DCT – Wavelet – Filter Bank
Outline
Motivations
KLT: Optimal Linear Transform
Discrete Cosine Transforms
DCT Type-II
DCT Symmetry
DCT: Recursive Property
Fast DCT Implementation
Block DCT
Filtering
Down-Sampling
Up-Sampling
Filter Bank
FB Analysis
Perfect Reconstruction
Half-band Filter
Spectral Factorization
Spectral Factorization: Orthogonal
Spectral Factorization: Symmetry
History: Wavelets
From Filter Bank to Wavelet
1-Level 2D DWT
2-Level 2D DWT
2D DWT
Time-Frequency Localization
Wavelet Packet
Scaling and Wavelet Function
Convergence & Smoothness
Regularity & Vanishing Moments
Lattice Structure
FB Design from Lattice Structure
Lifting Scheme
Wavelets: Summary
1.95M
Categories: informaticsinformatics electronicselectronics

DCT – Wavelet – Filter Bank

1. DCT – Wavelet – Filter Bank

Trac D.Tran
Department of Electrical and Computer Engineering
The Johns Hopkins University
Baltimore, MD 21218

2. Outline

Reminder
Linear signal decomposition
Optimal linear transform: KLT, principal component analysis
Discrete cosine transform
Definition, properties, fast implementation
Review of multi-rate signal processing
Wavelet and filter banks
Aliasing cancellation and perfect reconstruction
Spectral factorization: orthogonal, biorthogonal, symmetry
Vanishing moments, regularity, smoothness
Lattice structure and lifting scheme
M-band design – Local cosine/sine bases

3.

Reminder: Linear Signal Representation
input
signal
transform
coefficient
basis
function
N
Representation
x ci ψ i
i 0
Decomposition
Approximation
ci x, ψ i

using as few
coefficients
as possible
L N
c ψ
i 0
i
i

4. Motivations

Fundamental question: what is the best basis?
energy compaction: minimize a pre-defined error measure, say
MSE, given L coefficients
maximize perceptual reconstruction quality
low complexity: fast-computable decomposition and
reconstruction
intuitive interpretation
How to construct such a basis? Different viewpoints!
Applications
compression, coding
signal analysis
de-noising, enhancement
communications

5. KLT: Optimal Linear Transform

R xx Φi i Φi
T
E xx
KLT Φ 0
eigenvectors
Φ1
Φ N 1
Signal dependent
Require stationary signals
How do we communicate bases to the decoder?
How do we design “good” signal-independent transform?

6. Discrete Cosine Transforms

Type I
C
2
M
I
C
III
Type IV
C
IV
2
M
,
m, n 0,1, , M
2
M
m n 1 2
K m cos
M
,
m, n 0,1, , M 1
2
M
m 1 2 n
K n cos
M
,
m, n 0,1, , M 1
m 1 2 n 1 2
cos
M
,
m, n 0,1, , M 1
Type III
C
mn
K m K n cos M
Type II
II
1 2 , i 0, M
Ki
otherwise
1,

7. DCT Type-II

1
,
Ki 2
1,
8 x 8 block
i 0 DC
i 0
orthogonal
real coefficients
symmetry
near-optimal
fast algorithms
horizontal edges
DCT basis
M 1
2
(2n 1)m
x[n] cos
X [ m]
K
m
M
2M
n 0
M 1
(2m 1)n
x[n] 2
X
[
m
]
cos
K
n
M
2M
m 0
m, n 0,1,..., M 1
vertical edges

8. DCT Symmetry

m 2 M 1 n 1
cos
2M
2 M 2 2n 1 m
cos
2M
2 Mm 2n 1 m
cos
2M
2M
2n 1 m
cos
2M
DCT basis functions
are either symmetric
or anti-symmetric

9. DCT: Recursive Property

An M-point DCT–II can be implemented via an M/2-point
DCT–II and an M/2-point DCT–IV
C
II
M
II
1 CM/2
2 0
0 I J
IV
CM/2 J J I
Butterfly
CIIM/2
DCT
coefficients
input
samples
C
IV
M/2
J

10. Fast DCT Implementation

13 multiplications and 29 additions per 8 input samples

11. Block DCT

X1 CIIM
X
2 0
X N
output blocks
of DCT coefficients,
each of size M
0
C
II
M
0
0
CIIM
0
x1
x2
0
II
C M x N
input blocks,
each of size M

12. Filtering

x[n]
h[n]
y[n] h[n k ]x[k ] h[k ]x[n k ]
y[n]
k
k
y[n 1] h[2] h[1] h[0] 0
0
y[n] 0 h[2] h[1] h[0] 0
y
[
n
1
]
0 h[2] h[1] h[0]
0
x
[
n
2
]
x[n 1]
x
[
n
]
x[n 1]
X e j
n
Fourier :
H (e j ) h[ n]e j n
n
LTI Operator
z Transform : H ( z ) h[n] z n
H e j
Y e j X e j H e j

13. Down-Sampling

x[n ]
2
y[n] x[2n]
x
[
1
]
y[ 1] 1 0 0 0 0
x[0]
y[0] 0 0 1 0 0
x[1]
y[1] 0 0 0 0 1 x[2]
Linear Time-Variant Lossy Operator
Y e j
X e j
2
1
Y e X e j / 2 X e j 2 / 2
2
1
Y z X z1/ 2 X z1/ 2
2
j
2

14. Up-Sampling

x[n ]
2
x[n / 2], n even
y[n]
n odd
0,
1 0 0
y[ 1]
x[ 1]
0 0 0
y[0]
x[0]
0 1 0 x[1]
y[1] 0 0 0
y[2]
x[2]
0 0 1
Y e j
Y z X z 2
X e j
Y e j X e j 2
2
2

15. Filter Bank

First FB designed for speech coding, [Croisier-Esteban-Galand 1976]
Orthogonal FIR filter bank, [Smith-Barnwell 1984], [Mintzer 1985]
low-pass filter
2
2
F0 ( z )
2
F1 ( z)
Q
H1 ( z )
2
high-pass filter
high-pass filter
Analysis Bank
Synthesis Bank
X ( e j )
2
2
X (z )
H 0 ( z)
low-pass filter
Xˆ ( z )

16. FB Analysis

X (z )
H 0 ( z)
2
2
F0 ( z )
2
F1 ( z)
Q
H1 ( z )
2
Xˆ ( z )
for Distortion Eliminatio n, set to 2 z l
1
ˆ
X ( z ) F0 ( z ) H 0 ( z ) F1 ( z ) H1 ( z ) X ( z )
2
1
F0 ( z ) H 0 ( z ) F1 ( z ) H1 ( z ) X ( z )
2
for Aliasing Cancellati on, set to 0!
z l X ( z )
F0 ( z ) H1 ( z )
F1 ( z ) H 0 ( z )
Alternating-Sign Construction

17. Perfect Reconstruction

With Aliasing Cancellation
F0 ( z ) H1 ( z )
F1 ( z ) H 0 ( z )
Distortion Elimination becomes
F0 ( z ) H 0 ( z ) F0 ( z ) H 0 ( z ) 2 z l
P0 ( z ) P0 ( z ) 2 z l where P0 ( z ) F0 ( z ) H 0 ( z )
Half-band Filter

18. Half-band Filter

P0 ( z ) a bz 1 cz 2 dz 3 ez 4
lone odd-power
P0 ( z ) a bz 1 cz 2 dz 3 ez 4
P0 ( z ) P0 ( z ) 0 2bz 1 0 2dz 3 0 2 z l
can only have one odd-power
Standard design procedure
Design a good low-pass half-band filter P0 ( z )
Factor P0 ( z ) into H 0 ( z ) and F0 ( z )
Use the aliasing cancellation condition to obtain H1 ( z ) and F1 ( z)

19. Spectral Factorization

multiple
zeros
Im
z *
z and z* must stay together
z
z
*
Re
Orthogonality
f i [n] hi [ n]
1
Fi ( z ) H i ( z )
z and z^-1 must be separated
z 1
Symmetry
hi [n] hi [ L 1 n]
( L 1)
H i ( z) z
H i ( z 1 )
z and z^-1 must stay together
Zeros of Half-band Filter
P0 ( z ) (1 zn z 1 );
Real-coefficient
zn roots
n
H 0 ( z ) (1 zk z 1 )
k H
F0 ( z ) (1 zl z 1 )
l F

20. Spectral Factorization: Orthogonal

Im
z
Im
z *
8 zeros
Minimum
Phase
4 zeros
z*
Re
z
z
*
Re
Im
z 1
4 zeros
Maximum
Phase
z *
Re
z 1

21. Spectral Factorization: Symmetry

z *
Im
z
Im
8 zeros
z
*
9-tap H0
z
4 zeros
*
Re
z
z
*
z 1
Re
Im
z 1
4 zeros
7-tap F0
Re

22. History: Wavelets

Early wavelets: for geophysics, seismic, oil-prospecting
applications, [Morlet-Grossman-Meyer 1980-1984]
Compact-support wavelets with smoothness and regularity,
[Daubechies 1988]
Linkage to filter banks and multi-resolution representation,
fast discrete wavelet transform (DWT), [Mallat 1989]
Even faster and more efficient implementations: lattice
structure for filter banks, [Vaidyanathan-Hoang 1988];
lifting scheme, [Sweldens 1995]

23. From Filter Bank to Wavelet

[Daubechies 1988], [Mallat 1989]
Constructed as iterated filter bank
Discrete Wavelet Transform (DWT): iterate FB on
the lowpass subband
x[n ]
frequency spectrum
0
/4 /2
x(t )
i
c
(
2
i ,k t k )
k i 0

24. 1-Level 2D DWT

input
image
x[m, n]
LP
HP
LP
LL: smooth approximation
HP
LH: horizontal edges
LP
HL: vertical edges
HP
HH: diagonal edges
decompose rows decompose columns
L
LL
LH
HL
HH
H

25. 2-Level 2D DWT

LP
LP
HP
LP
LP
HP
LP
HP
HP
HP
LP
decompose rows decompose columns
HP
decompose rows decompose columns
LH
HL
HH

26. 2D DWT

27. Time-Frequency Localization

x[n] cos( a n) [n]
t
best time
localization
t
STFT
uniform tiling
t
wavelet
dyadic tiling
t
best frequency
localization
Heisenberg’s Uncertainty Principle: bound on T-F product
Wavelets provide flexibility and good time-frequency trade-off

28. Wavelet Packet

Iterate adaptively according to the signal
Arbitrary tiling of the time-frequency plain
x[n ]
frequency spectrum
0
/2
Question: can we iterate
any FB to construct wavelets
and wavelet packets?

29. Scaling and Wavelet Function

H 0 (z 4 )
8
H1 ( z 4 )
8
H 0 (z 2 )
x[n ]
H 0 ( z)
H1 ( z 2 )
4
2
H1 ( z)
L
Discrete Basis
H ( z) H 0 ( z
L
0
k 1
i 1
2 k 1
)
product
filters
2 k 1
2i 1
H ( z ) H 0 ( z ) H 1 ( z )
k 1
i
1
Continuous-time Basis
scaling function
1
(
)
H
(t) 2 h0 [n] (2t n)
0 k
2
2
n
k 1
1
( ) 1 H
H
(t) 2 h1 [n] (2t n)
1
0 k
2 2 k 2 2
2
n
wavelet function

30. Convergence & Smoothness

Convergence & Smoothness
Not all FB yields nice product filters
Two fundamental questions
Will the infinite product converge?
Will the infinite product converge to a smooth function?
Necessary condition for convergence: at least a zero at
Sufficient condition for smoothness: many zeros at
with 2 zeros at
with 4 zeros at

31. Regularity & Vanishing Moments

Regularity & Vanishing Moments
In an orthogonal filter bank, the scaling filter has K vanishing
moments (or is K-regular) if and only if
Scaling filter has K zeros at
k
k 0,1,..., K 1
n h1 [n] 0,
n
All polynomial sequences up to degree (K-1) can be
expressed as a linear combination of integer-shifted scaling
filters [Daubechies]
Design Procedure: max-flat half-band spectral factorization
P0 ( z ) 1 z
1 2 K
enforce the half-band condition here
Q( z )
maximize the number of vanishing moments

32.

Polyphase Representation
x[n]
2
2
z
E (z)
Q
z 1
R (z)
2
2
Analysis Bank
Synthesis Bank
R( z ), E ( z ) : 2 x 2 polynomial matrices
l
Perfect Reconstruction: R( z ) E ( z ) z I
FIR filters: E ( z ) , R( z ) = monomial
h0 [n] [ a b c d ]
h1[n] [ d -c b -a ]
E(z) =
a+cz
d-bz
b+dz
-c-az
^
x[n]

33. Lattice Structure

cos i
Ri
sin i
Orthogonal Lattice
x[n]
sin i
cos i
2
2
1
0
z
z
z
1 i
Ri
1
i
Linear-Phase Lattice
x[n]
2
z
2
z
z

34. FB Design from Lattice Structure

Set of free parameters
i
or
i
Modular construction, well-conditioned, nice built-in properties
Complete characterization: lattice covers all possible solutions
Unconstrained optimization
stopband attenuation
min
f i
regularity
i
combination

35. Lifting Scheme

x[n]
2
P0 ( z )
z
U 0 ( z)
2

K

1/ K
E (z )
0
0 1 U i ( z ) 1
K
E( z)
1 Pi ( z ) 1
0 1 / K i 0
Example:
1
0
1
1
(
1
z
)
1
E( z) 4
1
(
1
z
)
1
0
1 2
1 1 3 1 1
h0 [n] , , , ,
8 4 4 4 8
1
1
h1[n] , 1,
2
2

36. Wavelets: Summary

Closed-form construction
Fundamental properties - Advantages
Ψ( 2t)
Time Scaled :
Mother Wav elet : Ψ(t) Translatio n :
Ψ(t-k)
Time Scaled Translatio n : Ψ( 2t-k)
non-redundant orthonormal bases, perfect reconstruction
compact support is possible
basis functions with varying lengths with zoom capability
smooth approximation
fast O(n) algorithms
Connection to other constructions
filter bank and sub-band coding in signal compression
multi-resolution in computer vision
multi-grid methods in numerical analysis
successive refinement in graphics
English     Русский Rules