Матрицы
Матрица Определение
Иоганн Карл Фридрих Гаусс (30 апреля 1777, Брауншвейг — 23 февраля 1855, Гёттинген)
Метод Гаусса
Типы уравнений
Элементарные преобразования
Общий случай
Рассмотрим на примере
Метод Крамера
Габриэль Крамер (31 июля 1704, Женева, Швейцария—4 января 1752, Баньоль-сюр-Сез, Франция)
Рассмотрим систему линейных уравнений с квадратной матрицей A , т.е. такую, у которой число уравнений совпадает с числом неизвестных:
Имеет единственное решение тогда и только тогда, когда определитель матрицы этой системы отличен от нуля:
В этом случае решение можно вычислить по формуле Крамера
Для получения значения xk в числитель ставится определитель, получающийся из det(A) заменой его k-го столбца на столбец правых частей
Решение.
Найдите оставшиеся компоненты решения.
Найдите оставшиеся компоненты решения.
Решение.
Ответ.
Использованные источники
552.50K
Category: mathematicsmathematics

Матрицы. Метод Гаусса. Формулы Крамера

1. Матрицы

Метод Гаусса
Формулы Крамера

2. Матрица Определение

Прямоугольная таблица из m, n чисел, содержащая m – строк и n –
столбцов, вида: a a a a
a 11a 12 a 1i a1n
2j
2n
21 22
a a a a
ij
in
i1 i 2
a a a a
mj
mn
m1 m 2
называется
матрицей размера
m n
Числа, из которых составлена матрица, называются элементами матрицы.
Положение элемента аi j в матрице характеризуются двойным индексом:
первый i – номер строки;
второй j – номер столбца, на пересечении которых стоит элемент.
Сокращенно матрицы обозначают заглавными буквами: А, В, С…
Коротко можно записывать так:
A (aij ) ;
i 1, m;
j 1, n

3. Иоганн Карл Фридрих Гаусс (30 апреля 1777, Брауншвейг — 23 февраля 1855, Гёттинген)

4. Метод Гаусса

Метод Гаусса — классический метод решения системы
линейных алгебраических уравнений. Это метод последовательного
исключения переменных, когда с помощью элементарных
преобразований система уравнений приводится к равносильной
системе ступенчатого (или треугольного) вида, из которого
последовательно, начиная с последних (по номеру) переменных,
находятся все остальные переменные.
Система т линейных уравнений с п неизвестными имеет вид:
a11 x1 a12 x2 ... a1n xn b1
a 21 x1 a 22 x2 ... a 2 n xn b2
...............................................
a m1 x1 a m 2 x2 ... am n xn bn
x1 , x2, …, xn – неизвестные.
ai j - коэффициенты при неизвестных.
bi - свободные члены (или правые части)

5. Типы уравнений

Система линейных уравнений называется совместной, если она
имеет решение, и несовместной, если она не имеет решения.
Совместная система называется определенной, если она имеет
единственное решение и неопределенной, если она имеет
бесчисленное множество решений.
Две совместные системы называются равносильными, если они
имеют одно и то же множество решений.

6. Элементарные преобразования

К элементарным преобразованиям системы отнесем следующее:
1.
2.
3.
перемена местами двух любых уравнений;
умножение обеих частей любого из уравнений на
произвольное число, отличное от нуля;
прибавление к обеим частям одного из уравнений системы
соответствующих частей другого уравнения, умноженных на
любое действительное число.

7. Общий случай

Для простоты рассмотрим метод Гаусса для системы трех линейных уравнений с
тремя неизвестными в случае, когда существует единственное решение:
Дана система:
a11 x1 a12 x2 a13 x3 b1
a21 x1 a22 x2 a23 x3 b2
a x a x a x b
32 2
33 3
3
31 1
(1)
1-ый шаг метода Гаусса
На первом шаге исключим неизвестное х1 из всех уравнений системы (1), кроме
первого. Пусть коэффициент . Назовем его ведущим элементом. Разделим первое
уравнениеa системы (1) на аb11. Получим уравнение:
где
a1 j
(1)
1j
a11
;
j 1,2,3 ;
b1
(1)
1
a11
Исключим х1 из второго и третьего уравнений системы (1). Для этого вычтем из
них уравнение (2), умноженное на коэффициент при х1 (соответственно а21 и а31).
x a x a x b
(2)
Система примет вид:
(1)
1
12
(1)
2
13
(1)
3
1
Верхний индекс (1) указывает, что речь идет о коэффициентах первой
преобразованной системы. x a x a x b
a x a x b
(3)
(1)
1
12
(1)
22
(1)
2
2
13
(1)
23
(1)
3
3
1
(1)
2
a32 x2 a33 x3 b3
(1)
(1)
(1)

8.

2-ой шаг метода Гаусса
На втором шаге исключим неизвестное х2 из третьего уравнения системы (3).
Пусть коэффициент . Выберем его за ведущий элемент и разделим на него второе
уравнение системы (3), получим уравнение: x a x b (4)
( 2)
2
где
a23
( 2)
a23
(1)
a22
(1)
;
b2
( 2)
b2
23
( 2)
3
2
(1)
a22
(1)
Из третьего уравнения системы (3) вычтем уравнение (4), умноженное на
Получим уравнение:
Предполагая, что
a33
( 2)
x3
b3
( 2)
находим
a33
( 2)
0,
x3
b3
( 2)
a33
( 2)
b3
3
(1)
a33 .

9.

В результате преобразований система приняла вид:
x1 a12 (1) x 2 a13 (1) x3 b1 (1)
( 2)
( 2)
x 2 a 23 x3 b2
( 3)
x3 b3
(5)
Система вида (5) называется треугольной.
Процесс приведения системы (1) к треугольному виду (5)
(шаги 1 и 2) называют прямым ходом метода Гаусса.
Нахождение неизвестных из треугольной системы
называют обратным ходом метода Гаусса.
Для этого найденное значение х3 подставляют во второе
уравнение системы (5) и находят х2. Затем х2 и х3
подставляют в первое уравнение и находят х1.

10.

Если в ходе преобразований системы получается противоречивое
уравнение вида 0 = b, где b 0, то это означает, что система несовместна и
решений не имеет.
В случае совместной системы после преобразований по методу Гаусса,
составляющих прямой ход метода, система т линейных уравнений с п
неизвестными будет приведена или к треугольному или к ступенчатому виду.
Треугольная система имеет вид:
Такая система имеет единственное
решение, которое находится в
x1 c12 x 2 ... a1n x n d1
x 2 ... a 2 n x n d 2
................
xn d n
результате проведения обратного хода метода Гаусса.
Ступенчатая система имеет вид:
Такая система имеет бесчисленное
множество решений.
x1 c12 x2 ... c1n xn d1
x2 ... c2 n xn d 2
.....................
xk ... ck n xn d k

11. Рассмотрим на примере

1.
Покажем последовательность решения системы из трех уравнений методом Гаусса
Поделим первое уравнение на 2, затем вычтем его из второго (a21=1, поэтому
домножение не требуется) и из третьего, умножив предварительно на a31=3
2.
Поделим второе уравнение полученной системы на 2, а затем вычтем его из
третьего, умножив предварительно на 4,5 (коэффициент при x2)
3.
x3=-42/(-14)=3;
Тогда
x2=8-2x3=2
x1=8-0,5x2-2x3=1

12. Метод Крамера

Метод Крамера—способ решения квадратных
систем линейных алгебраических уравнений с
ненулевым определителем основной матрицы.
Создан Габриэлем Крамером в 1751 году.

13. Габриэль Крамер (31 июля 1704, Женева, Швейцария—4 января 1752, Баньоль-сюр-Сез, Франция)

14. Рассмотрим систему линейных уравнений с квадратной матрицей A , т.е. такую, у которой число уравнений совпадает с числом неизвестных:

Теорема. Cистема
a11x1+a12x2+…+a1nxn=b1
a21x1+a22x2+…+a2nxn=b2


an1x1+an2x2+…+annxn=bn

15. Имеет единственное решение тогда и только тогда, когда определитель матрицы этой системы отличен от нуля:

a11 a12 … a1n
a21 a22 … a2n


an1 an2 … ann
≠0

16. В этом случае решение можно вычислить по формуле Крамера

17. Для получения значения xk в числитель ставится определитель, получающийся из det(A) заменой его k-го столбца на столбец правых частей

Пример. Решить систему уравнений :

18. Решение.

19. Найдите оставшиеся компоненты решения.

Формулы Крамера не представляют практического значения в
случае систем с числовыми коэффициентами: вычислять по
ним решения конкретных систем линейных уравнений
неэффективно, поскольку они требуют вычисления (n+1)-го
определителя порядка n , в то время как метод Гаусса
фактически эквивалентен вычислению одного определителя
порядка n . Тем не менее, теоретическое значение формул
Крамера заключается в том, что они дают явное
представление решения системы через ее коэффициенты.
Например, с их помощью легко может быть доказан результат
Решение системы линейных уравнений с квадратной
матрицей A является непрерывной функцией коэффициентов
этой системы при условии, что det A не равно 0 .

20. Найдите оставшиеся компоненты решения.

Кроме того, формулы Крамера начинают конкурировать по вычислительной
эффективности с методом Гаусса в случае систем, зависящих от параметра.
зависящей от параметра
решения:
, определить предел отношения компонент

21. Решение.

В этом примере определитель матрицы
системы равен
. По теореме Крамера
система совместна при
. Для случая
применением метода Гаусса убеждаемся,
что система несовместна. Тем не менее,
указанный предел существует. Формулы
Крамера дают значения компонент решения
в виде
и, хотя при
каждая из них имеет бесконечный предел, их
отношение стремится к пределу конечному.

22. Ответ.

Приведенный пример поясняет также каким образом система линейных
уравнений, непрерывно зависящая от параметра, становится
несовместной: при стремлении параметра к какому-то критическому
значению (обращающему в нуль определитель матрицы системы) хотя
бы одна из компонент решения «уходит на бесконечность».

23. Использованные источники

1.
В.С. Щипачев, Высшая математика
2.
Ильин В. А., Позняк Э. Г. Линейная
алгебра: Учебник для вузов.
3.
Волков Е.А. Численные методы.
4.
В.Е. Шнейдер и др., Краткий курс
высшей математики,том I.
English     Русский Rules