ 14098-91 «Соединения
сварные арматуры и
закладных изделий
железобетонных конструкций.
Типы, конструкции и
размеры»
Раздел 2 «Нормативные ссылки»
СП 2.13130.2009 «Системы
противопожарной защиты. Обеспечение
огнестойкости объектов защиты»
70
71
где
Ni – значение внутреннего усилия,
вызываемого сейсмическими нагрузками,
соответствующими i-й форме колебаний;
n – число учитываемых в расчете форм
колебаний.
При определении внутренних усилий,
рассматривается наихудшее сочетание знака
в формуле (5).
При расчете конструкций на прочность и
устойчивость, помимо коэффициентов
условий
работы,
принимаемых
в
соответствии с другими действующими
нормативными
документами,
следует
вводить
дополнительно
коэффициент
условий работы mtr, определяемый по
таблице 5. На коэффициент mtr умножают
расчетное
сопротивление
соответствующего материала конструкции.
Противоречит пункту 4.4
Расчетную сейсмичность площадки
строительства зданий повышенного уровня
ответственности при нормативной
сейсмичности района строительства 6 и
более баллов следует устанавливать по
результатам сейсмического
микрорайонирования (СМР) и пункту 7.1.1
Положения настоящего раздела
распространяются на строительство
железных дорог категорий I–IV,
автомобильных дорог категорий I–IV, IIIп
и IVп, метрополитенов, скоростных
городских дорог и магистральных улиц,
пролегающих в районах с расчетной
сейсмичностью 6–9 баллов.
МГСУ
Приводи
5.15
АО
«Росжелдорпроект
»
Предпола
нет. Смеш
строител
строител
площадка
норматив
баллов, п
она може
этом случ
распрост
Аналогич
С целью уточнения требования
предлагается привести ссылку на
Положение о таком ФОИВ, который в
соответствии с законодательством
уполномочен устанавливать порядок
проектирования и строительства на
площадках строительства более 9 баллов.
АО
«Росжелдорпроект
»
Не действует, заменен с 01.01.2014 г.
Заменить на ГОСТ 30403-2012
«Конструкции строительные. Метод
испытаний на пожарную опасность»
Не действует, заменен с 01.07.2015 г.
Заменить на ГОСТ 14098-2014
«Соединения сварные арматуры и
закладных изделий железобетонных
конструкций. Типы, конструкции и
размеры»
АО
«Росжелдорпроект
»
В настоящ
Минстро
времени
него Госс
Предпола
перегруж
данными
разработч
Замечани
корректи
АО
«Росжелдорпроект
»
Замечани
корректи
Не действует с 16.04.2014 г.
Заменен на СП 2.13130.2012 «Системы
противопожарной защиты. Обеспечение
огнестойкости объектов защиты».
АО
«Росжелдорпроект
»
Замечани
корректи
указанны
разделе 9
165
166.
Учитывая, что рассматриваемый сводправил распространяется только на
площадки строительства с сейсмичностью
более 6 баллов предлагается общие
требования пожарной безопасности
исключить из нормативных ссылок и по
тексту свода правил. Требования по
обеспечению пожарной безопасности всех
объектов строительства изложены в
федеральном законе от 22.07.2008 № 123ФЗ «Технический регламент о требованиях
пожарной безопасности».
При необходимости обеспечения
дополнительных противопожарных
мероприятий на площадках строительства
сейсмичностью свыше 6 баллов привести в
своде правил конкретные требования.
72
73
3.20,
3.25
Даны ссылки на карты А, В, С ОСР-97,
однако в приложении А к проекту своду
правил содержатся карты ОСР-2015.
4.3 Карта А предназначена для
проектирования объектов нормального и
пониженного уровня ответственности.
Заказчик вправе принять для
проектирования
объектов нормального уровня
ответственности карту B или С при
соответствующем
обосновании.
Решение о выборе карты В или С, для
оценки нормативной сейсмичности
района
при проектировании объекта
повышенного уровня ответственности,
принимается
Заказчиком по представлению
генерального проектировщика, при
необходимости,
основываясь на заключениях
компетентной организации.
Для уточнения сейсмичности района
строительства объектов повышенной
ответственности, перечисленных в
позиции 1 таблицы 3, дополнительно
проводят
специализированные сейсмологические
и сейсмотектонические исследования.
Привести в соответствие текст проекта
свода правил с приложениями.
АО
«Росжелдорпроект
»
Замечани
откоррек
Требованием устанавливается порядок
выбора карты ОСР для проектирования с
оговоркой «при необходимости
привлечения компетентной организации».
С целью установления однозначно
понимаемых проектной организацией,
заказчиком и государственной экспертизой
требований следует определить критерии
такой «необходимости» или привести
методику выбора карты.
АО
«Росжелдорпроект
»
За
Предлож
Ка
для
сейсмичн
проектир
приведен
таблицы
принять
объектов
ответстве
соответст
Ка
для
сейсмичн
проектир
приведен
3. При
нормальн
ответстве
позиции
по пред
проектир
необходи
заключен
организа
карта А О
Ка
для
сейсмичн
проектир
приведен
3. Для
района
повышен
ответстве
позициях
дополнит
специали
сейсмоло
166
167.
744.8
Таблица 1, примечание 2
В случае многослойного строения
грунтовой толщи, грунтовые условия
участка относят к более
неблагоприятной категории, если в
пределах верхней 30-метровой толщи
(считая от планировочной отметки)
слои, относящиеся к этой категории,
имеют суммарную мощность более 10 м.
75
6.14.14 Сейсмостойкость каменных стен
здания следует повышать сетками из
арматуры, созданием комплексной
конструкции, предварительным
напряжением кладки или другими
экспериментально обоснованными
методами.
«ДАЛЕЕ ПО ТЕКСТУ»
При проектировании стен комплексной
конструкции из кирпича усиленные
монолитными железобетонными
включениями антисейсмические пояса и
их узлы сопряжения со стойками
должны рассчитываться и
конструироваться как элементы
каркасов с учетом работы заполнения. В
этом случае предусмотренные для
бетонирования стоек пазы должны быть
открытыми не менее чем с двух сторон.
Если стены комплексной конструкции
из кирпича выполняют с
железобетонными
включениями по торцам простенков,
продольная арматура должна быть
надежно соединена хомутами,
уложенными в горизонтальных швах
кладки. «ДАЛЕЕ ПО ТЕКСТУ»
76
77
78
7.1.1,
первый абзац
Положения настоящего раздела
распространяются на строительство
железных дорог категорий I–IV,
автомобильных дорог категорий I–IV,
IIIп и IVп, метрополитенов, скоростных
городских дорог и магистральных улиц,
пролегающих в районах с расчетной
сейсмич-ностью 6–9 баллов, а также
зданий и сооружений речного, морского
и воздушного транспортов.
7.1.1,
второй абзац
На площадках, сейсмичность которых
превышает 9 баллов, возводить
транспортные сооружения, как правило,
не допускается. Проектирование и
сейсмоте
исследов
Предлага
Применение таблицы ограничено
объектами, использующими карту А.
Нормативная глубина бурения для таких
объектов, за редким исключением, не
превышает 15 м, как правило, 5-8 м.
Предлагается ограничить рассматриваемый
интервал 10 метрами, изменив пропорцию
грунтов, или в общей части ввести пункт,
требующий увеличения глубины бурения
на участках с возможным развитием
слабых грунтов.
Пункт 6.14.14 указывает, что при
проектировании стен комплексной
конструкции антисейсмические пояса и
узлы сопряжения их со стойками должны
рассчитываться и конструироваться как
элементы каркасов.
Это противоречит определению
комплексной конструкции из п. 3.16
«Стеновая конструкция из кладки,
выполненной с применением кирпича … и
усиленная железобетонными
включениями, не образующими рамы
(каркас)».
АО
«Росжелдорпроект
»
АО
«Росжелдорпроект
»
Не счита
В п. 6.14.
проектир
конструк
вести по
конструк
этом сам
решения
Не указан вид соединения вертикальных
железобетонных элементов с
антисейсмическими поясами – жесткое или
шарнирное?
Вступает в противоречие с требованиями
СП 119.13330 «Железные дороги колеи
1520 мм» (таблица 4.1 «Категории
железных дорог». Привести в соответствие
требование данного абзаца с СП 119.13330.
АО
«Росжелдорпроект
»
Этот воп
СП, возм
АО
«Росжелдорпроект
»
Предлага
удаления
принять п
актуализа
Дана некорректная ссылка на федеральный
закон от 30.12.2009 № 384-ФЗ
«Технический регламент о безопасности
зданий и сооружений», в соответствии с
которым в Российской Федерации
выполняется проектирование (в том числе
АО
«Росжелдорпроект
»
Предлага
удаления
принять п
актуализа
167
168.
строительство транспортныхсооружений на таких площадках
осуществляются в соответствии с
требованиями [5].
79
80
81
7.1.1
Примечание 1
Даны ссылки на карты А, В, С ОСР-97,
однако в приложении А к проекту своду
правил содержатся карты ОСР-2015.
7.1.1
Примечание 2
В районах сейсмичностью 6 баллов
антисейсмические мероприятия при
проектировании объектов
транспортного строительства
предусматриваются на участках
сейсмичностью 7 и более баллов,
определяемой на основании данных
общих инженерно-геологических
изысканий и геофизических
исследований, выполняемых с учетом
специфики строительства транспортных
сооружений.
7.1.2
Даны ссылки на карты А, В, С ОСР-97,
однако в приложении А к проекту своду
правил содержатся карты ОСР-2015.
изыскания), строительство любых зданий
и сооружений независимо от площадки
строительства.
При этом требование противоречит
разделу 1 «Область применения» проекта
СП.
Привести в соответствие текст проекта
свода правил с приложениями.
АО
«Росжелдорпроект
»
Замечани
откоррек
В пункте отсутствует смысловая часть, что
не позволит обеспечить его соблюдение
при проектировании и проверке
государственной экспертизой.
Требуется пояснение – какой
сейсмичностью должен обладать район
строительства – «6 баллов» или «7 баллов и
выше»?
АО
«Росжелдорпроект
»
Противор
районах 6
с сейсмич
из грунто
Привести в соответствие текст проекта
свода правил с приложениями.
АО
«Росжелдорпроект
»
Замечани
откоррек
82
7.2.1
При изысканиях железных и
автомобильных дорог в условиях
горного и предгорного рельефа на
участках с проявлениями опасных
геологических процессов (скальных
обвалов, оползней, лавин, разжижения
грунта) следует выбирать положение
трассы по результатам техникоэкономического сравнения вариантов
обхода этих участков в плане и в
профиле и варианта возведения
защитных сооружений (тоннелей,
галерей, улавливающих стен и др.).
Исключить или изложить в иной редакции.
В рассматриваемой редакции требование
не относится к сейсмическим площадкам
строительства. Требования, перечисленные
в данном пункте, изложены в СП 47.13330
«Инженерные изыскания для
строительства. Основные положения».
АО
«Росжелдорпроект
»
Предлага
удаления
принять п
актуализа
83
7.2.2
Трассирование железных и
автомобильных дорог вдоль берегов
морей, подверженных затоплению
сейсмическими морскими волнами
(цунами), должно выполняться с учетом
варианта размещения трассы на
безопасном расстоянии от уреза воды и
варианта осуществления мер по защите
транспортных сооружений от цунами.
Предлагается установить ответственность
заказчика строительства за реализацию
данного требования. Изложить в
следующей редакции:
Трассирование железных и автомобильных
дорог вдоль берегов морей, подверженных
затоплению сейсмическими морскими
волнами (цунами), должно определяться
заказчиком по предложению проектной
организации с учетом варианта
размещения трассы на безопасном
расстоянии от уреза воды и варианта
осуществления мер по защите
транспортных сооружений от цунами.
АО
«Росжелдорпроект
»
Предлага
удаления
принять п
актуализа
84
7.2.2
Таблица 10
Уровни ответственности не соответствуют
п.7 статьи 4 ФЗ от 30.12.2009 г. № 384-ФЗ
АО
«Росжелдорпроект
Предлага
удаления
168
169.
Классификация объектов транспортногокомплекса по ответственности
85
7.2.2
Таблица 10
Классификация объектов транспортного
комплекса по ответственности
86
7.3.2
87
7.4.1
В районах сейсмичностью 8 и 9 баллов
железнодорожный путь следует
монтировать из звеньев на щебеночном
балласте с увеличенной нормой
покилометрового запаса рельсов и
других элементов пути.
88
Расчетную сейсмическую нагрузку,
приложенную в точке k и
соответствующую i-му тону
собственных колебаний системы,
определяют по формуле
Sik =K1 mk A i Kψ ik,, (13)
где K1 – коэффициент, учитывающий
влияние на сейсмическую нагрузку
снижения жесткости сооружения и
увеличение рассеяния энергии
колебаний из-за появления трещин и
пластических деформаций в
конструкциях моста,
значения которого следует принимать
равным 0,25; 0,37; 0,50 для мостов
уровней ответственности 1а, 1б, 2
соответственно;
7.5.6 Арочные и рамные
89
и табл. 2 ГОСТ 27751-2014 «Надежность
строительных конструкций и оснований.
Основные положения» (входящей в
перечень стандартов и сводов правил, в
результате применения которых на
обязательной основе обеспечивается
соблюдение требований указанного закона
384-ФЗ.
С целью уточнения уровня
ответственности целого комплекса малых и
средних ИССО предлагается дополнить
пункт уровнем ответственности мостов
длиной менее 500м и с пролетами менее
200м на магистралях с преимущественно
пассажирским движением,
особогрузонапряжѐнных магистралях на
железных дорогах I и II категории.
Исключить слово «цементацией».
Указывается конкретный способ
укрепления грунтов ( но не единственный),
чем нарушается требование
законодательства в области
стандартизации.
Для укрепления грунтов имеются много
других способов кроме цементации.
ИСКЛЮЧИТЬ!
В Российской Федерации успешно
эксплуатируются более 8 тыс. км
бесстыкового железнодорожного пути в
условиях высокой сейсмоактивности.
Эксплуатация одного километра
звеньевого пути на 207,6 тыс. руб. дороже
чем бесстыкового. В случае обеспечения
этого требования необоснованные расходы
только ОАО «РЖД» возрастут на 1,9 млрд.
руб. в год, без учета путей необщего
пользования.
Более того, данное требование не
учитывает требования законодательства
– постановлением Правительства
Российской Федерации от 29.09.2015 г.
№ 1033 данный пункт исключен
из вышеуказанного перечня стандартов
и сводов правил.
В формуле 13 для сооружения с более
высоким уровнем ответственности в
существующей редакции ошибочно
применены более низкие коэффициенты.
»
принять п
актуализа
АО
«Росжелдорпроект
»
Предлага
удаления
принять п
актуализа
АО
«Росжелдорпроект
»
Предлага
удаления
принять п
актуализа
АО
«Росжелдорпроект
»
Предлага
удаления
принять п
актуализа
АО
«Росжелдорпроект
»
Предлага
удаления
принять п
актуализа
Для данного пункта требуется указать
АО
Предлага
169
170.
9091
92
93
94
железобетонные бесшарнирные мосты
допускается применять только при
наличии скального основания. Пяты
сводов, арок и стоек рам следует
опирать на массивные опоры и
располагать на возможно более низком
уровне. Надарочное строение следует
проектировать сквозным.
7.5.7 При расчетной сейсмичности 7 и
более баллов арочные своды мостов и
путепроводов, собираемые из
металлических гофрированных листов,
должны проверять на прочность и
устойчивость при землетрясении. Грунт
насыпей подходов и засыпки сводов
должен подбираться по
гранулометрическому составу и
уплотняться
таким образом, чтобы не терять
устойчивость (не разжижаться) и
сохранять требуемые по расчету
деформационные свойства при
сейсмическом воздействии. При
необходимости грунт должен
армироваться геосинтетическим
материалом.
7.5.16 При расчетной сейсмичности 9
баллов в проектах мостов с балочными
разрезными пролетными строениями
длиной более 18 м следует
предусматривать сцепные антисейсмические устройства для
предотвращения падения пролетных
строений с опор.
7.7.1 При расчетной сейсмичности более
8 баллов следует преимущественно
применять железобетонные
фундаментные трубы со звеньями
замкнутого контура, полукруглые
арочные трубы из сборных
металлических гофрированных листов с
высотой свода до 1,5 м и с фундаментом
в виде железобетонной плиты,
уложенной на уплотненный слой
крупнообломочного грунта или другое
малосжимаемое основание, а также
бесфундаментные круглые трубы
диаметром до 1,5 м, собираемые из
металлических гофрированных листов.
7.7.4 Устойчивость металлических
оболочек гофрированных труб должна
быть обеспечена уплотнением грунта
насыпи, выбором необходимого
сортамента
гофрированных листов, армированием
при необходимости насыпного грунта
геосинтетическим материалом.
7.7.6 При замене малого моста трубой не
допускается снижение расчетного
расхода воды водопропускным
сооружением.
расчетную сейсмичность площадки
строительства.
«Росжелдорпроект
»
удаления
принять п
актуализа
Пункт не содержит конкретных требований
к гранулометрическому составу насыпи,
что не позволит обеспечить данное
требование при проектировании.
АО
«Росжелдорпроект
»
Предлага
удаления
принять п
актуализа
Исключить.
Дублирует п.7.5.9 (в части применения
антисейсмических устройств) и п.7.5.11 (в
части применения сейсмостойких опорных
частей)
АО
«Росжелдорпроект
»
Предлага
удаления
принять п
актуализа
Исключить.
Данное требование не может быть
реализовано для железнодорожного
земляного полотна.
Противоречит требованиям документов по
стандартизации в области
железнодорожного строительства.
АО
«Росжелдорпроект
»
Предлага
удаления
принять п
актуализа
Исключить.
Данное требование не может быть
реализовано для железнодорожного
земляного полотна.
Противоречит требованиям документов по
стандартизации в области
железнодорожного строительства.
АО
«Росжелдорпроект
»
Предлага
удаления
принять п
актуализа
Привести методику расчета, в соответствии
с которой выполняется требование данного
пункта по замене моста трубой.
АО
«Росжелдорпроект
»
Предлага
удаления
принять п
актуализа
170
171.
7.7.7 В сейсмических районах недопускается увеличивать вероятность
превышения расчетных расходов воды
трубами под насыпями и малыми
мостами за счет учета развитости сети
автомобильных дорог.
7.9.7 Транспортные и пешеходные
тоннели в дорожных насыпях
допускается сооружать из
металлических гофрированных
оболочек открытого или замкнутого
контура поперечного сечения с
опиранием их на малосжимаемый грунт,
фундаменты мелкого или глубокого
заложения. Прочность и устойчивость
оболочек должны быть проверены
расчетом, обеспечивая необходимые
характеристики грунта насыпи,
уплотняя и армируя геосинтетическим
материалом. Прочность и устойчивость
оболочек обеспечивают подбором
соответствующего сортамента
гофрированых листов, а также
усилением свода стальными элементами
или бетонным покрытием.
Уточнить, что данное требование
распространяется только на автодороги.
АО
«Росжелдорпроект
»
Предлага
удаления
принять п
актуализа
Уточнить, что данное требование
распространяется только на автодороги.
АО
«Росжелдорпроект
»
Предлага
удаления
принять п
актуализа
97
8.2.1 Даны ссылки на карты А, В, С
ОСР-97, однако в приложении А к
проекту своду правил содержатся карты
ОСР-2015.
Привести в соответствие текст проекта
свода правил с приложениями.
АО
«Росжелдорпроект
»
Замечани
Откоррек
98
8.2.4 Даны ссылки на карты А, В, С
ОСР-97, однако в приложении А к
проекту своду правил содержатся карты
ОСР-2015.
Привести в соответствие текст проекта
свода правил с приложениями.
АО
«Росжелдорпроект
»
Замечани
Откоррек
99
8.2.5 Даны ссылки на карты А, В, С
ОСР-97, однако в приложении А к
проекту своду правил содержатся карты
ОСР-2015.
Привести в соответствие текст проекта
свода правил с приложениями.
АО
«Росжелдорпроект
»
Замечани
Откоррек
100
Приложение Г,
пункт Г.1.4* Мероприятия защиты от
землетрясений объектов нормальной и
повышенной сейсмостойкости
разрабатывают по указаниям настоящих
правил на основе предварительной
оценки сейсмической опасности по
картам общего сейсмического
районирования ОСР-2015-А и ОСР2015-В с уточнением исходной
сейсмичности по результатам научноисследовательских работ, фондовым и
справочным материалам, а также
применением данных сейсморазведки и
корреляционных уравнений инженерной
сейсмологии для учета влияния местных
инженерно-геологических и
геоморфологических условий на
сейсмичность участков строительства
наземных объектов (инженерногеологических условий и глубины
Исключить требование о необходимости
проведения научно-исследовательских
работ. Уточнение исходной сейсмичности
выполняется в соответствии с
требованиями действующих нормативных
технических документов.
Привести, при необходимости, методику
уточнения исходной сейсмичности.
АО
«Росжелдорпроект
»
Замечани
Откоррек
удалено.
95
96
171
172.
заложения выработок на сейсмичностьучастков строительства тоннелей).
101
102
103
104
105
Приложение Г,
пункт Г.2.3* Исходные амплитудные
характеристики колебаний среднего по
сейсмическим свойствам грунта
корректируют с применением
результатов научно-исследовательских
работ по актуализации карт ОСР-2015,
фондовых и справочных материалов с
уточнением силы землетрясения в
районе строительства до десятых долей
целого балла.
Приложение Г,
пункт Г.2.4* Уточненная сила
землетрясения в районе (пункте)
строительства может отличаться от
сейсмичности района, указанной на
выбранной карте ОСР-2015, на
положительное или отрицательное
значение δI. В любом случае для
дальнейшего расчета принимают, что
модуль поправки δI не должен
превышать 1,0.
Библиография
[6] Технический регламент о
безопасности инфраструктуры
железнодорожного
транспорта (утв. постановлением
Правительства РФ от 15 июля 2010 г. №
525)
Библиография
[7]
Технический регламент о безопасности
высокоскоростного железнодорожного
транспорта (утв. постановлением
Правительства РФ от 15 июля 2010 г. №
533)
Исключить требование по корректировке
характеристик с применением результатов
НИР. Указанные в пункте «результаты
научно-исследовательских работ по
актуализации карт ОСР-2015» должны
быть включены в рассматриваемый свод
правил в виде Изменения в случае такой
актуализации.
АО
«Росжелдорпроект
»
Замечани
Откоррек
удалено.
У проектировщиков, не являющихся
специалистами в области МСР создаѐтся
впечатление, что по результатам МСР
возможно изменение сейсмичности
площадки только на 1 балл. Полезно
подчеркнуть, что речь идѐт именно об
исходной сейсмичности, к которой
добавится ещѐ и поправка по результатам
МСР.
АО
«Росжелдорпроект
»
Замечани
Откоррек
удалено.
Исключить.
Постановлением Правительства РФ от
19.09.2013 № 827 "О признании
утратившими силу некоторых актов
Правительства Российской Федерации"
данный технический регламент отменен.
В Российской Федерации действует
регламент Таможенного союза «О
безопасности инфраструктуры
железнодорожного транспорта» 003/2011
(утв. Решением Комиссии Таможенного
союза от 15.07.2011 г. № 710).
Исключить.
Постановлением Правительства РФ от
19.09.2013 № 827 "О признании
утратившими силу некоторых актов
Правительства Российской Федерации"
данный технический регламент отменен.
В Российской Федерации действует
регламент Таможенного союза «О
безопасности высокоскоростного
железнодорожного транспорта» 002/2011
(утв. Решением Комиссии Таможенного
союза от 15.07.2011 г. № 710).
Указания нового СП (по изучению грунтов
на глубину 30 м) противоречат
действующим документам. Правила
проведения работ по сейсмическому
микрорайонированию указаны в
действующем документе СП 11-105-97
―Инженерно-геологические изыскания для
строительства. Часть VI. Правила
производства геофизических
исследований‖. Пункт 4.13 СП 11-105-97
указывает на необходимо соблюдения
технических требований для
сейсморазведки, изложенных в
АО
«Росжелдорпроект
»
Замечани
Откоррек
АО
«Росжелдорпроект
»
Замечани
Откоррек
удалено.
ЗАО «СиСофт
Девелопмент»
Захлестин С.Ю.
Дементьева Ю.Ю.
Предлага
172
173.
106Раздел 3, п. 3.14
107
Раздел 3, п. 3.15
108
Раздел 3, п. 3.20, 3.31
109
Раздел 3
110
Пункт 5.2 "б"
111
Пункт 6.2.2
действующем нормативном документе
РСН 66-87 ― Инженерные изыскания для
строительства. Технические требования к
производству геофизических работ.
Сейсморазведка‖. Пункты 2.5 и 2.6 РСН
66-87 оговаривают максимальную глубину
изучения геологического разреза и глубину
горных выработок (до 20 м) для решения
задач по сейсмическому
микрорайонированию. Пункт 3.12 РСН 6687 оговаривает мощность расчетной толщи
(10 м, считая от планировочной отметки,
либо другой обоснованной, но не более 20
м) для оценки приращения бальности.
В пункте 3.14 (каркасно-каменные здания)
указан только II тип зданий, упущен I тип,
различающиеся по технологическим
особенностям. Каркас I типа обычно
выполняется при применении сборных
железобетонных элементов каркаса
(Руководство по проектированию для
сейсмических районов каркасных зданий
со стеновым заполнением. Кишинев, 1976.
Разработан ЦНИИ им. В. А. Кучеренко).
Пункт 3.15 определяет только 3 категории,
таблица 1 – 4 категории.
Пункты 3.20 (МРЗ) и 3.31 (ПЗ), данные
понятия определены только для
гидротехнических сооружений. Для других
зданий и сооружений вышеуказанные
термины не определены. Пункт 3.20 при
прочтении двояко трактуется, т. е.
применим как для объектов повышенного
уровня ответственности, так и для
гидротехнических сооружений.
Дополнить: …для объектов
гидротехнических сооружений
повышенной ответственности…
В терминах везде ошибочно указана
ссылка на комплект карт ОСР-97, в
приложении А указан комплект карт ОСР2015.
До включения в СП требований к
задаваемым в
расчете характеристикам материалов, в том
числе к порядку учета нелинейных свойств
материалов и узлов соединения элементов
здания и сооружений, к нагрузкам и их
сочетаниям, а так же появления
соответствующих программных
комплексов, отвечающих требованиям СП,
и позволяющим проводить полноценный
анализ результатов расчетов по критериям,
которые тоже должны быть указаны в СП,
пункт 5.2 "б" необходимо исключить или
исключить обязательность его выполнения.
Пункт 6.2.2 перед последним абзацем
дополнить следующим: …Уступы в
скальных грунтах допускается не
устраивать…Вышеуказанный пункт
173
ЗАО «СиСофт
Девелопмент»
Захлестин С.Ю.
Дементьева Ю.Ю.
Приведен
упомянут
Технолог
замечани
данном э
ЗАО «СиСофт
Девелопмент»
Захлестин С.Ю.
Дементьева Ю.Ю.
ЗАО «СиСофт
Девелопмент»
Захлестин С.Ю.
Дементьева Ю.Ю.
Замечани
откоррек
ЗАО «СиСофт
Девелопмент»
Захлестин С.Ю.
Дементьева Ю.Ю.
ЗАО «СиСофт
Девелопмент»
Захлестин С.Ю.
Дементьева Ю.Ю.
Замечани
ЗАО «СиСофт
Девелопмент»
Захлестин С.Ю.
Дементьева Ю.Ю.
Замечани
корректи
Замечани
Предлага
удаления
принять п
актуализа
СП являе
документ
требован
соответст
требован
рамках м
При этом
способов
п. 5.2.2. С
нелинейн
различаю
174.
112Пункт 6.19.6
113
Таблица 1
114
Таблица 7
разработан для столбчатых и ленточных
фундаментов, отсутствуют рекомендации
для плитных фундаментов.
Дополнить: …для плитных фундаментов,
выполненных без уступов, должно
выполняться условие отсутствия выпора
грунта из-под подошвы фундаментов…
При внесении незначительных изменений
(например: устройство дверного проема
взамен оконного и т. п.) вид работы
переходит в реконструкцию и, как
следствие, ведет к необходимости
выполнения сейсмостойких мероприятий
всего здания, имеющего статус
работоспособного по результатам
обследования, что ведет к значительным
затратам.
Дополнить следующим: …При
реконструкции зданий и сооружений II
(нормального) и III (пониженного) уровней
ответственности допускается сохранять
существующие конструкции здания, не
соответствующие конструктивным
требованиям действующих норм, но
обладающие необходимой расчетной
несущей способностью с учетом
сейсмического воздействия…
В табл. 1 категория грунтов принимается в
зависимости от скоростей и их
соотношения, т. е. необходимо выполнить
один из видов геофизических работ. Для
небольших объектов (например:
малоэтажные здания со стенами из
кирпича, блочные модульные котельные,
трансформаторные подстанции заводской
готовности, коровники, небольшие
пристройки к существующим зданиям при
реконструкции и т. д., а тем более для
объектов с финансированием из
бюджетных средств) стоимость изысканий
и проектных работ может быть
сопоставима (тем более с учетом 30-ти
метровых скважин) и даже превышать
стоимость строительно-монтажных работ,
что является нерациональным
расходованием бюджетных средств.
Необходимо дополнить документ
параметрами зданий и сооружений.
Например: этажность, напряжение под
подошвой фундаментов, глубина
сжимаемой толщи и т. п., для которых
категория грунтов может быть определена
по показателю консистенции и
коэффициенту пористости без определения
скоростей волн.
Оставить ограничения только по высоте
зданий. Ограничения по этажности,
указанные в скобках и как бы носящие
приближенно-справочный характер, но
постоянно используемые как обязательный
параметр ограничения, из таблицы
необходимо убрать.
174
ЗАО «СиСофт
Девелопмент»
Захлестин С.Ю.
Дементьева Ю.Ю.
Раздел су
внесен на
ЗАО «СиСофт
Девелопмент»
Захлестин С.Ю.
Дементьева Ю.Ю.
Положен
назначен
сейсмичн
таблицы
нормальн
уровня от
скорости
грунте яв
характер
учесть ва
грунтов в
ЗАО «СиСофт
Девелопмент»
Захлестин С.Ю.
Дементьева Ю.Ю.
В соответ
оба парам
Остальны
характер
главе 6.
175.
115116
Таблица 9, п. 3
Проект СП в целом
Если в таблице нет таких параметров
зданий как: шаг вертикальных несущих
конструкций, пролеты, интенсивность
нагрузки на перекрытия, - то вводить
ограничения по количеству этажей при
наличии ограничения по высоте в метрах
не нужно.
Неясно, какое отношение имеет величина
выносов карнизов в примечании к
размерам простенков и проемов.
Многие требования разделов 4
«Основные положения», 5 «Расчетные
нагрузки» и 7 «Транспортные сооружения»
не обоснованы инженерным анализом
последствий землетрясений,
данными
экспериментальных
и
теоретических
исследований, не обеспечивают в целом
безопасность населения и приемлемые
затраты на антисейсмические мероприятия,
не учитывают опыт и практически
невыполнимы
в
транспортном
строительстве.
Для
разработки
норм
строительства в сейсмических районах на
современном уровне необходим переход к
модульной технологии стандартизации,
рассматривающей здания и различные по
назначению
виды
сооружений
(транспортные, гидротехнические и др.)
как отдельные объекты стандартизации.
Разработка норм проектирования этих
объектов должна поручаться специалистам,
имеющим практический опыт работы в
соответствующих областях строительства.
Модульная технология позволяет
регламентировать
антисейсмические
мероприятия с учетом специфики объектов
нормирования, предотвращать включение в
нормы ошибочных или необоснованных
положений, оперативно вносить в нормы
необходимые изменения и дополнения.
В
связи
с
изложенным
предлагается:
1. Исключить при пересмотре СП
14.13330 раздел 7 «Транспортные
сооружения», а также справочное
приложение
Г
«Уточнение
исходной
сейсмичности»,
относящееся
к
транспортным
сооружениям
(соответствующие
СП подготовлены ООО «ПОИСК»
по плану работ Минстроя на 2016
г.);
2. Внести
необходимые
исправления в разделы 1, 2, 3, 4 и 5
СП 14.13330.2014, исходя из
недопустимости дублирования или
искажения
специальных
требований
к
транспортным
сооружениям
как
отдельным
объектам стандартизации.
В
порядке
обоснования
175
ЗАО «СиСофт
Девелопмент»
Захлестин С.Ю.
Дементьева Ю.Ю.
ООО «ПОИСК»
Шестоперов Г.С.
Замечани
откоррек
Предлага
удаления
принять п
актуализа
176.
117Раздел 4 Основные положения.
Пункт 4.1
приведенных
выше
предложений
рассмотрим
некоторые,
наиболее
существенные недостатки обязательных к
применению разделов 4, 5 и 7 проекта
пересматриваемого СП 14.13330.2014
(первая редакция).
В п.4.1 проекта приведены
основные положения, которыми следует
руководствоваться при проектировании
зданий и сооружений, включая следующие
требования:
принимать,
как
правило,
симметричные конструктивные и
объемно-планировочные решения
с равномерным распределением
нагрузок на перекрытия, масс и
жесткостей конструкций в плане и
по высоте;
не
следует
применять
конструктивные
решения,
допускающие
обрушение
сооружения в случае разрушения
или
недопустимого
деформирования одного несущего
элемента.
Невозможно
выполнить
упомянутые
требования
при
проектировании
транспортных
сооружений. В самом деле, планировочные
решения
наземных
транспортных
сооружений в горах диктуются рельефом
местности, в городах – существующей
застройкой. В связи с этим искусственные
сооружения (транспортные развязки), а
также насыпи подходов к ним обычно
сооружаются на кривых в плане участках
пути (дорог) или имеют различную высоту
по длине моста, т.е. не являются
симметричными сооружениями.
Массы
насыпей
и
мостов
практически всегда распределены по
высоте сооружения неравномерно. Масса
пролетных
строений
(особенно
неразрезных), присоединенная к опорам,
также неравномерно распределена по
длине сооружения. Поэтому требование
равномерности распределения масс не
может быть выполнено.
Требование
не
применять
конструктивные решения, допускающие
отказ сооружения в случае разрушения
одного
несущего
элемента,
не
соответствует опыту эксплуатации мостов,
в том числе мостовых опор с телом ниже
ригеля в виде одной стойки, заделанной в
плиту
фундамента.
Опоры
такой
конструкции, выполняемые из бетона
(железобетона) сплошного (коробчатого)
поперечного
сечения,
широко
применяются в сейсмических районах при
соответствующих нагрузкам размерах
сечений,
прочности
материалов,
176
ООО «ПОИСК»
Шестоперов Г.С.
Следует з
применен
1, не расп
глав 4, 5,
сооружен
Предлага
добровол
4.1 (реко
Его выпо
исключит
использо
методов
Также пр
вопрос уд
8 или при
актуализа
177.
118Раздел 4 Основные положения.
Пункт 4.3
армировании.
В этом пункте устанавливается
порядок выбора карт ОСР (А, В, С) при
проектировании. В частности, указывается,
что заказчик имеет право принять для
объектов
нормального
уровня
ответственности любую из комплекта карт
А, В или С.
Известно, что выбор карты
является одним из наиболее действенных
инструментов регулирования затрат на
антисейсмические мероприятия и ущерба
от возможных землетрясений.
Для многих населенных пунктов
(Махачкала, Владикавказ, Грозный, Кызыл
и др.) за счет выбора карты С вместо карты
А
можно
увеличить
исходную
сейсмичность на два балла, что приводит к
резкому
повышению
стоимости
антисейсмических мероприятий.
Для других городов (Барнаул,
Красноярск, Чита, Якутск и др.) за счет
выбора карты А можно вообще исключить
мероприятия по антисейсмической защите
сооружений,
что
приведет
к
неприемлемому
материальному
и
социальному ущербу в будущем.
В настоящее время заказчиком
могут
быть
как
государственные
организации федерального, регионального
и муниципального уровня, так и
негосударственные акционерные общества
и
другие
субъекты
хозяйственной
деятельности. В результате делегирования
полномочий федеральных органов власти
по выбору карты ОСР на региональный и
муниципальный уровни, а также передачи
этих
полномочий
негосударственным
организациям сейсмостойкость объектов и
безопасность населения в сейсмоопасных
районах попадают в зависимость от
квалификации и экономических интересов
заказчиков
и
других
участников
строительного производства.
Для обеспечения безопасности
населения в сейсмических районах, что
является функцией и обязанностью
государства, необходимо регламентировать
правила
выбора
карты
ОСР
при
проектировании конкретных объектов в
нормативных документах федерального
уровня.
С
учетом
изложенного
предлагается исключить из текста п.4.3
положение о праве заказчика выбирать для
проектируемых зданий и сооружений одну
из трех действующих карт ОСР (А, В, С).
В заключительном абзаце п.4.3
предлагается:
«Для
уточнения
сейсмичности
района
строительства
объектов повышенной ответственности,
перечисленных в позиции 1 таблицы 3,
дополнительно
проводят
177
ООО «ПОИСК»
Шестоперов Г.С.
Следует з
применен
1, не расп
глав 4, 5,
сооружен
Предлага
удаления
принять п
актуализа
178.
119Раздел 4
Основные положения. Пункт 4.4
120
Раздел 4 Основные положения.
Пункт 4.8
специализированные сейсмологические и
сейсмотектонические исследования».
В
позиции
1
таблицы
3
транспортные сооружения отсутствуют.
Следовательно, в проекте СП предлагается
исключить работы по уточнению исходной
сейсмичности для любых транспортных
сооружений.
Это
предложение
не
соответствует
сложившейся
практике
изысканий транспортных сооружений,
включающей
выполнение
сейсмологических и сейсмотектонических
исследований с целью уточнения исходной
сейсмичности. В последние годы такие
работы проводились при изысканиях
мостовых переходов через пролив Босфор
Восточный и Керченский пролив, моста
через Волгу в Волгограде и ряде других
объектов. Отказ от этих работ приведет к
существенному снижению надежности
транспортной инфраструктуры.
В
проекте
указано,
что
«Сейсмичность площадки строительства
объектов, использующих карту А, при
отсутствии СМР следует определять по
таблице 1».
Таблица
1
не
учитывает
инженерно-геологические
и
геоморфологические условия, характерные
для участков строительства транспортных
сооружений (большая мощность рыхлых и
слабых отложений в устьях рек, глубина
проходки тоннелей 100 и более метров,
крутые
горные
склоны,
сложные
инженерно-геологические
условия
в
долинах больших рек в зоне вечной
мерзлоты
и
др.).
Поэтому
при
регламентации работ по СМР участки
расположения транспортных сооружений
рассматриваются как особые объекты
нормирования,
на
которые
не
распространяются нормы СМР участков
расположения зданий (РСН 65-87 и др.).
Правила СМР при изысканиях
транспортных сооружений изложены в
проекте СП «Транспортные сооружения в
сейсмических районах. Правила уточнения
исходной сейсмичности и сейсмического
микрорайонирования»,
который
рекомендуется
применять
в
соответствующих случаях.
В этом пункте предлагается
предусматривать
установку
станций
наблюдения за динамическим поведением
конструкций и прилегающих грунтов в
проектах
зданий
и
сооружений,
перечисленных в позиции 1 таблицы 3.
В
позиции
1
таблицы
3
транспортные сооружения отсутствуют.
Следовательно, в проекте СП не
предусмотрено
устройство
станций
наблюдения даже на наиболее крупных
транспортных объектах, что противоречит
178
ООО «ПОИСК»
Шестоперов Г.С.
Следует з
применен
1, не расп
глав 4, 5,
сооружен
рассмотр
СП разде
предложе
ООО «ПОИСК»
Шестоперов Г.С.
Следует з
применен
1, не расп
глав 4, 5,
сооружен
179.
121Раздел 5 Расчетные нагрузки.
Пункт 5.2, а
122
Раздел 5 Расчетные нагрузки.
Пункт 5.2.1
123
Раздел 5 Расчетные нагрузки.
отечественной и зарубежной практике.
В проекте СП предлагается
выполнять расчет сооружений с целью
предотвращения
частичной
потери
эксплуатационных свойств сооружением.
Применительно к транспортным
сооружениям
установка
на
предотвращение
частичной
потери
эксплуатационных
свойств
означает
недопущение в результате землетрясения
местных и общих деформаций (трещин,
осадок, наклонов опор и др. повреждений)
которые
снижают
долговечность
конструкций, комфортность движения по
дорогам,
ухудшают
внешний
вид
сооружений,
требуют
введения
ограничений на вес и скорость движения,
но не вызывают аварий подвижного
состава и полного прекращения движения.
Анализ состояния транспортных
сооружений показывает, что небольшие
повреждения на дорогах, не требующие
прекращения движения, возникают даже
при 7-балльных толчках. Требование
полного сохранения эксплуатационных
свойств, при землетрясениях не должно
распространяться
на
транспортные
сооружения, как нереалистичное.
Возникающие на дорогах в
результате
землетрясений
небольшие
повреждения
должны
устраняться
ремонтом сооружений. От наступления
предельных состояний первой группы,
включая
чрезмерные
деформации,
приводящие к авариям подвижного
состава, транспортные сооружения должны
быть
защищены
по
расчету
и
конструктивными мероприятиями.
В этом пункте указывается:
«Расчеты по 5.2 б следует применять для
зданий и сооружений, перечисленных в
позициях 1 и 2 таблицы 3». В п.5.2 б
определено, что «Целью расчетов на
воздействие МРЗ является предотвращение
глобального обрушения сооружения или
его
частей,
создающего
угрозу
безопасности людей».
Обращаясь к таблице 3 видим, что
транспортные сооружения не указаны в
позициях 1 и 2 (кроме тоннелей на дорогах
высшей категории и мостовых сооружений
с
пролетами
200
м
и
более).
Следовательно, в проекте СП предлагается
не выполнять расчеты подавляющей части
транспортных сооружений с целью
предотвращения их разрушения при
землетрясениях.
Данное предложение
ЦНИИСК необходимо отклонить как
необоснованное и влекущее за собой
чрезвычайно
тяжелые
социальноэкономические последствия.
Согласно
п.5.2.2
ускорения
179
ООО «ПОИСК»
Шестоперов Г.С.
Следует з
применен
1, не расп
глав 4, 5,
сооружен
ООО «ПОИСК»
Шестоперов Г.С.
Следует з
применен
1, не расп
глав 4, 5,
сооружен
ООО «ПОИСК»
Следует з
180.
Пункт 5.2.2124
Раздел 5 Расчетные нагрузки.
Пункты 5.5 и 5.6
125
Раздел 5 Расчетные нагрузки.
Пункт 5.10
126
Раздел 7 Транспортные сооружения.
Пункт 7.6.7
колебаний грунта следует умножать на
коэффициент К0 таблицы 3. Для объектов,
перечисленных в позициях 1 и 2 этой
таблицы при расчете на МРЗ величина
коэффициента К0 установлена равной 2,0 и
1,5, соответственно.
Одновременно
с
введением
дополнительного
коэффициента
К0
ответственность зданий и сооружений
должна
учитываться
выбором
соответствующей карты ОСР. Таким
образом, по проекту СП один и тот же
фактор
(ответственность
объекта)
принимается во внимание дважды, что
приводит к завышению сейсмической
нагрузки в 1,5-2 раза.
Следует также отметить, что
принятая в таблице 3 классификация
сооружений противоречит ГОСТ 277512014
«Надежность
строительных
конструкций и оснований. Основные
положения» как по числу выделенных
классов, так и по отнесению сооружений к
разным классам.
В
проекте
СП
приводятся
зависимости