20.00M
Category: ConstructionConstruction
Similar presentations:

Предложение по повышению грузоподъемности пролетных строений мостового сооружения, выполненные по заявке на изобретение

1.

ПРЕДЛОЖЕНИЕ по повышению грузоподъемности пролетных строений мостового
сооружения , выполненные по заявке на изобретение" "Способ имени Уздина
А. М. шпренгельного усиления пролетного строения мостового сооружения с
использованием трехгранных балочных ферм , для сейсмоопасных районов"
МПК E 04 D 22 RU 2024106532 Вх 014405 Дата 07.03.2024, и "Способ усиления
основания пролетного строения мостового сооружения с использованием подвижных
треугольных ферм для сейсмосопасных районов именни В.В.АПутина " МПК E 01 d
21/06 RU 2024106154 Вх 013574 Дата 05.03.2024 https://t.me/resistance_test (812) 69478-10 [email protected] [email protected] [email protected]

2.

в проект Программы национальной стандартизации на 2024-2025 год
Национальная/Межгосударственная стандартизация
Наименование проекта стандарта
повышению
грузоподъемности
пролетных
строений
мостового сооружения , выполненные по заявке на
изобретение" "Способ имени Уздина А. М. шпренгельного
усиления пролетного строения мостового сооружения с
использованием трехгранных балочных ферм , для
сейсмоопасных районов" МПК E 04 D 22
Вид работ
Разработка/Пересмотр/Изменение
ГОСТ Р/ ПНСТ/ГОСТ
Наименование техническогорегламента,
Указать обозначение и полное наименованиетехнического регламента
в обеспечениекоторого разрабатывается
или тольконаименование проекта техническогорегламента
стандарт
Вид разрабатываемого
нормативного документа
повышению грузоподъемности пролетных строений
мостового сооружения , выполненные по заявке на
изобретение" "Способ имени Уздина А. М. шпренгельного
усиления пролетного строения мостового сооружения с
использованием трехгранных балочных ферм , для
сейсмоопасных районов" МПК E 04 D 22 Стандарт на продукцию
(услуги) или методы контроля (испытаний, измерений),
термины и определения, процессы и др.
Наименование приоритетных
направлений стандартизации
(на выбор)
повышению грузоподъемности пролетных строений
мостового сооружения , выполненные по заявке на
изобретение" "Способ имени Уздина А. М. шпренгельного
усиления пролетного строения мостового сооружения с
использованием трехгранных балочных ферм , для
сейсмоопасных районов" МПК E 04 D 22Безопасность продукции

3.

производственного назначения;
Охрана окружающей среды;
Ресурсосбережение;
Энергоэффективность и энергосбережение;
Охрана здоровья населения (человека);
Защита прав потребителя;
Единый технический язык;
Единство измерений;
Конкурентоспособность;
Актуализация фонда стандартов;
Единство технической политики;
Безопасность товаров народного потребления;
Безопасность работ и услуг;
Требования техники безопасности и
производственной санитарии;
Обеспечение достоверности справочных
данных;
Наноиндустрия;
Продовольственная безопасность;
Реализация целевых программ
Классификация
Кодпо ОКПД2
повышению грузоподъемности пролетных строений
мостового сооружения , выполненные по заявке на
изобретение" "Способ имени Уздина А. М.
шпренгельного усиления пролетного строения
мостового сооружения с использованием трехгранных
балочных ферм , для сейсмоопасных районов" МПК E
04 D 22
Кодпо ОКС/МКС
ОГРН 1022000000824 ИНН 2014000780

4.

повышению грузоподъемности пролетных строений мостового сооружения ,
выполненные по заявке на изобретение" "Способ имени Уздина А. М.
шпренгельного усиления пролетного строения мостового сооружения с
использованием трехгранных балочных ферм , для сейсмоопасных районов"
МПК E 04 D 22
Сроки (для раздела «Национальная стандартизация»)
Подготовка первой редакции проекта стандарта и направление в
Ростандарт уведомления о начале разработки проекта стандарта
Май , 2024
Подготовка окончательной редакции проекта стандарта и направление
Май , 2024
в Росстандарт уведомления о завершении публичного обсуждения
проекта стандарта
Май , 2024
Утверждение стандарта
Сроки (для раздела «Межгосударственная стандартизация»)
Подготовка первой редакции проекта стандарта, направление в Ростандарт
уведомления о начале разработки проекта стандарта и документов для
размещения в АИС МГС на стадию «Рассмотрение»
Подготовка окончательной редакции проекта стандарта, направление в
Ростандарт документов для размещения в АИС МГС на стадию
«Голосование»
Подготовка и направление в Росстандарт документов для размещения в
АИС МГС на стадию «Принятие»
Введение в действие (утверждение) стандарта
Предполагаемый источник финансирования
ФИО разработчика, должность
Май , 2024
Май , 2024
Май , 2024
Дополнительно
Федеральный бюджет или средства разработчика/заказчика (указать заказчика) или
источник финансирования отсутствует
Заместитель президента организации "Сейсмофонд" СПб ГАСУ Коваленко Елена Ивановна
ОГРН 1022000000824 ИНН 2014000780 КПП 2011401001
МИР СБЕР 2202 2006 4085 5233 счет получателя 40817810455030 402987 счет
30101810500000000653 Elena Kovalenko тел привязан ( 921) 962-67-78

5.

Контактный телефон
e-mail
(812) 694-78-10, (996) 785-62-67, (921) 962-67-78, (911) 175-84-65
https://t.me/resistamce_test [email protected] [email protected]
[email protected] [email protected] [email protected]
* К форме предложения необходимо обязательно приложить обоснование планируемых работ в виде пояснительной записки (образец
прилагается).
Заместитель президента организации "Сейсмофод" Коваленко Елена Ивановна ОГРН 1022000000824 ИНН 2014000780
КПП 201401001 Юридический адрес для переписки с Минстроем 190005 2-я Красноармейская ул дом 4 СПб ГАСУ
ПОЯСНИТЕЛЬНАЯ ЗАПИСКА
к предложению о разработке/изменению/пересмотру
ГОСТ Р/ПНСТ /ГОСТ «Наименование»
1. Сведения о разработчике стандарта
Наименование, организационно-правовая форма и место нахождениеразработчика
2. Наименование проекта стандарта
Вид работ (разработка, пересмотр, изменение), обозначение, наименованиестандарта.
3. Цель разработки/пересмотра/изменения стандарта
Причина, нововведения, предполагаемый результат введения
4. Перечень работ по стандартизации, выполненных в целях разработки стандарта:
- наличие нормативно-технических документов (инструкции, рекомендации,
пособия, ТУ, СТУ и т.п.) и опыт их применения
- наличие и результаты научно-исследовательских работ в этой области
5. Основание разработки стандарта
Сведения с указанием наименования технического регламента, нормативногоправового акта, перспективных
программ стандартизации по приоритетнымнаправления, в обеспечение которых разрабатывается стандарт (при
наличии)
6. Положения, отличающиеся от положений соответствующихмеждународных стандартов
Приводится краткая информация о положениях международных стандартов и(или) стандартов региональных
организаций, которые предполагаются для включенияв проект стандарта, с указанием степени соответствия им.

6.

7. Структура (содержание) стандарта
8. Ожидаемая эффективность от применения стандарта
9. Контактные данные разработчика стандарта
Контактный телефон и электронная почта руководителя и исполнителяразработки
Спец воен вестник «Армия Защит Отечества" № 2 11.03.2024
ПОЯСНИТЕЛЬНАЯ ЗАПИСКА по повышению грузоподъемности пролетных строений мостового сооружения , выполненные по заявке на
изобретение" "Способ имени Уздина А. М. шпренгельного усиления пролетного строения мостового сооружения с использованием
трехгранных балочных ферм , для сейсмоопасных районов" МПК E 04 D 22 /00 т/ф (812) 694-78-10 6947810@mail/ru http://t.me/resistance_test
Типовая документация на конструкции , изделия и узлы зданий сооружений
[email protected] [email protected] [email protected]

7.

Для научной конференции по проектированию мостов в 2024 году (BEI-2024) 22 - 25 июля 2024 г. 3801 Las Vegas Blvd S Лас-Вегас , Невада, США Доклад
научное сообщение , сборник тезисов, организации Сейсмофонд СПбГАСУ для конференции Bridge Engineering Institute (BAY), которая пройдёт с 22 по
25 июля 2024 года в Лас-Вегасе, США. Это официальное мероприятие Института мостостроительной инженерии (Bridge Engineering Institute). Оно станет
форумом для международных исследователей и практиков со всего мира» (812) 694-78-10
Bridge Engineering Conference in 2024 (BEI-2024) July 22 - July 25, 2024 3801 Las Vegas Blvd S Las Vegas , NV United States " ПОЯСНИТЕЛЬНАЯ ЗАПИСКА по
повышению грузоподъемности пролетных строений мостового сооружения , выполненные по заявке на изобретение" "Способ имени Уздина А.
М. шпренгельного усиления пролетного строения мостового сооружения с использованием трехгранных балочных ферм , для сейсмоопасных
районов" МПК E 04 D 22 /00, выполненные по заявке на изобретение" "Способ имени Уздина А. М. шпренгельного усиления пролетного
строения мостового сооружения с использованием трехгранных балочных ферм , для сейсмоопасных районов" МПК E 04 D 22 /00
https://t.me/resistance_test (921) 962-67-78, (921) 944-67-78, (996) 785-62-76, (911) 175-84-65
Спец воен вестник «Армия Защитников Отечество" № 1 09.03.24
Прилагеам доклад, аннотация: "Прямой упругопластический расчет ПК SCAD строительных ферм с большими перемещениями на предельное
равновесие и приспособляемость , для повышения грузоподъемности существующих пролетных строений и мостовых сооружений" , выполненные
по заявке на изобретение" "Способ имени Уздина А. М. шпренгельного усиления пролетного строения мостового сооружения с использованием

8.

трехгранных балочных ферм , для сейсмоопасных районов" МПК E 04 D 22 /00 Организация "Сейсмофонд" ОГРН: 1022000000824 ИНН" 2014000780
т/ф (812) 694-78-10 т (911) 175-84-65, (921) 962-67-78 [email protected] [email protected] [email protected]
BEI-2024, официальная конференция Института мостостроения (BEI), является форумом для международных исследователей и практиков со всего мира.
Самые современные знания в области мостостроения и смежных областях будут обсуждаться с выдающимися докладчиками на пленарных и
параллельных заседаниях. К-2024 пройдет в Лас-Вегасе, штат Невада, США, в рамках которого состоится ряд запоминающихся и веселых мероприятий
мирового уровня

9.

10.

Докладчик Зам Президента "Сейсмофонд" СПб ГАСУ инж Коваленко А И [email protected]
[email protected] Прямой упругопластический расчет ПК SCAD строительных ферм с большими перемещениями на предельное равновесие и
приспособляемость , для повышения грузоподъемности, выполненные по заявке на изобретение" "Способ имени Уздина А. М. шпренгельного
усиления пролетного строения мостового сооружения с использованием трехгранных балочных ферм , для сейсмоопасных районов" МПК E 04 D
22 /00 и применение для повышения грузоподъемности гнутосварных профилей прямоугольного сечения типа "Молодечно" (серия 1.460.3 ГПИ
"Ленпроектстальконструкция") для быстро- собираемых переправ, с большими перемещениями, и с учетом приспособляемости, со встроенным
бетонным настилом, для неразрезных пластинчато-балочных систем моста. с пластическими демпферами, с натяжными элементами, верхнего и
нижнего пояса стальной фермы, скрепленной ботовыми соединениями ( изобретения проф дтн ПГУПС А.М .Уздина №№ 1143895, 1168755. 1174616,
201013646, 2550777, 165076, 858604 ) [email protected] [email protected] [email protected] (812) 694-78-10
[email protected]
(911) 175-84-65 (921) 962-67-78 190005 СПб ул 2-я Красноармейская дом 4
СПб ГАСУ [email protected]
Доклад "Прямой упругопластический расчет ПК SCAD строительных ферм с большими перемещениями на предельное равновесие и
приспособляемость , для повышения грузоподъемности существующих пролетных строений и мостовых сооружений" , выполненные по заявке на
изобретение" "Способ имени Уздина А. М. шпренгельного усиления пролетного строения мостового сооружения с использованием
трехгранных балочных ферм , для сейсмоопасных районов" МПК E 04 D 22 /00 t892196267782gmail.com [email protected] (996) 785-62-76
[email protected] [email protected] [email protected]

11.

СПбГАСУ
ПГУПС
Сейсмофонд
Строительные конструкции, изделия и узлы зданий и сооружений
Объекты инфраструктуры железнодорожного транспорта
ШИФР 2948358
Скрипучий
ОАО "РЖД"
Объекты инфраструктуры железнодорожного транспорта.Пролетные строения металлические
железнодорожных мостов с ездой понизу на безбалластных плитах мостового полотна пролетами 33-110 м"
(стадия - рабочая документация), разработан по Техническому заданию ОАО "РЖД",
Серия Скрипучий
мост
ШПРЕНГЕЛЬНОГО
УСИЛЕНИЯ
ПРОЛЕТНОГО
СТРОЕНИЯ
мостового
сооружения

12.

Март 2024
СПОСОБ имени Уздина А М ШПРЕНГЕЛЬНОГО УСИЛЕНИЯ ПРОЛЕТНОГО СТРОЕНИЯ мостового сооружения
с использованием треугольных балочных ферм для сейсмоопасных районов МПК E 01 D 22 /00 (
изобретения №№ 1143895, 1168755, 1174616, 165076, 2010136746, 2550777, 858604 «КОНСТРУКЦИЯ
УЧАСТКА ПОСТОЯННОГО ЖЕЛЕЗОБЕТОННОГО МОСТА НЕРАЗРЕЗНОЙ СИСТЕМЫ, ВОССТАНОВЛЕННОГО С
ПРИМЕНЕНИЕМ типовых структурных серии 1.460.3-14 ГПИ "Ленпроектстальконструкция", стальные
конструкции покрытий производственных» № 2022111669 от 25.05.2022, «Сборно-разборный
железнодорожный мост» № 2022113052 от 27.05.2022, «Сборно-разборный универсальный мост» №
2022113510 от 21.06.2022, «Антисейсмический сдвиговой компенсатор для гашения колебаний пролет.
строения моста» № 2022115073 от 02.06.2022
На 326 стр
страницах Стр. № 1
СПОСОБ имени Уздина А М ШПРЕНГЕЛЬНОГО УСИЛЕНИЯ ПРОЛЕТНОГО СТРОЕНИЯ мостового
сооружения с использованием треугольных балочных ферм для сейсмоопасных районов МПК E 01 D 22 /00 https://t.me/resistance_test
Фонд поддержки и развития сейсмостойкого строительства «Защита и безопасность городов» «Сейсмофонд» при СПб ГАСУ ИНН : 2014000780 ОГРН :
1022000000824 [email protected] Счет получателя СБЕР № 40817810455030402987 СБЕР 2202 2006 4085 5233
(812) 694-78-10

13.

14.

"Прямой упругопластический расчет ПК SCAD строительных ферм с большими перемещениями на предельное равновесие и приспособляемость ,
для повышения грузоподъемности существующих пролетных строений и мостовых сооружений" , выполненные по заявке на изобретение" "Способ
имени Уздина А. М. шпренгельного усиления пролетного строения мостового сооружения с использованием трехгранных балочных ферм , для
сейсмоопасных районов" МПК E 04 D 22 /00 c использованием стальных конструкций покрытий производственных здании пролетами 18, 24 и 30 м с
применением замкнутых гнутосварных профилей прямоугольного сечения типа «Молодечно» (серия 1.460.3-14 ГПИ «Ленпроектстальконструкция» )
для системы несущих элементов и элементов проезжей части дорожного сборно-разборного пролетного надвижного строения дорожного моста, с
быстросъемными упругопластичными компенсаторами со сдвиговой фрикционно-демпфирующей жесткостью со сдвиговой фрикционнодемпфирующей прочностью, согласно заявки на изобретение «КОНСТРУКЦИЯ УЧАСТКА ПОСТОЯННОГО ЖЕЛЕЗОБЕТОННОГО МОСТА НЕРАЗРЕЗНОЙ
СИСТЕМЫ, ВОССТАНОВЛЕННОГО С ПРИМЕНЕНИЕМ типовых структурных серии 1.460.3-14 ГПИ "Ленпроектстальконструкция", стальные конструкции
покрытий производственных» № 2022111669 от 25.05.2022, «Сборно-разборный железнодорожный мост» № 2022113052 от 27.05.2022, «Сборноразборный универсальный мост» № 2022113510 от 21.06.2022, «Антисейсмический сдвиговой компенсатор для гашения колебаний пролет. строения
моста» № 2022115073 от 02.06.2022 и на осн. изобрет 1143895, 1168755, 1174616, 2550777, 2010136746, 165076.

15.

СПОСОБ имени Уздина А М ШПРЕНГЕЛЬНОГО УСИЛЕНИЯ ПРОЛЕТНОГО СТРОЕНИЯ мостового сооружения с использованием треугольных балочных
ферм для сейсмоопасных районов МПК E 01 D 22 /00

16.

"Прямой упругопластический расчет ПК SCAD строительных ферм с большими перемещениями на предельное равновесие и приспособляемость ,
для повышения грузоподъемности существующих пролетных строений и мостовых сооружений" , выполненные по заявке на изобретение" "Способ
имени Уздина А. М. шпренгельного усиления пролетного строения мостового сооружения с использованием трехгранных балочных ферм , для
сейсмоопасных районов" МПК E 04 D 22 /00
"Прямой упругопластический расчет ПК SCAD строительных ферм с большими перемещениями на предельное равновесие и приспособляемость ,
для повышения грузоподъемности существующих пролетных строений и мостовых сооружений" , выполненные по заявке на изобретение" "Способ
имени Уздина А. М. шпренгельного усиления пролетного строения мостового сооружения с использованием трехгранных балочных ферм , для
сейсмоопасных районов" МПК E 04 D 22 /00
ОПОРА СЕЙСМОСТОЙКАЯ RU165 076 (51) МПКE04H 9/02 (2006.01) Коваленко Александр Иванович (RU)

17.

Комбинированное пространственное структурное
покрытие № 80471

18.

19.

20.

21.

Помощь для внедрения изобретения "Способ им Уздина А. М. шпренгельного усиления пролетного строения мостового сооружения с
использованием трехгранных балочных ферм" , аналог "Новокисловодск" Марутян Александр Суренович МПК Е01ВD 22/00 для ветеранf боевых
действий , инвалида второй группы по общим заболеваниям , изобретателю по СБЕР карта МИР 2202 2056 3053 9333 тел привязан 911 175 84 65
Aleksandr Kovalenko (996) 785-62-76 [email protected] https//t.me/resistance_test
Современные технологии и проектирование строительства и эксплуатации пролетных строений мостовых шпренгельных усилений с
использованием треугольных балочных ферм для гидротехнических сооружений ( с использованием изобретения "Решетчато пространственный
узел покрытия (перекрытия ) из перекрестных ферм типа "Новокисловодск" № 153753, "Комбинированное пространственное структурное покрытие"
№ 80471, и с использованием типовой документации серия 1.460.3-14 , с пролетами 18, 24, 30 метров, типа Молодечно" , чертежи КМ ГПИ

22.

"Ленпроектстальконструкция" и изобретений проф дтн ПГУПС Уздина А М №№ 1143895, 1168755, 1174616, заместителя организации "Сейсмофонд"
СПб ГАСУ ( ОГРН 1022000000824 , ИНН 2014000780 ) инж Коваленко А.И №№ 167076, 1760020, 2010136746
The Uzdin A M METHOD OF SPRENGTHENING THE SUPERSTRUCTURE of a bridge structure using triangular girder trusses for earthquake-prone areas IPC E 01 D
22 /00

23.

[email protected] [email protected] [email protected] [email protected] СБЕР карта МИР 2202 2006 4085
5233 Elena Kovalenko МИР карта 2202 2056 3053 9333 тел привязан (921) 175 84 65 т/ф (812) 694-78-10 [email protected]
[email protected] [email protected]

24.

25.

26.

(54) СПОСОБ ЗАЩИТЫ ЗДАНИЯ И СООРУЖЕНИЯ ПРИ ВЗРЫВЕ С ИСПОЛЬЗОВАНИЕМ СДВИГОУСТОЙЧИВЫХ И ЛЕГКОСБРАСЫВАЕМЫХ СОЕДИНЕНИЙ,
ИСПОЛЬЗУЮЩИЕ СИСТЕМУ ДЕМПФИРОВАНИЯ ФРИКЦИОННОСТИ И СЕЙСМОИЗОЛЯЦИЮ ДЛЯ ПОГЛОЩЕНИЯ ВЗРЫВНОЙ И СЕЙСМИЧЕСКОЙ ЭНЕРГИИ RU
2010 136 746 (51) МПК E04C 2/00 (2006.01) Коваленко Александр Иванович (RU) https://t.me/resistance_test т/ф (812) 694-78-10, (921) 944-67-10, (911)
175-84-65, (996) 785-62-76 [email protected] [email protected] [email protected] СБЕР карта 2202 2006 4085 5233 Elena Kovalenko

27.

28.

29.

30.

31.

Гл. конструктор ГИП Ирина Александровна Богданова (921) 944-67-78 sber2202205630539333#gmail.com
Гл.инженер проекта Коваленко Александр Иванович (911) 175-84-65 [email protected]
Научный руководитель проф дтн Уздин Александр Михайлович [email protected]
Конструктор-консультант ПК SCAD ктн доц Егорова Ольга Александровна (921) 962-67-78 [email protected]
Коваленко Александр Иванович : заместитель Президента организации "Сейсмофонд" при СПб ГАСУ [email protected]
(911) 175-84-65
Егорова Ольга Александровна заместитель Президента организации "Сейсмофонд" при СПб ГАСУ (965) 753-22-02 [email protected]
[email protected]

32.

Уздин Александр Михайлович ПГУПС проф. дтн: [email protected] [email protected]
Богданова Ирина Александровна: заместитель Президента организации "Сейсмофод" при СПб ГАСУ [email protected] (996)785-62-76
Андреева Елена Ивановна Заместитель президента организации "Сейсмофонд" при СПб ГАСУ [email protected]
Пояснительная записка к расчету в ПК SCAD и инструкция по креплению упруго пластического сдвигаемого шарнира , для типовых решения сборки
демпфирующих Z - образных компенсаторов проф Темнова В.Г при прокладке тепловых сетей в изоляции из пенополиуретана диаметром Ду 50 600 мм выполненные и предназначенные для сейсмоопасных районов с сейсмичностью до 9 баллов

33.

В районах с сейсмичностью более 9 баллов при динамических, импульсных растягивающих нагрузках для поглощения сейсмической энергии
необходимо использование фрикционно-демпфирующих компенсаторов, соединенных с кабеленесущими системами с помощью фланцевых
фрикционно-подвижных демпфирующих компенсаторов (с учетом сдвиговой прочности), согласно заявки на изобретение: " Фрикционно демпфирующий компенсатор для трубопроводов" F 16L 23/00 , регистрационный № 2021134630 (ФИПС), от 25.11.2021, входящий № 073171,
"Фланцевое соединение растянутых элементов трубопровода со скошенными торцами", Минск № а 20210217 от 28 декабря 2021 , "Компенсатор для
трубопроводов " Минск , регистрационный № а 20210354 от 27 декабря 2021.
СООТВЕТСТВУЕТ ТРЕБОВАНИЯМ: СП 14.13330.2014 «Строительство в сейсмических районах, п.4.7, п. 9.2, ГОСТ 16962.2-90. ГОСТ 17516.1-90, ГОСТ
30546.1-98, ГОСТ 30546.2-98 (в части сейсмо-стойкости до 9 баллов по шкале MSK-64), I категории по НП-031-01, СТО Нострой 2.10.76-2012, МР 502.1-05,
МДС 53-1.2001(к СНиП 3.03.01-87), ГОСТ Р 57574-2017 «Землетрясения»,ТКП 45-5.04-41-3006 (02250), ГОСТ Р 54257-2010, ОСТ 37.001.050-73, СН-471-75,
ОСТ 108.275.80, СП 14.13330.2014, ОСТ 37.001.050-73, СП 16.13330.2011 (СНиП II -23-81*), СТО -031-2004, РД 26.07.23-99, СТП 006-97, ВСН 144-76, ТКТ
45-5.04-274-2012, серия 4.402-9, ТП ШИФР 1010-2с.94, вып 0-2 «Фундаменты сейсмостой-кие»
Аннотация. В статье приведен краткий обзор характеристик антисейсмических фланцевых фрикциооно -подвижное соединение трубопроводов
проф Темнова В Г
Антисейсмическое ФЛАНЦЕВОЕ фрикционно -подвижное СОЕДИНЕНИЕ (ФФПС) трубопроводов ( Петлеобразный вертикальный компенсатор) для
теплотрасс горячего водоснабжения, содержащее крепежные элементы, подпружиненные и энергопоглощающие со стороны одного или двух из
фланцев, амортизирующие в виде латунного фрикци -болта, с пропиленным пазом и забитым медным обожженным клином , с вставленной медной
обожженной втулкой или медной тонкой гильзой , охватывающие крепежные элементы и установленные в отверстиях фланцев, и уплотнительный
элемент, фрикци-болт , выполнен , с целью расширения области использования соединения в сейсмоопасных районах, фланцы выполнены с
помощью энергопоглощающего латунного фрикци -болта , с забитым с одинаковым усилием, медным обожженным клином, расположенными во
фланцевом фрикционно-подвижном соединении (ФФПС) , уплотнительными элемент выполнен в виде свинцовых тонких шайб , установленные
между цилиндрическими выступами фланцев, а крепежные элементы подпружинены, также на участке между фланцами, за счет протяжности
соединения по линии нагрузки, а между медным обожженным энергопоголощающим стопорным клином, установлены тонкие свинцовые или
обожженные медные шайбы, а в латунную шпильку устанавливается тонкая медная обожженная гильза - втулка .
Антисейсмическое ФЛАНЦЕВОЕ фрикционно -подвижное СОЕДИНЕНИЕ (ФФПС) железнодорожного моста, содержащее крепежные элементы,
подпружиненные и энергопоглощающие со стороны одного или двух из фланцев, амортизирующие в виде латунного фрикци -болта, с
пропиленным пазом и забитым медным обожженным клином , с вставленной медной обожженной втулкой или медной тонкой гильзой ,
охватывающие крепежные элементы и установленные в отверстиях фланцев, и уплотнительный элемент, фрикци-болт , отличающееся тем, что, с целью
расширения области использования соединения в сейсмоопасных районах, фланцы выполнены с помощью энергопоглощающего латунного фрикци болта , с забитым с одинаковым усилием, медным обожженным клином, расположенными во фланцевом фрикционно-подвижном соединении

34.

(ФФПС) , уплотнительными элемент выполнен в виде медных тонких шайб , установленные между цилиндрическими выступами фланцев, а
крепежные элементы подпружинены, также на участке между фланцами, за счет протяжности соединения по линии нагрузки, а между медным
обожженным энергопоголощающим стопорным клином, установлены тонкие свинцовые или обожженные медные шайбы, а в латунную шпильку
устанавливается тонкая медная обожженная гильза - втулка .
Петлеобразный вертикальный компенсатор предназначено для защиты трубопроводов, теплотрасс от возможных температурных, вибрационных ,
сейсмических и взрывных воздействий Конструкция фрикци -болт выполненный из латунной шпильки с забитым медным обожженным клином
позволяет обеспечить надежный и быстрый погашение сейсмической нагрузки при землетрясении, вибрационных воздействий от температурных
колебаний (нагрузок) .Конструкция фрикци -болт, состоит их латунной шпильки , с забитым в пропиленный паз медного клина, которая жестко
крепится на фланцевом фрикционно- подвижном соединении (ФФПС) .
Количество болтов определяется с учетом воздействия собственного веса ( массы) теплотрассы , трубопровода и расчетные усилия рассчитываются
по СП 16.13330.2011 ( СНиП II -23-81* ) Стальные конструкции п. 14.4, Москва, 2011, ТКТ 45-5.04-274-2012 (02250), «Стальные конструкции» Правила
расчет, Минск, 2013. п. 10.3.2
Фрикци –болт повышет надежность работы петлевого компенсатора магистральные трубопровода, теплотрассы за счет уменьшения пиковых
ускорений, за счет протяжных фрикционных соединений, работающие на растяжением на фрикци- ботах, установленные в длинные овальных
отверстиях, с контролируемым натяжением в протяжных соедиениях. ( ТКП 45-5.04-274-2012 (02250) п. 10.3.2 стр. 74 , Минск, 2013, СП
16.13330.2011,СНиП II-23-81* п. 14.3- 15.2).
Скрепляя петлеобразный сдвиговой с проскальзыванием компенсатор с теплотрассой , трубопроводом в положении при котором нижняя
поверхности, контактирующие с поверхностью болта (сдвиг по овальному отверстию максимальный). После этого гайку затягивают не тарировочным
ключом до заданного усилия, а фиксируют обожженным клином . Увеличение усилия затяжки гайки (болта) или медного обожженного клина
приводит к деформации петлеобразного компенсатора и уменьшению зазоров от «Z» до «Z1» в компенсаторе , что в свою очередь приводит к
увеличению допустимого усилия сдвига (усилия трения) в сопряжении отверстие корпуса - петлеобразного компенсатора . Величина усилия трения в
сопряжении в петлеобазном компенсаторе для теплотрасс и нефтегазовых трубопроводов, зависит от величины усилия затяжки гайки (болта) и для
каждой конкретной конструкции (компоновки, габаритов, материалов, шероховатости поверхностей, направления нагрузок и др.) определяется
экспериментально. При воздействии температурных , сейсмических нагрузок превышающих силы трения в сопряжении петлеобразного
вертикального компенсатора , происходит сдвиг "петли" , в пределах длины паза выполненного в теле петлеобразного вертикально сдвигового
компенсатора , без разрушения теплотрассы, трубопроводов горячего водоснабжения .
Петлеобразный сдвиговой вертикальный компенсатор, содержащая шесть трубчатых уголков и сопряженный с ним подвижный узел, закрепленный
запорным элементом, отличающаяся тем, что в корпусе петлеобразного компенсатора выполнены овальные отверстие, сопряженное с
трубопроводом, теплотрассой, при этом овальная длинные отверстия, зафиксированы запорным элементом, выполненным в виде калиброванного
болта, проходящего через поперечные отверстия петлеобразного компенсатора и через паз, выполненный в теле сдвигового , демпфирующего

35.

компенсатора и закрепленный гайкой с заданным усилием, кроме того в компенсаторе , параллельно центральной оси теплотрассы, трубопроводов ,
выполнено длинные овальные , одинаковые отверстия, длина которых, от начальной нагрузки , больше расстояния для сдвига и демпфирования при
температурных или сейсмических нагрузок
Пояснительная записка к изобретению ремонта тепловых сетей (теплотрасс )
Антисейсмическое фланцевое фрикционно -подвижное соединение трубопроводов проф Темнова В Г
Аналоги : Патент Великобритании № 1260143, кл. F 2 G, фиг. 2, 1972, Бергер И. А. и др. Расчет на прочность деталей машин. М., «Машиностроение»,
1966, с. 491. (54) (57) 1.
Антисейсмическое фланцевое фрикционно -подвижное соединение трубопроводов проф Темнова В Г
Предлагаемое техническое решение предназначено для защиты теплотрасс , трубопроводов от температурных колебаний зимой , что бы не рвались
теплотрассы и сейсмических воздействий за счет использования фрикционное- податливых соединений. Известны фрикционные соединения для
защиты объектов от динамических воздействий. Известно, например, болтовое фланцевое соединение , патент RU №1425406, F16 L 23/02.
Соединение содержит металлические пятле или П -образный ( петлей в верх ) демпфирующий компенсатор разработанный проф Демновы В Г . С
увеличением температурной или сейсмической нагрузки происходит взаимное демпфирование демпфирующих проскальзывающих соедиений проф
А.М.Уздина и
взаимное смещение происходит на теплотрассе с фланцевоми фрикционно подвижного соединения -температурными компенсаторам (ФПС), при
импульсных растягивающих нагрузках при многокаскадном демпфировании, которые работают упруго со скольжением по овальным отверстиям .
Недостатками известного решения являются: ограничение демпфирования по направлению воздействия только по горизонтали и вдоль овальных
отверстий; а также неопределенности при расчетах из-за разброса по трению. Известно также устройство для фрикционного демпфирования и
антисейсмических воздействий, патент SU 1145204, F 16 L 23/02 Антивибрационное фланцевое соединение трубопроводов Устройство содержит
базовое основание, нескольких сегментов -пружин и несколько внешних пластин. В сегментах выполнены продольные пазы. Сжатие пружин создает
демпфирование

36.

Таким образом получаем фрикционно -подвижное соединение на пружинах, которые выдерживает сейсмические и температурные нагрузки но,
при возникновении динамических, импульсных растягивающих нагрузок, взрывных, сейсмических и температурных нагрузок, превышающих
расчетные силы трения в сопряжениях, смещается от своего начального положения, при этом сохраняет трубопровод без разрушения.
Недостатками указанной конструкции являются: сложность конструкции и дороговизна, из-за наличия большого количества сопрягаемых трущихся
поверхностей и надежность болтовых креплений с пружинами
Целью предлагаемого решения является упрощение конструкции, уменьшение количества сопрягаемых трущихся поверхностей до одного или
нескольких сопряжений в виде фрикци -болта , а также повышение точности расчета при использования фрикци- болтовых демпфирующих
податливых креплений для теплотрасс и трубопровода.
Сущность предлагаемого решения заключается в том, что с помощью подвижного фрикци –болта с пропиленным пазом, в который забит медный
обожженный клин, с бронзовой втулкой (гильзой) и свинцовой шайбой , установленный с возможностью перемещения вдоль оси и с ограничением
перемещения за счет деформации трубопровода под действием запорного элемента в виде стопорного фрикци-болта с пропиленным пазом в
стальной шпильке и забитым в паз медным обожженным клином.
Фрикционно- подвижные соединения состоят из демпферов сухого трения с использованием латунной втулки или свинцовых шайб) поглотителями
сейсмической и взрывной энергии за счет сухого трения, которые обеспечивают смещение опорных частей фрикционных соединений на расчетную
величину при превышении горизонтальных сейсмических нагрузок от сейсмических воздействий или величин, определяемых расчетом на основные
сочетания расчетных нагрузок, сама опора при этом начет раскачиваться за счет выхода обожженных медных клиньев, которые предварительно
забиты в пропиленный паз стальной шпильки.
Фрикци-болт, является энергопоглотителем пиковых температурных ускорений (ЭПУ), с помощью которого, поглощается взрывная, ветровая,
сейсмическая, вибрационная энергия. Фрикци-болт снижает на 2-3 балла импульсные растягивающие нагрузки при землетрясении и при взрывной,
ударной воздушной волне. Фрикци –болт повышает надежность работы оборудования, сохраняет каркас здания, моста, ЛЭП, магистрального
трубопровода, за счет уменьшения пиковых ускорений, за счет использования протяжных фрикционных соединений, работающих на растяжение на
фрикци- болтах, установленных в длинные овальные отверстия с контролируемым натяжением в протяжных соединениях согласно ТКП 45-5.04-2742012 (02250) п. 10.3.2 стр. 74 , Минск, 2013, СП 16.13330.2011,СНиП II-23-81* п. 14.3- 15.2.
Изобретение относится к машиностроению, а именно к соединениям трубчатых элементов
Цель изобретения расширение области использования соединения в сейсмоопасных районах .
На чертеже показано предлагаемое соединение, общий вид.
Соединение состоит из фланцев и латунного фрикци -болтов , гаек , свинцовой шайб, медных втулок -гильз
Фланцы выполнены с помощью латунной шпильки с пропиленным пазом куж забивается медный обожженный клин и снабжен
энергопоглощением .

37.

Сущность предлагаемой конструкции поясняется чертежами, где на фиг.1 изображено петлеобразное из шести или четырех трубчатых угловых
сегментов, на фрикционных соединениях с контрольным натяжением стопорный (тормозной) фрикци –болт с забитым в пропиленный паз стальной
шпильки обожженным медным стопорным клином;
на фиг.2 изображено петлеобразное из шести или четырех трубчатых угловых сегментов, на фрикционных соединениях с контрольным натяжением
стопорный (тормозной) фрикци –болт с забитым в пропиленный паз стальной шпильки обожженным медным стопорным клином латунная шпилька
фрикци-болта с пропиленным пазом
на фиг.3 изображен петлеобразный из шести или четырех трубчатых угловых сегментов, на фрикционных соединениях с контрольным натяжением
стопорный (тормозной) фрикци –болт с забитым в пропиленный паз стальной шпильки обожженным медным стопорным клином фрагмент о
медного обожженного клина забитого в латунную круглую или квадратную латунную шпильку
на фиг. 4 изображено петлеобразное из шести или четырех трубчатых угловых сегментов, на фрикционных соединениях с контрольным натяжением
стопорный (тормозной) фрикци –болт с забитым в пропиленный паз стальной шпильки обожженным медным стопорным клином фрагмент установки
медного обожженного клина в подвижный компенсатор ( на чертеже компенстор на показан )
фиг 5 изображены элементы демпфирования и скольжения фтула и троса и медная или бронзовая гильза , для демпфирования при температурных
или сейсмических колебаний фрикционных соединениях с контрольным натяжением стопорный (тормозной) фрикци –болт с забитым в
пропиленный паз стальной шпильки обожженным медным стопорным клином, котрый торировочно забивается с одинаковым усилием в
пропитанный антикоррозийными составами трос в пять обмотанный витков вокруг трубы . что бы исключить вытекание нефти или газа из
магистрального трубопровода, теплотрассы при многокаскадном демпфировании или температурных перепадах зимой
фиг. 5 изображен сам узел фрикционно -подвижного соединения на фриукци -болту на фрикционно-подвижных протяжных соедиениях
фиг.6 изображено узел крепления коменастра из трубчатых уголков для демпфирующего петлеобразования , из шести или четырех трубчатых
угловых сегментов, на фрикционных соединениях с контрольным натяжением стопорный (тормозной) фрикци –болт с забитым в пропиленный паз
стальной шпильки обожженным медным стопорным клином шаровой кран соединенный на фрикционно -подвижных соединениях , фрикци-болту с
магистральным трубопроводом на фланцевых соединениях
фиг. изображено длинный пропиленный паз в стальной шпильке и таррировочный медный стопорный клин для соедиения демпфирующих
трубчатых уголков -сегментов для содания демпфирующей вертикальной ( верх ) петли, для создания петлеобразной, из шести или четырех
трубчатых угловых сегментов, на фрикционных соединениях с контрольным натяжением стопорный (тормозной) фрикци –болт с забитым в
пропиленный паз стальной шпильки обожженным медным стопорным клином
Компенсатор проф Темпнова состоит из фрикционо -подвижных демпфирующих соединениях с фрикци -болтом фрикционно-подвижных
соединений
Антисейсмический виброизоляторы выполнены в виде петлеобразных демпфирующих соединений из шести или четырех трубчатых угловых
сегментов, на фрикционных соединениях с контрольным натяжением стопорный (тормозной) фрикци –болт с забитым в пропиленный паз стальной
шпильки обожженным медным стопорным клиномлатунного фрикци -болта с пропиленным пазом , куда забивается стопорный обожженный медный,
установленных на стержнях фрикци- болтов Медный обожженный клин может быть также установлен с двух сторон крана шарового

38.

Болты снабжены амортизирующими шайбами из свинца: расположенными в отверстиях фланцев.
Однако устройство в равной степени работоспособно, если антисейсмическим или виброизолирующим является медный обожженный клин .
Гашение многокаскадного демпфирования или вибраций, действующих в продольном направлении, осуществляется смянанием с
энергопоглощением забитого медного обожженного клина
Виброизоляция в поперечном направлении обеспечивается медными шайбами , расположенными между цилиндрическими выступами . При этом
промежуток между выступами, должен быть больше амплитуды колебаний вибрирующего трубчатого элемента, Для обеспечения более надежной
виброизоляции и сейсмозащиты шарового кран с трубопроводом в поперечном направлении, можно установить медный втулки или гильзы ( на
чертеже не показаны), которые служат амортизирующие дополнительными упругими элементы
Упругими элементами , одновременно повышают герметичность соединения, может служить стальной трос ( на чертеже не показан) .
Устройство работает следующим образом.
В пропиленный паз латунно шпильки, плотно забивается медный обожженный клин , который является амортизирующим элементом при
многокаскадном демпфировании .
Латунная шпилька с пропиленным пазом , располагается во фланцевом соединении , выполненные из латунной шпильки с забиты с одинаковым
усилием медный обожженный клин , например латунная шпилька , по названием фрикци-болт . Одновременно с уплотнением соединения оно
выполняет роль упругого элемента, воспринимающего вибрационные и сейсмические нагрузки. Между выступами устанавливаются также
дополнительные упругие свинцовые шайбы , повышающие надежность виброизоляции и герметичность соединения в условиях повышенных
вибронагрузок и сейсмонагрузки и давлений рабочей среды.
Затем монтируются подбиваются медный обожженные клинья с одинаковым усилием , после чего производится стягивание соединения гайками с
контролируемым натяжением .
В процессе стягивания фланцы сдвигаются и сжимают медный обожженный клин на строго определенную величину, обеспечивающую рабочее
состояние медного обожженного клина . свинцовые шайбы применяются с одинаковой жесткостью с двух сторон .
Материалы медного обожженного клина и медных обожженных втулок выбираются исходя из условия, чтобы их жесткость соответствовала
расчетной, обеспечивающей надежную сейсмомозащиту и виброизоляцию и герметичность фланцевого соединения трубопровода и шаровых
кранов.
Наличие дополнительных упругих свинцовых шайб ( на чертеже не показаны) повышает герметичность соединения и надежность его работы в
тяжелых условиях вибронагрузок при многокаскадном демпфировании
Жесткость сейсмозащиты и виброизоляторов в виде латунного фрикци -болта определяется исходя из, частоты вынужденных колебаний
вибрирующего и температуро -изолирующих трубчатого элемента с учетом частоты собственных колебаний всего соединения по следующей формуле:
Виброизоляция и сейсмоизоляция обеспечивается при условии, если коэффициент динамичности фрикци -болта будет меньше единицы

39.

Антисейсмическое ФЛАНЦЕВОЕ фрикционно -подвижное СОЕДИНЕНИЕ ТРУБОПРОВОДОВ, содержащее крепежные элементы, подпружиненные и
энергопоглощающие со стороны одного из фланцев, амортизирующие в виде латунного фрикци -болта с пропиленным пазом и забитым медным
обожженным клином с медной обожженной втулкой или гильзой , охватывающие крепежные элементы и установленные в отверстиях фланцев, и
уплотнительный элемент, фрикци-болт , отличающееся тем, что, с целью расширения области использования соединения, фланцы выполнены без
тонировочного ключа регулирующее везде одинаковое натяжение гайки , а с помощью энергопоглощающего фрикци -болта , с забитым с
одинаковым усилием медным обожженным клином расположенными во фланцевом фрикционно-подвижном соединении (ФФПС) ,
уплотнительными элемент выполнен в виде свинцовых тонких шайб , установленного между цилиндрическими выступами фланцев, а крепежные
элементы подпружинены также на участке между фланцами, за счет протяжности соединения по линии нагрузки, а между медным обожженным
энергопоголощающим клином, установлены тонкие свинцовые или обожженные медные шайбы, а в латунную или стальной шпильку
устанавливается тонкая медная обожженная гильза или медная или тросовая втулка .
1. Компенсатор для теплотрасс на фланцевого протяжного с демпфирующим элементами в местах растянутых элементов моста с упругими
демпферами сухого трения, демпфирующего компенсатора на фланцевых соединениех растянутых элементов с упругими демпферами сухого
трения на фрикционно-подвижных болтовых соединениях, с одинаковой жесткостью с демпфирующий элементов при многокаскадном
демпфировании, для гашения температурных , сейсмических колебаний , для поглощение температурной , сейсмической, вибрационной, энергии, в
горизонтальной и вертикальной плоскости по лини нагрузки фланцевого протяжного температурного демпфирующего компенсатора , в местах
растянутых элементов теплотрассы с большими перемещениями и приспособляемостью , при этом упругие демпфирующие компенсаторы ,
выполнено в виде сдвигового элемента , с встроено медной гильзой и обмотки в виде тросовой или медной с пропилом гильзы для
демпфирования фланцевого соединение растянутыми элементами
2. Компенсатор с упругими демпферами сухого трения, на фланцевых соединениях , а протяжного , в местах растянутых элементов трубопровода
теплотрассы в критических узлах теплотрассы, повышенной надежности с улучшенными демпфирующими свойствами, содержащая , сопряженный с
ним подвижный узел с фланцевыми фрикционно-подвижными соединениями и упругой втулкой (гильзой), закрепленные запорными элементами в
виде протяжного соединения контактирующих поверхности детали и накладок выполнены из пружинистого троса -гильзы, между овальных
отверстиях , контактирующими поверхностями, с разных сторон, отличающийся тем, что с целью повышения надежности фланцевого протяжного
температурного демпфирующего компенсатора для теплотрассы в местах растянутых элементов ,
Демпфирующее термически , из-за перепадов теплой нагрузки на теплотрасс, сейсмоизоляции с демпфирующим эффектом в овальных отверстиях,
с сухим трением, соединенные между собой с помощью фрикционно-подвижных соединений с контрольным натяжением фрикци-болтов с тросовой
пружинистой тросовой в оплетке втулкой (гильзы, латунной, медной, бронзовой) , расположенных в длинных овальных отверстиях , с помощью

40.

фрикци-болтами, с медным упругоплатичном, пружинистым многослойным, склеенным клином и тросовой пружинистой втулкой –гильзой ,
расположенной в коротком овальном отверстии верха и низа компенсатора для трубопроводов теплотрассы
3. Способ для теплотрасс с упругими демпферами сухого трения, для обеспечения несущей способности железнодорожного моста на фрикционно
-подвижного соединения с высокопрочными фрикци-болтами с тросовой втулкой (гильзой), включающий, контактирующие поверхности которых
предварительно обработанные, соединенные на высокопрочным фрикци- болтом и гайкой при проектном значении усилия натяжения болта,
устанавливают на элемент фланцевого протяжного температурного демпфирующего компенсатора для в местах растянутых элементов
трубопровода теплотрассы, для поглощения усилия сдвига и постепенно увеличивают нагрузку на накладку, до момента ее сдвига, фиксируют усилие
сдвига и затем сравнивают его с нормативной величиной показателя сравнения, далее, в зависимости от величины отклонения, осуществляют
коррекцию технологии монтажа термической, тепловой, сейсмоизолирующей защиты теплотрассы , отличающийся тем, что в качестве показателя
сравнения используют проектное значение усилия натяжения высокопрочного фрикци- болта с медным обожженным клином, забитым в
пропиленный паз латунной шпильки с втулкой –гильзы –тросовой амортизирующей, из стального троса в оплетке -гильзы , а определение усилия
сдвига на образце-свидетеле осуществляют устройством, содержащим неподвижную и сдвигаемого компенсатора трубопровода, узел сжатия и узел
сдвига, выполненный в виде овального отверстия, с возможностью соединения его с неподвижной частью трубопровода теплотрассы
4. Способ по п.1, отличающийся тем, что при отношении усилия сдвига рычага к проектному усилию натяжения высокопрочного фрикци-болта с
втулкой и тонкого стального троса в оплетке, диапазоне 0,54-0,60 корректировку технологии монтажа от температурных колебаний зимой или
сейсмоизолирующих , антисейсмического, антивибрационных демпферов компенсатора , не производят, при отношении в диапазоне 0,50-0,53, при
монтаже компенсатора не увеличивать натяжение болта, а при отношении менее 0,50, кроме увеличения усилия натяжения, дополнительно проводят
обработку контактирующих поверхностей фланцевого соединение, растянутых фланцевых протяжных температурных демпфирующих
компенсаторов для теплотрасс, в местах растянутых элементов, для компенсаторов на теплотрассах, с использованием обмазки трущихся
поверхностей компенсатора теплотрассы цинконаполненной грунтовокой ЦВЭС , которая используется при строительстве мостов https://vmpanticor.ru/publishing/265/2394/ http://docs.cntd.ru/document/1200093425.

41.

Скачать Серия 2.420-6 Унифицированные монтажные узлы стальных конструкций
производственных зданий и сооружений на болтах, включая высокопрочные болты. Чертежи КМ
Дата актуализации: 01.01.2021
Серия 2.420-6
Унифицированные монтажные узлы стальных конструкций производственных зданий и сооружений на болтах, включая
высокопрочные болты. Чертежи КМ
Типовые проектные решения креплений демпфирующих Z - образных компенсаторов проф Темнова В.Г при прокладке тепловых сетей в изоляции
из пенополиуретана диаметром Ду 50 -600 мм выполненные и предназначенные

42.

43.

44.

45.

46.

47.

48.

Рис На рисунке показан узел гасителе динамических колебаний для применения Типовые проектные решения креплений демпфирующих Z образных компенсаторов проф Темнова В.Г при прокладке тепловых сетей в изоляции из пенополиуретана диаметром Ду 50 -600 мм
выполненные и предназначенные, предназначенные для сейсмоопасных районов с сейсмичностью до 9 баллов, В районах с сейсмичностью более 9
баллов при динамических, импульсных растягивающих нагрузках для поглощения сейсмической энергии необходимо использование фрикционнодемпфирующих компенсаторов, соединенных с кабеленесущими системами с помощью фланцевых фрикционно-подвижных демпфирующих
компенсаторов (с учетом сдвиговой прочности), согласно заявки на изобретение: " Фрикционно -демпфирующий компенсатор для трубопроводов" F
16L 23/00 , регистрационный № 2021134630 (ФИПС), от 25.11.2021, входящий № 073171, "Фланцевое соединение растянутых элементов трубопровода
со скошенными торцами", Минск № а 20210217 от 28 декабря 2021 , "Компенсатор для трубопроводов " Минск , регистрационный № а 20210354 от 27
декабря 2021. , при импульсных растягивающих нагрузках с использованием протяжных фрикционно-подвижных соединений с контролируемым
натяжением из латунных ослабленных болтов, в поперечном сечении резьбовой части с двух сторон с образованными лысками, по всей длине резьбы
латунного болта и их программная реализация расчета, в среде вычислительного комплекса SCAD Office c использованием изобретений проф .дтн
ПГУПС А.М.Уздина № 154506 «Панель противовзрывная», № 165076 «Опора сейсмостойкая» , № 2010136746, 1143895, 1168755, 1174616 При
сбрасывании навесных легко сбрасываемых панелей с применением фрикционно-подвижных болтовых соединений для обеспечения
сейсмостойкости конструкций здания: масса здания уменьшается, частота собственных колебаний увеличивается, а сейсмическая нагрузка падает

49.

50.

51.

52.

53.

54.

55.

Сопоставление с аналогами демпфирующих строительных конструкций, трубопровода, косого компенсатора для трубопроводов на основе
фланцевого соединение растянутых элементов трубопровода со скошенными торцами с упругими демпферами сухого трения, показаны следующие
существенные отличия:
1. Огнестойкий компенсатор гаситель температурных напряжений для строительных конструкций , трубопровода при пожарной нагрузке косого
фланцевое соединение растянутых элементов строительных конструкций, трубопровода со скошенными торцами с упругими демпферами сухого
трения выдерживает демпфирующие нагрузки от перепада температуры при транспортировке по трубопроводу газа, кислорода в больницах

56.

2. Огнестойкий компенсатор гаситель температурных напряжений для строительных конструкций , трубопровода и упругая податливость
демпфирующего фланцевого соединение растянутых элементов строительных конструкций , трубопровода со скошенными торцами регулируется
повышает огнестойкость строительных конструкций , трубопровода
4. В отличие от монтажа строительных конструкций без термических компенсаторов гасителей температурных колебаний , огнестойкость каркаса
здания увеличивается в разы, и свойства которой ухудшаются со временем, из-за отсутствия огнезащиты ,а свойства фланцевое косое демпфирующее
соединение растянутых элементов строительных конструкций. трубопровода со скошенными торцами, остаются неизменными во времени, а при
температурном напряжении, пожарная нагрузка возрастает и огнестойкость строительных конструкций падают .
Огнестойкость достигнут за счет использования термического компенсатора гасителя температурных колебаний строительных конструкций ,
трубопровода , что повышает долговечность демпфирующей упругого фланцевого соединение растянутых элементов строительных конструкций,
трубопровода со скошенными торцами , так как прокладки на фланцах быстро изнашивающаяся и стареющая резина , пружинные сложны при расчет
и монтаже. Пожарная безопасность достигнут также из-за удобства обслуживания узла при эксплуатации строительных конструкций , фланцевого
косого компенсатора соединение растянутых элементов строительных конструкций, трубопровода со скошенными торцами
Литература которая использовалась для составления заявки на изобретение: Огнестойкий компенсатор гаситель температурных напряжений для
строительных конструкций , трубопровода, металлических ферм, трубопроводовс использованием фланцевых соединений, растянутых элементов
трубопровода со скошенными торцами с упругими демпферами сухого трения косого компенсатора
1. Сабуров В.Ф. Закономерности усталостных повреждений и разработка методов расчетной оценки долговечности подкрановых путей
производственных зданий. Автореферат диссертации докт. техн. наук. - ЮУрГУ, Челябинск, 2002. - 40 с.
2. Подкрановые конструкции. Патент 2067075. Россия МКИ В 66 С 7/00, 18.10.93. Бюл.№27, 1997.
3. Нежданов К.К., Туманов В.А., Нежданов А.К., Карев М.А. Патент России. RU №2192383 С1 (Заявка №2000 119289/28 (020257), Подкрановая
транспортная конструкция. Опубликован 10.11.2002.
1. "СПОСОБ ЗАЩИТЫ ЗДАНИЯ И СООРУЖЕНИЯ ПРИ ВЗРЫВЕ С ИСПОЛЬЗОВАНИЕМ СДВИГОУСТОЙЧИВЫХ И ЛЕГКОСБРАСЫВАЕМЫХ СОЕДИНЕНИЙ,
ИСПОЛЬЗУЮЩИЕ СИСТЕМУ ДЕМПФИРОВАНИЯ ФРИКЦИОННОСТИ И СЕЙСМОИЗОЛЯЦИЮ ДЛЯ ПОГЛОЩЕНИЯ ВЗРЫВНОЙ И СЕЙСМИЧЕСКОЙ ЭНЕРГИИ"
№ 2010136746 E 04 C 2/09 Дата опубликования 20.01.2013
2. Патент на полезную модель № 165 076 " Опора сейсмостойкая" 10.10.2016 Б.л 28
3. Патент на полезную модель № 154506 "Панель противовзрывная" 27.08.2015 бюл № 28
4.Изобретение № 1760020 "Сейсмостойкий фундамент" 07.09.1992
5. Изобретение № 1011847 "Башня" 30.08.1982
6. Изобретение № 1038457 "Сферический резервуар" 30.08.1982
7. Изобретение № 1395500 "Способ изготовления ячеистобетонных изделий на пористых заполнителях" 15.05.1988 8. Изобретение № 998300

57.

"Захватное устройство для колонн" 23.02.1983
9. Захватное устройство сэндвич-панелей №
24717800 опуб 05 05.2011
10. Стена и способ ее возведения № 1728414 опул 19.06.1989
11. Заявки на изобретение № 20181229421/20(47400) от 10.08.2018 «Опора сейсмоизолирующая «гармошка». Используется Японии.
12. Заявки на изобретение № 2018105803/20 (008844) от 11.05.2018 «Антисейсмическое фланцевое фрикционно-подвижное соединение для
трубопроводов» F 16L 23/02 ,
13. Заявка на изобретение № 2016119967/20 ( 031416) от
23.05.2016 «Опора сейсмоизолирующая маятниковая» E04 H 9/02.
1.. Журнал «Сельское строительство» № 9/95 стр.30 «Отвести опасность»
2. Журнал «Жилищное строительство» № 4/95 стр.18 «Использование сейсмоизолирующего пояса для существующих зданий».
3. Журнал «Жилищное строительство» № 9/95 стр.13 «Сейсмоизоляция малоэтажных жилых зданий»,
4. Журнал «Монтажные и специальные работы в строительстве» № 4/95 стр. 24-25 «Сейсмоизоляция малоэтажных зданий»,
5. Российская газета от 26.07.95 стр.3 «Секреты сейсмостойкости». .
6. Российская газета от 11.06.95 «Землетрясение: предсказание на завтра»
8. Газета «Грозненский рабочий» № 5 февраль 1996 «Честь мундира или сэкономленные миллиарды»,
9. «Голос Чеченской Республики» 1 февраль 1996 «Башни и баллы» .
10. Республика ЧР № 7 август 1995 «Удар невиданной звезды или через четыре года».
11. Газета «Земля России» за октябрь 1998 стр. 3 «Уникальные технологии возведения фундаментов без заглубления – дом на грунте.
Строительство на пучинистых и просадочных грунтах»
12. Газета «Земля России» № 2 ( 26 ) стр. 2-3 « Предложение ученых общественной организации инженеров «Сейсмофонд» –
Фонда «Защита и
безопасность городов» в области реформы ЖКХ.
13. Журнал «Жизнь и безопасность « № 3/96 стр. 290-294 «Землетрясение по графику» Ждут ли через четыре года планету
«Земля глобальные и
разрушительные потрясения «звездотрясения» .
14. Журнал «Монтажные и специальные работы в строительстве» № 11/95 стр. 25 «Датчик регистрации электромагнитных
волн,
предупреждающий о землетрясении - гарантия сохранения вашей жизни!» и другие зарубежные научные издания и
журналах за 1994- 2004 гг.
изданиях С брошюрой «Как построить сейсмостойкий дом с учетом народного опыта сейсмостойкого строительства горцами Северного
Кавказа
сторожевых башен» с.79 г. Грозный –1996. в ГПБ им Ленина г. Москва и РНБ СПб пл. Островского, д.3 .
Формула изобретения огнестойкий компенсатор- гаситель температурных напряжений" МПК F16L 27/2 для фланцевых демпфирующих крепления, в
том числе и косого и традиционного фланцевого соединение, растянутых элементов строительных конструкций и трубопровода со скошенными
торцами с упругими демпферами сухого трения
1. Огнестойкий компенсатор - гаситель температурных напряжений, как и
фланцевое соединение, растянутых элементов строительных конструкций , трубопровода со скошенными торцами с упругими демпферами сухого
трения, демпфирующего косого компенсатора для строительных конструкций и магистрального трубопровода , содержащая: фланцевое соединение
растянутых элементов трубопровода со скошенными и не скошенными торцами с упругими демпферами сухого трения на фрикционно-подвижных

58.

болтовых соединениях, с одинаковой жесткостью с демпфирующий элементов при многокаскадном демпфировании, для термической защиты и
сейсмоизоляции строительных конструкций трубопровода и поглощение сейсмической энергии, в горизонтальнойи вертикальной плоскости по лини
нагрузки, при этом упругие демпфирующие косые компенсаторы , выполнено в виде фланцевого соединение растянутых элементов трубопровода со
скошенными торцами
2. Огнестойкий компенсатор - гаситель температурных напряжений, фланцевое соединение растянутых элементов трубопровода со скошенными и не
скошенными торцами с упругими демпферами сухого трения , повышенной надежности с улучшенными демпфирующими свойствами, содержащая ,
сопряженный с ним подвижный узел с фланцевыми фрикционно-подвижными соединениями и упругой втулкой (гильзой), закрепленные запорными
элементами в виде протяжного соединения контактирующих поверхности детали и накладок выполнены из пружинистого троса между
контактирующими поверхностями, с разных сторон, отличающийся тем, что с целью повышения надежности к термическим и температурным
колебаниям при пожаре для строительных конструкций, за счет демпфирующее т термической эффективности сухого трения при термических и
динамических колебаниях , за счет соединенныя, между собой с помощью фрикционно-подвижных соединений с контрольным натяжением фрикциболтов с тросовой пружинистой втулкой (гильзы) , расположенных в длинных овальных отверстиях , с помощью фрикци-болтами с медным
упругоплатичном, пружинистым многослойным, склеенным клином или тросовым пружинистым зажимом , расположенной в коротком овальном
отверстии верха и низа косого компенсатора для трубопроводов
3. Способ работы огнестойкого компенсатора - гасителя температурных напряжений, с использованием фланцевого соединение растянутых
элементов трубопровода со скошенными и не скошенными торцами с упругими демпферами сухого трения, для обеспечения несущей способности
при пожаре и высокой температуре строительных конструкций , трубопровода на фрикционно -подвижного соединения с высокопрочными фрикциболтами с тросовой втулкой (гильзой), включающий, контактирующие поверхности которых предварительно обработанные, соединенные на
высокопрочным фрикци- болтом и гайкой при проектном значении усилия натяжения болта, устанавливают на элемент сейсмоизолирующей опоры (
демпфирующей), для определения усилия сдвига и постепенно увеличивают нагрузку на накладку до момента ее сдвига, фиксируют усилие сдвига и
затем сравнивают его с нормативной величиной показателя сравнения, далее, в зависимости от величины отклонения, осуществляют коррекцию
технологии монтажа сейсмоизолирующей опоры, отличающийся тем, что в качестве показателя сравнения используют проектное значение усилия
натяжения высокопрочного фрикци- болта с медным обожженным клином забитым в пропиленный паз латунной шпильки с втулкой -гильзы из
стального тонкого троса , а определение усилия сдвига на образце-свидетеле осуществляют устройством, содержащим неподвижную и сдвигаемую
детали, узел сжатия и узел сдвига, выполненный в виде рычага, установленного на валу с возможностью соединения его с неподвижной частью
устройства и имеющего отверстие под нагрузочный болт, а между выступом рычага и тестовой накладкой помещают самоустанавливающийся сухарик,
выполненный из закаленного материала.
4. Способ по п.1, отличающийся тем, что при отношении усилия сдвига при огнестойком компенсаторе - гасителе температурных напряжений, к
проектному усилию натяжения высокопрочного фрикци-болта с втулкой и тонкого стального троса в оплетке, диапазоне 0,54-0,60 корректировку
технологии монтажа, сам огнестойкий компенсатор, гаситель температурных напряжений , с использованием сдвиговой для перемещения
компенсатора, как перемещающегося по линии нагрузки , как косой компенсатор или не косого демпфирующего огнестойкий компенсатор , при
отношении в диапазоне 0,50-0,53 при монтаже увеличивают натяжение болта, а при отношении менее 0,50, кроме увеличения усилия натяжения,
дополнительно проводят обработку контактирующих поверхностей фланцевого перемещающихся, сдвиговых соединение растянутых элементов

59.

строительных конструкции или трубопровода со скошенными торцами с использованием цинконаполненной грунтовокой ЦВЭС , которая
используется при строительстве мостов https://vmp-anticor.ru/publishing/265/2394/ http://docs.cntd.ru/document/1200093425.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

Заключение выводы после лабораторных испытаний в программном комплексе SCAD температурных напряжений и пожарных нагрузок для и
проектные решения креплений демпфирующих Z - образных компенсаторов проф Темнова В.Г при прокладке тепловых сетей в изоляции из
пенополиуретана диаметром Ду 50 -600 мм выполненные и предназначенные и пригодны согласно изобретениям "Огнестойкий компенсатор гаситель температурных напряжений" и термического гасителя (температурного) колебаний для Типовые проектные решения креплений
демпфирующих Z - образных компенсаторов проф Темнова В.Г при прокладке тепловых сетей в изоляции из пенополиуретана диаметром Ду 50 600 мм выполненные и предназначенные, на основе применения фрикционно -подвижных сдвиговых соединений с косыми компенсаторами, с
длинными овальными отверстиями с болтовыми креплениями с контрольным натяжением болтов , для обеспечения сейсмостойкости строительных
конструкций (кровли) для опор скользящих с трубопроводом для системы противопожарной защиты ОС-25, ОС-32,ОС-40, ОС-50, ОС-65, ОС-80, ОС-100,
изготавливаемой в соответствии с ТУ 3680-001-04698606-04 "Опоры трубопроводов", ОСТ 34-10-616-93 , серия 4.903-10, вып. 4, "Опоры трубопроводов
неподвижные", ГОСТ 14911-82 "Опоры подвижные", с использованием заявки на изобретение : "Фрикционно -демпфирующий компенсатор для
трубопроводов" F 16 L 23/00 ФИПС № 2021134630 от 25.11.2021 ( входящий ФИПС № 073171) , Минск "Фланцевое соединение растянутых элементов
трубопровода со скошенными торцами" № a20210217 от 15 июля 2021г ), заявка на изобретение, Минск; "Компенсатор тов. Сталина для
трубопроводов" № а 20210354 от 23.12.2021 на основе изобретений проф дтн ПГУПС А.М.Уздина № 1143895, 1168755, 1174616, 2010136746, 887748
«Стыковое соединение растянутых элементов" и на основе изобретений проф. дтн ПГУПС А.М.Уздина № 154506 «Панель противовзрывная» №
1143895, 1168755, 1174616, 2010136746, 887748 «Стыковое соединение растянутых элементов", серийный выпуск (предназначены для работы в
сейсмоопасных районах с сейсмичностью более 9 баллов по шкале MSK-64). Предназначенного для сейсмоопасных районов с сейсмичностью до 9
баллов, серийный выпуск (в районах с сейсмичностью 8 баллов и выше для крепления оборудования и трубопроводов необходимо использование
сейсмостойких телескопических опор, а для соединения трубопроводов между собой необходимо применение фланцевых фрикционно- подвижных
соединений, работающих на сдвиг, с использованием фрикци -болта, состоящего из латунной шпильки с пропиленным в ней пазом и с забитым в паз
шпильки медным обожженным клином, согласно рекомендациям ЦНИИП им Мельникова. ОСТ 36-146-88. ОСТ 108 275 63-80.РТМ 24.038.12-72. ОСТ
37.001.050- 73.альбома 1-487-1997.00.00 и изобрет №№ 1143895. 1174616,1168755 SU, 4,094.111 US. TW201400676 Rcstraintanli-windandanli-seismicfiriction-daniping-dcvice . согласно изобретения «Опора сейсмостойкая» Мкл Е04Н 9/02, патент № 165076 RU. Бюл.28. от 10 10.2016, согласно
изобретения "Антисейсмическое фланцевое фрикционно-подвижное соединение для трубопроводов" заявка № 2018105803/2 (008844) от 27.02.2018
г..в местах подключения использованию термического гасителя (температурного) колебаний для строительных конструкций (кровли) на основе
применения фрикционно -подвижных сдвиговых соединений с косыми компенсаторами, с длинными овальными отверстиями с болтовми
креплениями с контрольным натяжением болтов , для обеспечения сейсмостойкости строительных конструкций (кровли) , на основе изобретений
проф. дтн ПГУПС А.М.Уздина № 154506 «Панель противовзрывная» № 1143895, 1168755, 1174616, 2010136746, 887748 «Стыковое соединение
растянутых элементов"

70.

Прилагаем ЭКСПЕРТНОео ЗАКЛЮЧЕНИе об использовании Типовые проектные решения креплений демпфирующих Z - образных
компенсаторов проф Темнова В.Г при прокладке тепловых сетей в изоляции из пенополиуретана диаметром Ду 50 -600 мм выполненные и
предназначенные и ПРИГОДНОСТИ ПРОДУКЦИИ кабеленесущие системы: соглано изобретения в сейсмоопасных районах "Огнестойкий
компенсатор - гаситель температурных напряжений", "Фланцевые соедеиня растянутых элементов трубопровода со скошенными торцами", Минск
№ a20210217 от 23.09.21 ДЛЯ ПРИМЕНЕНИЯ В СТРОИТЕЛЬСТВЕ НА ТЕРРИТОРИИ РФ как демпфирующий гасителя напряжений и колебаний для ,на
основе применения фрикционно -подвижных сдвиговых соединений с косыми компенсаторами, с длинными овальными отверстиями с болтовми
креплениями с контрольным натяжением болтов , для обеспечения сейсмостойкости строительных конструкций (кровли) , на основе изобретений
проф. дтн ПГУПС А.М.Уздина № 154506 «Панель противовзрывная» № 1143895, 1168755, 1174616, 2010136746, 887748 «Стыковое соединение
растянутых элементов" , опор скользящих с трубопроводом для кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM ,
согласно требования ОСТ 34-10-616-93 , серия 4.903-10, вып. 4, "Опоры трубопроводов неподвижные", ГОСТ 14911-82 "Опоры подвижные", с
использованием заявки на изобретение : "Фрикционно -демпфирующий компенсатор для трубопроводов" F 16 L 23/00 ФИПС № 2021134630 от
25.11.2021 ( входящий ФИПС № 073171) , Минск "Фланцевое соединение растянутых элементов трубопровода со скошенными торцами" №
a20210217 от 15 июля 2021г ), заявка на изобретение, Минск; "Компенсатор тов. Сталина для трубопроводов" № а 20210354 от 23.12.2021 на основе
изобретений проф дтн ПГУПС А.М.Уздина № 1143895, 1168755, 1174616, 2010136746, 887748 «Стыковое соединение растянутых элементов"
Регистрационный номер 0020566 Дата 03.01.2022, на основе изобретений проф. дтн ПГУПС А.М.Уздина № 154506 «Панель противовзрывная» №
1143895, 1168755, 1174616, 2010136746, 887748 «Стыковое соединение растянутых элементов"
В соответствии с сертификат № RA RU.21CT.39 от 27.05.2015 Срок действия с 03.01.2022 по 03.01.2025 и специальными техническими условиями
подтверждается соответствие пригодности термического гасителя (температурного) колебаний для строительных конструкций (кровли) на основе
применения фрикционно -подвижных сдвиговых соединений с косыми компенсаторами, с длинными овальными отверстиями с болтовыми
креплениями с контрольным натяжением болтов , для обеспечения сейсмостойкости строительных конструкций (кровли) , опор скользящих с

71.

трубопроводом для системы противопожарной защиты ОС-25, ОС-32, ОС-50, ОС-40, ОС-65, ОС-80, ОС-100, изготавливаемой в соответствии с ТУ 3680001-04698606-04 "Опоры трубопроводов", ОСТ 34-10-616-93 , серия 4.903-10, вып. 4, "Опоры трубопроводов неподвижные", ГОСТ 14911-82 "Опоры
подвижные", с использованием заявки на изобретение : "Фрикционно -демпфирующий компенсатор для трубопроводов" F 16 L 23/00 ФИПС №
2021134630 от 25.11.2021 ( входящий ФИПС № 073171) , Минск "Фланцевое соединение растянутых элементов трубопровода со скошенными
торцами" № a20210217 от 15 июля 2021г ), заявка на изобретение, Минск; "Компенсатор тов. Сталина для трубопроводов" № а 20210354 от
23.12.2021 на основе изобретений проф дтн ПГУПС А.М.Уздина № 1143895, 1168755, 1174616, 2010136746, 887748 «Стыковое соединение растянутых
элементов" и на основе изобретений проф. дтн ПГУПС А.М.Уздина № 154506 «Панель противовзрывная» № 1143895, 1168755, 1174616, 2010136746,
887748 «Стыковое соединение растянутых элементов", серийный выпуск (предназначены для работы в сейсмоопасных районах с сейсмичностью до 9
баллов по шкале MSK-64),. предназначенное для сейсмоопасньгх районов с сейсмичностью до 9 баллов, серийный выпуск (в районах с сейсмичностью
8 баллов и выше для крепления оборудования и трубопроводов необходимо использование сейсмостойких телескопических опор, а для соединения
трубопроводов между собой необходимо применение фланцевых фрикционно- подвижных соединений, работающих на сдвиг, с использованием
фрикци -болта, состоящего из латунной шпильки с пропиленным в ней пазом и с забитым в паз шпильки медным обожженным клином, согласно
рекомендациям ЦНИИП им Мельникова. ОСТ 36-146-88. ОСТ 108 275 63-80.РТМ 24.038.12-72. ОСТ 37.001.050- 73.альбома 1-487-1997.00.00 и изобрет
№№ 1143895. 1174616,1168755 SU, 4,094.111 US. TW201400676 Rcstraintanli-windandanli-seismic-firiction-daniping-dcvice . согласно изобретения «Опора
сейсмостойкая» Мкл Е04Н 9/02, патент № 165076 RU. Бюл.28. от 10 10.2016, согласно изобретения "Антисейсмическое фланцевое фрикционноподвижное соединение для трубопроводов" заявка № 2018105803/2 (008844) от 27.02.2018 г..в местах подключения использованию термического
гасителя (температурного) колебаний для строительных конструкций (кровли) на основе применения фрикционно -подвижных сдвиговых
соединений с косыми компенсаторами, с длинными овальными отверстиями с болтовми креплениями с контрольным натяжением болтов , для
обеспечения сейсмостойкости строительных конструкций (кровли) , на основе изобретений проф. дтн ПГУПС А.М.Уздина № 154506 «Панель
противовзрывная» № 1143895, 1168755, 1174616, 2010136746, 887748 «Стыковое соединение растянутых элементов"
НА ОСНОВАНИИ : Протокола № 565 от 16.01.2024 (ИЛ ФГБОУ СПб ГАСУ, № RA RU 21СТ39 от 27 05.2015, ФГБОУ ВПОПГУПС №SP0101 406 045 от
27.05.2019, действ. 27 05.2019, ОО «Сейсмофонд», ИНН: 2014000780 и протокола № 1516-2/3 от 20.02.2019 (ИЦ "ПКТИ-СтройТЕСТ", адрес 197341, СПб,
Афонская ул., д. 2, свид. об аккред № ИЛ/ЛРИ-00804 от 25.03.2016 ОАО «НТЦ «Промышленная безопасность», ). Лицензия ФГБОУ ВО ПГУПС № 2280 от
21.07.2016 (см протокол испытания фланцевых фрикционно- подвижных соединений и варианты технических решений узлов крепления по
использованию термического гасителя (температурного) колебаний для строительных конструкций (кровли) на основе применения фрикционно подвижных сдвиговых соединений с косыми компенсаторами, с длинными овальными отверстиями с болтовми креплениями с контрольным
натяжением болтов , для обеспечения сейсмостойкости строительных конструкций (кровли) , на основе изобретений проф. дтн ПГУПС А.М.Уздина №
154506 «Панель противовзрывная» № 1143895, 1168755, 1174616, 2010136746, 887748 «Стыковое соединение растянутых элементов"
ПКТИ, 197341, Афонская 2 Протокол испытаний на осевое статическое усилие сдвига фрикционно-подвижного соединения по линии нагрузки № 15162/3 от 20.02.2021 т/ф (812) 694-78-10, (921)962-67-78
СВЕДЕНИЯ О ПРОДУКЦИИ И СОСТАВ ЭКСПЕРТНЫХ МАТЕРИАЛОВ : Типовые проектные решения креплений демпфирующих Z - образных
компенсаторов проф Темнова В.Г при прокладке тепловых сетей в изоляции из пенополиуретана диаметром Ду 50 -600 мм выполненные и
предназначенные с использованием гасителя (температурного) колебаний для строительных конструкций (кровли) на основе применения

72.

фрикционно -подвижных сдвиговых соединений с косыми компенсаторами, с длинными овальными отверстиями с болтовми креплениями с
контрольным натяжением болтов , для обеспечения сейсмостойкости строительных конструкций (кровли) , на основе изобретений проф. дтн ПГУПС
А.М.Уздина № 154506 «Панель противовзрывная» № 1143895, 1168755, 1174616, 2010136746, 887748 «Стыковое соединение растянутых элементов"
предназначенные для сейсмоопасных районов с сейсмичностью до 9 баллов, серийный выпуск
ОРГАНИЗАЦИЯ ИЗГОТОВИТЕЛЬ: Термического гасителя (температурного) колебаний для строительных конструкций (кровли) на основе применения
фрикционно -подвижных сдвиговых соединений с косыми компенсаторами, с длинными овальными отверстиями с болтовми креплениями с
контрольным натяжением болтов , для обеспечения сейсмостойкости строительных конструкций (кровли) , на основе изобретений проф. дтн ПГУПС
А.М.Уздина № 154506 «Панель противовзрывная» № 1143895, 1168755, 1174616, 2010136746, 887748 «Стыковое соединение растянутых элементов"
наоснове типовых проектных решений креплений демпфирующих Z - образных компенсаторов проф Темнова В.Г при прокладке тепловых сетей в
изоляции из пенополиуретана диаметром Ду 50 -600 мм выполненные СПбГАСУ Сейсмофон
ПЕРЧЕНЬ ДОКУМЕНТОВ, ПРЕДСТАВЛЕННЫХ НА ЭКСПЕРТИЗУ : СП 56.13330.2011 Производственные здания. Актуализированная редакция СНиП 31-032001,ГОСТ 30546.1-98, ГОСТ 30546.2-98, ГОСТ 30546.3-98, ГОСТ 17516.1-90, п.5, СП 14.13330-2011 п .4.6. «Обеспечение демпфированности фрикционноподвижного соединения (ФФПС) согласно альбома серии 4.402-9 «Анкерные болты», альбом, вып.5, «Ленгипронефтехим», ГОСТ 17516.1-90
(сейсмические воздействия 9 баллов по шкале MSK-64) п.5, с применением ФПС, СП 16.13330.2011. п.14.3, ТКП 45-5.04-274-2012 (02250) , п.10.7, 10.8.
Протокола № 505 от 17.09.2018, ОО «Сейсмофонд», ИНН 2014000780 СПб ГАСУ № RA.RU.21СТ39 от 27.05.2015, ФГБОУ ВПО ПГУПС № SP01.01.406.045 от
27.05.2014, действ. 27.05.2019, свидетельство НП «СРО «ЦЕНТРСТРОЙПРОЕКТ» № 0223.01-2010-2010000211-П-29 от 27.03.2012 и свид. СРО
«ИНЖГЕОТЕХ» № 281-2010-2014000780-П-29 от 22.04.2010 в ИЦ "ПКТИ-СтройТЕСТ" и протокола испытания на осевое статическое усилие сдвига
дугообразного зажима с анкерной шпиль-кой № 1516-2 от 25.11.2017 и протокола испытаний на осевое статическое усилие сдвига фрикционноподвижного соединения по линии нагрузки № 1516-2/3 от 20.02.2017 г. : yadi.sk/i/-ODGqnZv3EU3MA yadi.sk/i/_aIPeyJZ3EU3Zt
При испытаниях кабеленесущих систем: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM определялядасбь несущая способность
фланцевого фрикционно-подвижного соединения (ФФПС) на сдвиг поверх-ностей трения при динамической нагрузке (взрыве), стянутых двумя
болтами с предварительным натяжением классов прочнос-ти 8.8 и 10.9, которая определялась по формуле Fs rd= KsnM/ ym3x Fpc , где n - количество
поверхностей трения соединяемых элементов; m—коэффициент трения, принимаемый по результа-там испытаний поверхностей, приведенных в
ссылочных стан-дартах группы для болтов классов прочности 8.8 и 10.9, соот-ветствующих ссылочным стандартам группы 4 с контролируемым
натяжением, в соответствии со ссылочными стандартами группы 7, усилие предварительного натяжения Fp,C следует принимать равным Fpc=0.7 fudAs.
Демпфирующие латунные шпильки (болты) с забитым медным обожженным клином с энергопог-лощающей гильзой (бронзовой втулкой или
свинцовым вкла-дышем) устанавливаются в длинные (короткие) овальные отверстия смотри: СП 16.13330.2011 (СНип II-23-81*) и ТПК 45-5.04-274-2012,
Минск, 2013.

73.

С техническими решениями фрикционно-подвижных соединений (ФПС), выполненных в виде демпфирующего соединения с амортизирующими
элементами (медный обожженный клин, забитый в пропиленный паз болта-шпильки или свинцовый вкладыш), обеспечивающих многокаскадное
демпфирование при импульсной растягивающей взрывной нагрузке можно ознакомиться: dwg.ru, www1.fips.ru. dissercat.com http://doc2all.ru, см.
изобретения №№ 1143895, 1174616,1168755 SU, № 4,094,111 US Structural steel building frame having resilient connectors, TW201400676 Restraint antiwind and anti-seismic friction damping device
При лабораторных испытаниях фланцево-фрикционно-подвижных соединений для крепления оборудования с трубопроводами (ГОСТ Р 55989-2014)
применялись высокопрочные болты по ГОСТ 22353-77, гайки по ГОСТ 22354-77, шайбы по ГОСТ 22355-77 согласно СП 14.13330. 2014, п.4.7
(демпфирование), п.6.1.6, п.5.2 (модели), СП 16.13330. 2011 (СНиП II-23-81*), п.14,3 -15.2.4, ТКТ 45-5.04-274-2012( 02250), п.10.3.2 -10.10.3, СТП 006-97,
альбом серия 2.440-2, ОСТ 37.001.050-73, НП-031-01, ГОСТ 15.000-82, ГОСТ 15.001-80, согласно изобретениям №№ 1143895, 1174616, 1168755 SU,
2371627, 2247278, 2357146, 2403488, 2076985,2010136746, 2413820 RU № 4,094,111 US, TW 201400676 Restraintanti-windandanti-seismic friction damping
device, № 165076 RU «Опора сейсмостойкая», Мкл E04 H9/02, Бюл.28, от 10.10.2016, SU 887748
Фланцевые фрикционные соединения на болтах с контролируемым натяжением для использованию термического гасителя (температурного)
колебаний для строительных конструкций (кровли) на основе применения фрикционно -подвижных сдвиговых соединений с косыми
компенсаторами, с длинными овальными отверстиями с болтовми креплениями с контрольным натяжением болтов , для обеспечения
сейсмостойкости строительных конструкций (кровли) , на основе изобретений проф. дтн ПГУПС А.М.Уздина № 154506 «Панель противовзрывная» №
1143895, 1168755, 1174616, 2010136746, 887748 «Стыковое соединение растянутых элементов"
Фрикционные соединения, в которых усилия передаются через трение, возникающее по соприкасающимся поверхностям соединяемых элементов
вследствие натяжения высокопрочных болтов, следует применять: в конструкциях из стали с пределом текучести свыше 375 Н/мм2 и непосредственно
воспринимающих подвижные, вибрационные и другие динами-ческие, взрывные нагрузки; в многоболтовых соединениях, к которым предъявляются
повышенные требования в отношении ограничения деформативности. Расчетное усилие, которое может быть воспринято каждой плоскостью трения
элементов, стянутых одним высокопрочным болтом, следует определять по формуле Q bh р=Rbh x Abn x M/ Yh, где Rbh – расчетное сопротивление
растяжению высокопрочного болта, определяемое согласно требованиям; Аbп – площадь сечения болта по резьбе,
μ – коэффициент трения, принимаемый по таблице 42;
γh – коэффициент.
При действии на фланцевое фрикционное соединении силы N, вызывающей сдвиг соединяемых элементов и проходящей через центр тяжести
соединения, распределение этой силы между болтами следует принимать равномерным.
Более подробно смотри: СП 16.13330.2011 (СНип II-23-81*) Стальные конструкции п.14.3 Фрикционные соединения на болтах с контролируемым
натяжением и ТПК 45-5.04-274-2012 п. 10.3.2, Соединения, работающие на растяжение, Минск, 2013г.

74.

При испытаниях узлов крепления оборудования с трубопроводами (ГОСТ Р 55989-2014 ), закрепленных на фундаменте с помощью фланцевых
фрикционно-подвиж-ных соединений (ФФПС), выполненных в виде болтовых соединений с контролируемым натяжением, расположен-ных в овальных
отверстиях (предназначены для работы в сейсмоопасных районах с сейсмичностью до 9 баллов по шкале MSK-64, согласно изобретениям №№
1143895, 1168755, 1174616, № 165076 RU) использовалось изобре-тение: «СПОСОБ ЗАЩИТЫ ЗДАНИЯ И СООРУЖЕНИЯ ПРИ ВЗРЫВЕ С
ИСПОЛЬЗОВАНИЕМ СДВИГОУСТОЙ-ЧИВЫХ И ЛЕГКОСБРАСЫВАЕМЫХ СОЕДИНЕНИЙ, ИСПОЛЬЗУЮЩИЕ СИСТЕМУ ДЕМПФИРОВАНИЯ ФРИКЦИОННОСТИ И
СЕЙСМОИЗО-ЛЯЦИЮ ДЛЯ ПОГЛОЩЕНИЯ ВЗРЫВНОЙ И СЕЙСМИЧЕСКОЙ ЭНЕР-ГИИ», патент № 2010136746, МПК E04C2/00, 27.10.2013, ГОСТ Р 50073-92,
ГОСТ 25756-83, ГОСТ Р 50073-92, ГОСТ 25756-83, ГОСТ 27036-86, ГОСТ Р 51571-200, ТУ 5.551-19729-88 ГОСТ Р 57364, ГОСТ Р 57354
Испытание фланцевых фрикционно –подвижных соединений (ФФПС) проводились по ГОСТ Р 50073-92, ГОСТ 25756-83, ГОСТ Р 50073-92, ГОСТ 2575683, ГОСТ 27036-86, ГОСТ Р 51571-200, ТУ 5.551-19729-88 ГОСТ Р 57364, ГОСТ Р 57354, с целью определения нагрузки, которая передавалась при
испытаниях через трение или смятие медного обожженного стопорного клина с энергопоглоще-нием пиковых ускорений (ЭПУ) , (возникает по
соприкасающимся поверхностям соединяемых элементов, вследствие натяжения высокопрочных болтов) возникающих в конструкциях из стали с
пределом текучести свыше 375 Н/мм2
СП 56.13330.2011 Производственные здания. Актуализированная редакция СНиП 31-03-2001,СП 14.13330.2014, п.9.2, НП-031-01, НП-071-06 класса
безопасности 3Н по ОПБ 88/97 при сейсмических воздействиях 9 баллов по шкале MSK-64 включительно, при уровне установки над нулевой отметкой
70 м по ГОСТ 30546.1-98, ГОСТ 30546.2-98, ГОСТ 30546.3-98, ГОСТ 30631-99, ГОСТ Р 51371-99, ГОСТ 17516.1-90, МЭК 60068-3-3 (1991), МЭК 60980,
ANSI/IEEEStd. 344-1987, ПМ 04-2014, РД 26.07.23-99 и РД 25818-87 (синусоидальная вибрация – 5,0-100 Гц с ускорением до 2g).
С целью повышения надежности узлов крепления использованию термического гасителя (температурного) колебаний для строительных
конструкций теплотрассы на основе применения фрикционно -подвижных сдвиговых соединений с косыми компенсаторами, с длинными
овальными отверстиями с болтовыми креплениями с контрольным натяжением болтов , для обеспечения сейсмостойкости строительных
конструкций (трубопроводов ) , на основе изобретений проф. дтн ПГУПС А.М.Уздина № 154506 «Панель противовзрывная» № 1143895, 1168755,
1174616, 2010136746, 887748 «Стыковое соединение растянутых элементов"
установленны-ми на сейсмостойких опорах с ФФПС (для районов с сейсмичностью 8 баллов и выше) для обеспечения мно-гокаскадного
демпфирования при импульсных растягивающих нагрузках при землетрясении и сильного перепада температур .
Это позволяет эксплуатировать использованию термического гасителя (температурного) колебаний для строительных конструкций (кровли) на
основе применения фрикционно -подвижных сдвиговых соединений с косыми компенсаторами, с длинными овальными отверстиями с болтовми
креплениями с контрольным натяжением болтов , для обеспечения сейсмостойкости строительных конструкций (кровли) , на основе изобретений
проф. дтн ПГУПС А.М.Уздина № 154506 «Панель противовзрывная» № 1143895, 1168755, 1174616, 2010136746, 887748 «Стыковое соединение

75.

растянутых элементов", при отрицательных температурах, обеспечивая надежность работы даже при обледенении и исключить аварию и разрушение
трубопровода (теплотрассы ) .
Список альбомов типовых чертежей, переданных заказчиком, согласно которому, проводились испытания с помощью компьютерного
моделирования использованию термического гасителя (температурного) колебаний для строительных конструкций (кровли) на основе применения
фрикционно -подвижных сдвиговых соединений с косыми компенсаторами, с длинными овальными отверстиями с болтовми креплениями с
контрольным натяжением болтов , для обеспечения сейсмостойкости строительных конструкций (кровли) , на основе изобретений проф. дтн ПГУПС
А.М.Уздина № 154506 «Панель противовзрывная» № 1143895, 1168755, 1174616, 2010136746, 887748 «Стыковое соединение растянутых элементов"
методом оптимизации и идентификации динамических и статических задач теории устойчивости с помощью физического и математического
моделирования, взаимодействия оборудования с геоло-гической средой , в том числе нелинейным, численным и аналитическим методом в ПК SCAD:
0.00-2.96с_0-7 = Повышение сейсмостойкости - Многоэтажные промздания - Mn.djvu, 0.00-2.96с_0-8 = Повышение сейсмостойкости - Фундаменты под
колонны промзданий - Mn.djvu, 0.00-2.96с_0-5 = Повышение сейсмостойкости - Каркасные общественные здания - Mn.djvu, 0.00-2.96с_0-6 = Повышение
сейсмостойкости - 1эт промздания - МП #.djvu, 4.402-9 в.5 Анкерные болты. Рабочие чepTexn.djvu, 0.00-2.96с_0-3 = Повышение сейсмостойкости Мелкоблочные здания - Mn.djvu, 0.00-2.96с_0-4 = Повышение сейсмостойкости - Крупнопанельные жилые здания - Mn.djvu, 0.00-2.96с_0-0 =
Повышение сейсмостойкости - Общие Mn.djvu, 0.00-2.96с_0-1 = Повышение сейсмостойкости - Каменные и кирпичные здания - Mn.djvu, 0.00-2.96с_0-2
= Повышение сейсмостойкости - Крупноблочные здания - Mn.djvu, 1.466-ЗС = Простран. решетчатые конструкции из труб типа Кисловодск Сейсмичность - KM #.djvu, 2.260-3с_1 = Узлы крыш общ. зданий - Бесчердачные крыши кирп. зданий – Сейсмичность., 1.151.1-8с_2 = Лестничные марши
- 3.0 м. Плоские. Без фризовых ступеней - Сейсмичность #!.djvu, 2.160-6с_1 = Узлы покрытий жилых зданий - Чердачные крыши - Сейсмичность., 2.1306с_1 = Детали стен жилых зданий - Узлы стен сплошной кладки - Сейсмичность @.djvu, 3.904.9-27 Виброизолирующие основания под насосы ВКС и
НЦС. Вып., 3.901.1-17 Виброизолирующие основания для консольных насосов различных типов. Выпуск 1., 3.904.9-27, Виброизолирующие основания
под насосы ВКС и НЦС. Выпуск! .3.901.1-17 Виброизолирующие основания для консольных насосов различных типов. Выпуск 1.,3.904.9-27
Виброизолирующие основания под насосы ВКС и НЦС. Вып.к2 Плиты. _ 3.904.9-17, 3.001-1 вып.1 = Виброизолирующие
СП 56.13330.2011 Производственные здания. Актуализированная редакция СНиП 31-03-2001,СП 14.13330.2014, п.9.2, НП-031-01, НП-071-06 класса
безопасности 3Н по ОПБ 88/97 при сейсмических воздействиях 9 баллов по шкале MSK-64 включи-тельно, при уровне установки над нулевой отметкой
70 м по ГОСТ 30546.1-98, ГОСТ 30546.2-98, ГОСТ 30546.3-98, ГОСТ 30631-99, ГОСТ Р 51371-99, ГОСТ 17516.1-90, МЭК 60068-3-3 (1991), МЭК 60980,
ANSI/IEEEStd. 344-1987, ПМ 04-2014, РД 26.07.23-99 и РД 25818-87 (синусоидальная виб-рация – 5,0-100 Гц с ускорением до 2g).
ЭЛЕМЕНТЫ ТЕОРИИ ТРЕНИЯ,
РАСЧЕТ И ТЕХНОЛОГИЯ ПРИМЕНЕНИЯ
ФРИКЦИОННО-ПОДВИЖНЫХ СОЕДИНЕНИЙ

76.

УЗДИН А.М., ЕЛИСЕЕВ О.Н., , НИКИТИН А.А., ПАВЛОВ В.Е., СИМКИН А.Ю., КУЗНЕЦОВА И.О.
ЭЛЕМЕНТЫ ТЕОРИИ ТРЕНИЯ,
РАСЧЕТ И ТЕХНОЛОГИЯ ПРИМЕНЕНИЯ
ФРИКЦИОННО-ПОДВИЖНЫХ СОЕДИНЕНИЙ

77.

СОДЕРЖАНИЕ
1
Введение
3
2
Элементы теории трения и износа
6
3
Методика расчета одноболтовых ФПС
18
3.1
Исходные посылки для разработки методики расчета ФПС
18
3.2
Общее уравнение для определения несущей способности ФПС.
20
3.3
Решение общего уравнения для стыковых ФПС
21
3.4
Решение общего уравнения для нахлесточных ФПС
22
4
Анализ экспериментальных исследований работы ФПС
26
5
Оценка параметров диаграммы деформирования многоболтовых
фрикционно-подвижных соединений (ФПС)
31
5.1
Общие положения методики расчета многоболтовых ФПС
31
5.2
Построение уравнений деформирования стыковых многоболтовых ФПС
32
5.3
Построение уравнений деформирования нахлесточных многоболтовых ФПС
38
6
Рекомендации по технологии изготовления ФПС и сооружений с такими
соединениями
6.1
Материалы болтов, гаек, шайб и покрытий контактных поверхностей стальных
деталей ФПС и опорных поверхностей шайб
6.2
Конструктивные требования к соединениям
6.3
Подготовка контактных поверхностей элементов и методы контроля
42
42
43
45
6.4
Приготовление и нанесение протекторной грунтовки ВЖС 83-02-87.
Требования к загрунтованной поверхности. Методы контроля
46

78.

6.4.1
6.4.2
Основные требования по технике безопасности при работе с грунтовкой ВЖС
83-02-87
Транспортировка и хранение элементов и деталей, законсервированных
грунтовкой ВЖС 83-02-87
47
49
6.5
Подготовка и нанесение антифрикционного покрытия на опорные поверхности
шайб
49
6.6
Сборка ФПС
49
7
Список литературы
51

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

93.

94.

95.

96.

97.

98.

99.

100.

101.

102.

103.

104.

105.

106.

107.

108.

109.

110.

111.

112.

113.

114.

115.

116.

117.

118.

119.

120.

121.

122.

123.

124.

125.

126.

127.

128.

129.

130.

131.

132.

133.

134.

135.

136.

137.

138.

139.

140.

141.

142.

143.

144.

145.

146.

147.

148.

149.

150.

151.

152.

153.

154.

155.

156.

157.

158.

159.

160.

161.

162.

163.

164.

165.

166.

167.

168.

169.

170.

171.

172.

173.

174.

175.

176.

177.

Более подробно об использовании фрикционно -подвижных болтовых соединений для теплотрасс для обеспечения сейсмостойкости оставшихся
четырех этажей, на фрикционно-подвижных соединениях сери ФПС-2015- Сейсмофонд, с использованием изобретения Андреева Борис
Александровича № 165076 «Опора сейсмостойкая» и патента № 2010136746 «Способ защиты зданий и сооружений с использованием
сдвигоустойчивых и легко сбрасываемых соединений, использующие систему демпфирования фрикционности и сейсмоизоляцию для поглощения
сейсмической энергии» и патент № 154506 «Панель противовзрывная» для г Нефтеорска оставшихся двух пятиэтажек у памятника Ленина

178.

Электронный текст документа
подготовлен ЗАО "Кодекс" и сверен по:

179.

/ Министерство монтажных и специальных
строительных работ СССР. М.: ЦБНТИ Минмонтажспецстроя СССР, 1989

180.

181.

182.

183.

184.

185.

186.

187.

188.

189.

190.

191.

192.

193.

194.

195.

196.

197.

198.

199.

200.

201.

202.

203.

204.

205.

206.

207.

Антисейсмическое фланцевое фрикционно -подвижное соединение трубопроводов для использования для кабеленесущих систем:
KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM F 16 L 23/02 F 16 L 51/00
Реферат
Техническое решение относится к области строительства магистральных трубопроводов и предназначено для защиты шаровых кранов и
трубопровода от возможных вибрационных , сейсмических и взрывных воздействий Конструкция фрикци -болт выполненный из латунной шпильки
с забитым медным обожженным клином позволяет обеспечить надежный и быстрый погашение сейсмической нагрузки при землетрясении,
вибрационных воздействий от железнодорожного и автомобильного транспорта и взрыве .Конструкция фрикци -болт, состоит их латунной
шпильки , с забитым в пропиленный паз медного клина, которая жестко крепится на фланцевом фрикционно- подвижном соединении (ФФПС) .
Кроме того между энергопоглощающим клином вставляются свинцовые шайбы с двух сторон, а латунная шпилька вставляется ФФПС с медным
обожженным клином или втулкой ( на чертеже не показана) 1-9 ил.
Описание изобретения Антисейсмическое фланцевое фрикционно -подвижное соединение трубопроводов
Аналоги : Патент Великобритании № 1260143, кл. F 2 G, фиг. 2, 1972, Бергер И. А. и др. Расчет на прочность деталей машин. М., «Машиностроение»,
1966, с. 491. (54) (57) 1.
Антисейсмическое фланцевое фрикционно -подвижное соединение трубопроводов
Предлагаемое техническое решение предназначено для защиты шаровых кранов и трубопроводов от сейсмических воздействий за счет
использования фрикционное- податливых соединений. Известны фрикционные соединения для защиты объектов от динамических воздействий.
Известно, например, болтовое фланцевое соединение , патент RU №1425406, F16 L 23/02.
Соединение содержит металлические тарелки и прокладки. С увеличением нагрузки происходит взаимное демпфирование колец -тарелок.
Взаимное смещение происходит до упора фланцевого фрикционно подвижного соединения (ФФПС), при импульсных растягивающих нагрузках при
многокаскадном демпфировании, которые работают упруго.
Недостатками известного решения являются: ограничение демпфирования по направлению воздействия только по горизонтали и вдоль овальных
отверстий; а также неопределенности при расчетах из-за разброса по трению. Известно также устройство для фрикционного демпфирования и
антисейсмических воздействий, патент SU 1145204, F 16 L 23/02 Антивибрационное фланцевое соединение трубопроводов Устройство содержит
базовое основание, нескольких сегментов -пружин и несколько внешних пластин. В сегментах выполнены продольные пазы. Сжатие пружин создает
демпфирование

208.

Таким образом получаем фрикционно -подвижное соединение на пружинах, которые выдерживает сейсмические нагрузки но, при возникновении
динамических, импульсных растягивающих нагрузок, взрывных, сейсмических нагрузок, превышающих расчетные силы трения в сопряжениях,
смещается от своего начального положения, при этом сохраняет трубопровод без разрушения.
Недостатками указанной конструкции являются: сложность конструкции и дороговизна, из-за наличия большого количества сопрягаемых трущихся
поверхностей и надежность болтовых креплений с пружинами
Целью предлагаемого решения является упрощение конструкции, уменьшение количества сопрягаемых трущихся поверхностей до одного или
нескольких сопряжений в виде фрикци -болта , а также повышение точности расчета при использования фрикци- болтовых демпфирующих
податливых креплений для шаровых кранов и трубопровода.
Сущность предлагаемого решения заключается в том, что с помощью подвижного фрикци –болта с пропиленным пазом, в который забит медный
обожженный клин, с бронзовой втулкой (гильзой) и свинцовой шайбой , установленный с возможностью перемещения вдоль оси и с ограничением
перемещения за счет деформации трубопровода под действием запорного элемента в виде стопорного фрикци-болта с пропиленным пазом в
стальной шпильке и забитым в паз медным обожженным клином.
Фрикционно- подвижные соединения состоят из демпферов сухого трения с использованием латунной втулки или свинцовых шайб) поглотителями
сейсмической и взрывной энергии за счет сухого трения, которые обеспечивают смещение опорных частей фрикционных соединений на расчетную
величину при превышении горизонтальных сейсмических нагрузок от сейсмических воздействий или величин, определяемых расчетом на основные
сочетания расчетных нагрузок, сама опора при этом начет раскачиваться за счет выхода обожженных медных клиньев, которые предварительно
забиты в пропиленный паз стальной шпильки.
Фрикци-болт, является энергопоглотителем пиковых ускорений (ЭПУ), с помощью которого, поглощается взрывная, ветровая, сейсмическая,
вибрационная энергия. Фрикци-болт снижает на 2-3 балла импульсные растягивающие нагрузки при землетрясении и при взрывной, ударной
воздушной волне. Фрикци –болт повышает надежность работы оборудования, сохраняет каркас здания, моста, ЛЭП, магистрального трубопровода, за
счет уменьшения пиковых ускорений, за счет использования протяжных фрикционных соединений, работающих на растяжение на фрикци- болтах,
установленных в длинные овальные отверстия с контролируемым натяжением в протяжных соединениях согласно ТКП 45-5.04-274-2012 (02250) п.
10.3.2 стр. 74 , Минск, 2013, СП 16.13330.2011,СНиП II-23-81* п. 14.3- 15.2.
Изобретение относится к машиностроению, а именно к соединениям трубчатых элементов
Цель изобретения расширение области использования соединения в сейсмоопасных районах .
На чертеже показано предлагаемое соединение, общий вид.
Соединение состоит из фланцев и латунного фрикци -болтов , гаек , свинцовой шайб, медных втулок -гильз
Фланцы выполнены с помощью латунной шпильки с пропиленным пазом куж забивается медный обожженный клин и снабжен
энергопоглощением .
Сущность предлагаемой конструкции поясняется чертежами, где на фиг.1 изображен фрикционных соединениях с контрольным натяжением
стопорный (тормозной) фрикци –болт с забитым в пропиленный паз стальной шпильки обожженным медным стопорным клином;

209.

на фиг.2 изображена латунная шпилька фрикци-болта с пропиленным пазом
на фиг.3 изображен фрагмент о медного обожженного клина забитого в латунную круглую или квадратную латунную шпильку
на фиг. 4 изображен фрагмент установки медного обожженного клина в подвижный компенсатор ( на чертеже компенсатор на показан ) Цифрой 5
обозначен пропитанный антикоррозийными составами трос в пять обмотанный витков вокруг трубы . что бы исключить вытекание нефти или газа из
магистрального трубопровода при многокаскадном демпфировании)
фиг. 6 изображен сам узел фрикционно -подвижного соединения на фрикци -болту на фрикционно-подвижных протяжных соединениях
фиг.7 изображен шаровой кран соединенный на фрикционно -подвижных соединениях , фрикци-болту с магистральным трубопроводом на
фланцевых соединениях
фиг. 8 изображен Сальникова компенсатор на соединениях с фрикци -болтом фрикционно-подвижных соединений
фиг 9 изображен компенсатор Сальникова на антисейсмических фрикционо-подвижных соединениях с фрикци- болтом
Антисейсмический виброизоляторы выполнены в виде латунного фрикци -болта с пропиленным пазом , куда забивается стопорный обожженный
медный, установленных на стержнях фрикци- болтов Медный обожженный клин может быть также установлен с двух сторон крана шарового
Болты снабжены амортизирующими шайбами из свинца: расположенными в отверстиях фланцев.
Однако устройство в равной степени работоспособно, если антисейсмическим или виброизолирующим является медный обожженный клин .
Гашение многокаскадного демпфирования или вибраций, действующих в продольном направлении, осуществляется смянанием с
энергопоглощением забитого медного обожженного клина
Виброизоляция в поперечном направлении обеспечивается свинцовыми шайбами , расположенными между цилиндрическими выступами . При этом
промежуток между выступами, должен быть больше амплитуды колебаний вибрирующего трубчатого элемента, Для обеспечения более надежной
виброизоляции и сейсмозащиты шарового кран с трубопроводом в поперечном направлении, можно установить медный втулки или гильзы ( на
чертеже не показаны), которые служат амортизирующие дополнительными упругими элементы
Упругими элементами , одновременно повышают герметичность соединения, может служить стальной трос ( на чертеже не показан) .
Устройство работает следующим образом.
В пропиленный паз латунно шпильки, плотно забивается медный обожженный клин , который является амортизирующим элементом при
многокаскадном демпфировании .
Латунная шпилька с пропиленным пазом , располагается во фланцевом соединении , выполненные из латунной шпильки с забиты с одинаковым
усилием медный обожженный клин , например латунная шпилька , по названием фрикци-болт . Одновременно с уплотнением соединения оно
выполняет роль упругого элемента, воспринимающего вибрационные и сейсмические нагрузки. Между выступами устанавливаются также

210.

дополнительные упругие свинцовые шайбы , повышающие надежность виброизоляции и герметичность соединения в условиях повышенных
вибронагрузок и сейсмонагрузки и давлений рабочей среды.
Затем монтируются подбиваются медный обожженные клинья с одинаковым усилием , после чего производится стягивание соединения гайками с
контролируемым натяжением .
В процессе стягивания фланцы сдвигаются и сжимают медный обожженный клин на строго определенную величину, обеспечивающую рабочее
состояние медного обожженного клина . свинцовые шайбы применяются с одинаковой жесткостью с двух сторон .
Материалы медного обожженного клина и медных обожженных втулок выбираются исходя из условия, чтобы их жесткость соответствовала
расчетной, обеспечивающей надежную сейсмомозащиту и виброизоляцию и герметичность фланцевого соединения трубопровода и шаровых
кранов.
Наличие дополнительных упругих свинцовых шайб ( на чертеже не показаны) повышает герметичность соединения и надежность его работы в
тяжелых условиях вибронагрузок при многокаскадном демпфировании
Жесткость сейсмозащиты и виброизоляторов в виде латунного фрикци -болта определяется исходя из, частоты вынужденных колебаний
вибрирующего трубчатого элемента с учетом частоты собственных колебаний всего соединения по следующей формуле:
Виброизоляция и сейсмоизоляция обеспечивается при условии, если коэффициент динамичности фрикци -болта будет меньше единицы.
Формула
Антисейсмическое фланцевое фрикционно -подвижное соединение трубопроводов
Антисейсмическое ФЛАНЦЕВОЕ фрикционно -подвижное СОЕДИНЕНИЕ ТРУБОПРОВОДОВ, содержащее крепежные элементы, подпружиненные и
энергопоглощающие со стороны одного из фланцев, амортизирующие в виде латунного фрикци -болта с пропиленным пазом и забитым медным
обожженным клином с медной обожженной втулкой или гильзой , охватывающие крепежные элементы и установленные в отверстиях фланцев, и
уплотнительный элемент, фрикци-болт , отличающееся тем, что, с целью расширения области использования соединения, фланцы выполнены с
помощью энергопоглощающего фрикци -болта , с забитым с одинаковым усилием медным обожженным клином расположенными во фланцевом
фрикционно-подвижном соединении (ФФПС) , уплотнительными элемент выполнен в виде свинцовых тонких шайб , установленного между
цилиндрическими выступами фланцев, а крепежные элементы подпружинены также на участке между фланцами, за счет протяжности соединения по
линии нагрузки, а между медным обожженным энергопоголощающим клином, установлены тонкие свинцовые или обожженные медные шайбы, а в
латунную шпильку устанавливается тонкая медная обожженная гильза или втулка .

211.

Фиг 1
Фиг 2
Фиг 3
Фиг 4
Фиг 5

212.

Фиг 6
Фиг 7
Фиг 8

213.

Фиг 9

214.

215.

216.

217.

218.

219.

220.

221.

222.

223.

Перечень изобретений и научных публикаций разработанных сотрудниками СПб ГАСУ для сдвиговых кабеленесущих систем: KS20,KS80,KSF80,PEXKS80,
PEXKSF80, MEK70,MEK 110,CT,VM, применении шарнирной виброгасящей сейсмоизоляции типа «гармошка» ( по изобретению УЗЕЛ СОЕДИНЕНИЯ
КазГАСУ № 2382151 поворачивающее шарнирное соединение колонны с ригелем ) и демпфирующих ограничителей перемещений ( по
изобретению изобретение № 165076 «Опора сейсмостойкая») на фланцевых фрикционо-подвижных болтовых соединениях, для обеспечения
сейсмостойкости установки очистки хозяйственно-бытовых сточных вод КОС «Гермес Групп» с технологическими трубопроводами из полиэтилена
1. "СПОСОБ ЗАЩИТЫ ЗДАНИЯ И СООРУЖЕНИЯ ПРИ ВЗРЫВЕ С ИСПОЛЬЗОВАНИЕМ
СДВИГОУСТОЙЧИВЫХ И ЛЕГКОСБРАСЫВАЕМЫХ СОЕДИНЕНИЙ, ИСПОЛЬЗУЮЩИЕ
СИСТЕМУ ДЕМПФИРОВАНИЯ ФРИКЦИОННОСТИ И СЕЙСМОИЗОЛЯЦИЮ ДЛЯ
ПОГЛОЩЕНИЯ ВЗРЫВНОЙ И СЕЙСМИЧЕСКОЙ ЭНЕРГИИ" № 2010136746 E 04 C 2/09 Дата
опубликования 20.01.2013
2. Патент на полезную модель № 165 076 " Опора сейсмостойкая" 10.10.2016 Б.л 28
3. Патент на полезную модель № 154506 "Панель противовзрывная" 27.08.2015 бюл № 28
4.Изобретение № 1760020 "Сейсмостойкий фундамент" 07.09.1992
5. Изобретение № 1011847 "Башня" 30.08.1982
6. Изобретение № 1038457 "Сферический резервуар" 30.08.1982
7. Изобретение № 1395500 "Способ изготовления ячеистобетонных изделий на пористых
заполнителях" 15.05.1988

224.

8. Изобретение № 998300 "Захватное устройство для колонн" 23.02.1983
9. «Захватное устройство сэндвич-панелей» № 24717800 опуб 05 05.2011
10. «Стена и способ ее возведения» № 1728414 опул 19.06.1989
11. Заявки на изобретение № 20181229421/20(47400) от 10.08.2018 «Опора сейсмоизолирующая
«гармошка». Используется Японии.
12. Заявки на изобретение № 2018105803/20 (008844) от 11.05.2018 «Антисейсмическое фланцевое
фрикционно-подвижное соединение для трубопроводов» F 16L 23/02 .
13. Заявка на изобретение № 2016119967/20 ( 031416) от 23.05.2016 «Опора сейсмоизолирующая
маятниковая» E04 H 9/02.
14. Журнал «Сельское строительство» № 9/95 стр.30 «Отвести опасность», А.И.Коваленко
15. Журнал «Жилищное строительство» № 4/95 стр.18 «Использование сейсмоизолирующего
пояса для существующих зданий», А.И.Коваленко
16. Журнал «Жилищное строительство» № 9/95 стр.13 «Сейсмоизоляция малоэтажных жилых
зданий»,
17. Журнал «Монтажные и специальные работы в строительстве» № 4/95 стр. 24-25
«Сейсмоизоляция малоэтажных зданий»,
18. Российская газета от 26.07.95 стр.3 «Секреты сейсмостойкости». А.И.Коваленко.
19. Российская газета от 11.06.95 «Землетрясение: предсказание на завтра», А.И.Коваленко
20. Газета «Грозненский рабочий» № 5 февраль 1996 «Честь мундира или сэкономленные
миллиарды»,
21. «Голос Чеченской Республики» 1 февраль 1996 «Башни и баллы» А.И.Коваленко.
21. Республика ЧР № 7 август 1995 «Удар невиданной звезды или через четыре года».
А.И.Коваленко

225.

21. Газета «Земля России» за октябрь 1998 стр. 3 «Уникальные технологии возведения
фундаментов без заглубления – дом на грунте. Строительство на пучинистых и просадочных
грунтах»
22. Газета «Земля России» № 2 ( 26 ) стр. 2-3 « Предложение ученых общественной организации
инженеров «Сейсмофонд» – Фонда «Защита и безопасность городов» в области реформы ЖКХ.
23. Журнал «Жизнь и безопасность « № 3/96 стр. 290-294 «Землетрясение по графику» Ждут ли
через четыре года планету «Земля глобальные и разрушительные потрясения А.И.Коваленко, Е.И.Коваленко.
24. Журнал «Монтажные и специальные работы в строительстве» № 11/95 стр. 25 «Датчик
регистрации электромагнитных волн, предупреждающий о землетрясении - гарантия
сохранения вашей жизни!» и другие зарубежные научные издания в журналах за 1994- 2004
гг. А.И.Коваленко и др. изданиях. С брошюрой «Как построить сейсмостойкий дом с учетом
народного опыта сейсмостойкого строительства горцами Северного Кавказа сторожевых
башен» с.79 г. Грозный –1996. А.И.Коваленко в ГПБ им Ленина г. Москва и РНБ СПб
Научная статья доклад сообщения конференции с 5 по 7 февраля 201
https://yadi.sk/i/CnFN36oKLYPpzQ
Научное сообщение доклад на 67 конференции проходившей в начале февраля 2010 г в СПб ГАСУ сотрудника СПб ЗНиПИ ранее ЛенЗНИИЭП,
руководителя органа по сертификации продукции ООИ «Сейсмофонд» https://yadi.sk/i/MaKtKmd5GP9ecw
Доклад сообщение Испытание математических моделей на сейсмостойкость https://yadi.sk/d/MDvdSPojHUpe3w
ЛИСИ Научные статьи изобретателя КоваленкоА.И. СПбГАСУ - научная конференция
https://yadi.sk/i/uLbA_SwO5GHO2w
Патенты изобретения взрывозащиты противовзрывной Коваленко А.И.
https://yadi.sk/i/-PwJxeHVvI_eoQ
ПО МОДЕЛИРОВАНИЮ РАСЧЕТНЫХ СЕЙСМИЧЕСКИХ ВОЗДЕЙСТВИЙ СУЩЕСТВУЮЩИЕ МЕТОДЫ для кабеленесущих систем: KS20,KS80,KSF80,PEXKS80,
PEXKSF80, MEK70,MEK 110,CT,VM

226.

https://present5.com/po-modelirovaniyu-raschetnyx-sejsmicheskix-vozdejstvij-sushhestvuyushhie-metody/
Изобретение опора сейсмостойкая 165076 которое использовалось при лабораторных испытания численным методом в ПК SCAD и применении
шарнирной виброгасящей сейсмоизоляции типа «гармошка» ( по изобретению УЗЕЛ СОЕДИНЕНИЯ КазГАСУ № 2382151 поворачивающее
шарнирное соединение колонны с ригелем ) и демпфирующих ограничителей перемещений ( по изобретению изобретение № 165076 «Опора
сейсмостойкая») на фланцевых фрикционо-подвижных болтовых соединениях, для обеспечения сейсмостойкости установки очистки хозяйственнобытовых сточных вод КОС «Гермес Групп» с технологическими трубопроводами из полиэтилена
РОССИЙСКАЯ ФЕДЕРАЦИЯ
(19)
ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ
RU
(11)
165 076
(13)
U1
(51) МПК
E04H 9/02 (2006.01)
(12) ОПИСАНИЕ ПОЛЕЗНОЙ МОДЕЛИ К ПАТЕНТУ
Статус:
не действует (последнее изменение статуса: 26.09.2019)
(21)(22) Заявка: 2016102130/03, 22.01.2016
(24) Дата начала отсчета срока действия
патента:
(72) Автор(ы):
Андреев Борис Александрович (RU),
Кадашов Александр Иванович (RU)

227.

22.01.2016
Приоритет(ы):
(73) Патентообладатель(и):
Андреев Борис Александрович (RU),
Кадашов Александр Иванович (RU)
(22) Дата подачи заявки: 22.01.2016
(45) Опубликовано: 10.10.2016 Бюл. № 28
Адрес для переписки:
190005, Санкт-Петербург, 2-я
Красноармейская ул дом 4 СПб ГАСУ
(54) ОПОРА СЕЙСМОСТОЙКАЯ
(57) Реферат:
Опора сейсмостойкая предназначена для защиты объектов от сейсмических воздействий за счет использования фрикцион но податливых соединений.
Опора состоит из корпуса в котором выполнено вертикальное отверстие охватывающее цилиндрическую поверхность щтока. В корпусе,
перпендикулярно вертикальной оси, выполнены отверстия в которых установлен запирающий калиброванный болт. Вдоль оси корпуса выполнены два
паза шириной <Z> и длиной <I> которая превышает длину <Н> от торца корпуса до нижней точки паза, выполненного в штоке. Ширина паза в штоке
соответствует диаметру калиброванного болта. Для сборки опоры шток сопрягают с отверстием корпуса при этом паз штока совмещают с поперечными
отверстиями корпуса и соединяют болтом, после чего одевают гайку и затягивают до заданного усилия. Увеличение усилия затяжки приводит к
уменьшению зазора<Z>корпуса, увеличению сил трения в сопряжении корпус-шток и к увеличению усилия сдвига при внешнем воздействии. 4 ил.
Предлагаемое техническое решение предназначено для защиты сооружений, объектов и оборудования от сейсмических воздействий за счет
использования фрикционно податливых соединений. Известны фрикционные соединения для защиты объектов от динамических воздействий.
Известно, например Болтовое соединение плоских деталей встык по Патенту RU 1174616, F15B 5/02 с пр. от 11.11.1983. Соединение содержит
металлические листы, накладки и прокладки. В листах, накладках и прокладках выполнены овальные отверстия через которые пропущены болты,
объединяющие листы, прокладки и накладки в пакет. При малых горизонтальных нагрузках силы трения между листами пакета и болтами не
преодолеваются. С увеличением нагрузки происходит взаимное проскальзывание листов или прокладок относительно накладок контакта листов с
меньшей шероховатостью. Взаимное смещение листов происходит до упора болтов в края овальных отверстий после чего соединения работают
упруго. После того как все болты соединения дойдут до упора в края овальных отверстий, соединение начинает работать упруго, а затем происходит
разрушение соединения за счет смятия листов и среза болтов. Недостатками известного являются: ограничение демпфирования по направлению
воздействия только по горизонтали и вдоль овальных отверстий; а также неопределенности при расчетах из-за разброса по трению. Известно также
Устройство для фрикционного демпфирования антиветровых и антисейсмических воздействий по Патенту TW 201400676 (A)-2014-01-01. Restraint antiwind and anti-seismic friction damping device, E04B 1/98, F16F 15/10. Устройство содержит базовое основание, поддерживающее защищаемый объект,
нескольких сегментов (крыльев) и несколько внешних пластин. В сегментах выполнены продольные пазы. Трение демпфирования создается между
пластинами и наружными поверхностями сегментов. Перпендикулярно вертикальной поверхности сегментов, через пазы, проходят запирающие

228.

элементы - болты, которые фиксируют сегменты и пластины друг относительно друга. Кроме того, запирающие элементы проходят через блок
поддержки, две пластины, через паз сегмента и фиксируют конструкцию в заданном положении. Таким образом получаем конструкцию опоры, которая
выдерживает ветровые нагрузки но, при возникновении сейсмических нагрузок, превышающих расчетные силы трения в сопряжениях, смещается от
своего начального положения, при этом сохраняет конструкцию без разрушения.
Недостатками указанной конструкции являются: сложность конструкции и сложность расчетов из-за наличия большого количества сопрягаемых
трущихся поверхностей.
Целью предлагаемого решения является упрощение конструкции, уменьшение количества сопрягаемых трущихся поверхностей до одного сопряжения
отверстие корпуса - цилиндр штока, а также повышение точности расчета.
Сущность предлагаемого решения заключается в том, что опора сейсмостойкая выполнена из двух частей: нижней - корпуса, закрепленного на
фундаменте и верхней - штока, установленного с возможностью перемещения вдоль общей оси и с возможностью ограничения перемещения за счет
деформации корпуса под действием запорного элемента. В корпусе выполнено центральное отверстие, сопрягаемое с цилиндрической поверхностью
штока, и поперечные отверстия (перпендикулярные к центральной оси) в которые устанавливают запирающий элемент-болт. Кроме того в корпусе,
параллельно центральной оси, выполнены два открытых паза, которые обеспечивают корпусу возможность деформироваться в радиальном
направлении. В теле штока, вдоль центральной оси, выполнен паз ширина которого соответствует диаметру запирающего элемента (болта), а длина
соответствует заданному перемещению штока. Запирающий элемент создает нагрузку в сопряжении шток-отверстие корпуса, а продольные пазы
обеспечивают возможность деформации корпуса и «переход» сопряжения из состояния возможного перемещения в состояние «запирания» с
возможностью перемещения только под сейсмической нагрузкой. Длина пазов корпуса превышает расстояние от торца корпуса до нижней точки паза
в штоке. Сущность предлагаемой конструкции поясняется чертежами, где на фиг. 1 изображен разрез А-А (фиг. 2); на фиг. 2 изображен поперечный
разрез Б-Б (фиг. 1); на фиг. 3 изображен разрез В-В (фиг. 1); на фиг. 4 изображен выносной элемент 1 (фиг. 2) в увеличенном масштабе.
Опора сейсмостойкая состоит из корпуса 1 в котором выполнено вертикальное отверстие диаметром «D», которое охватывает цилиндрическую
поверхность штока 2 например по подвижной посадке H7/f7. В стенке корпуса перпендикулярно его оси, выполнено два отверстия в которых
установлен запирающий элемент - калиброванный болт 3. Кроме того, вдоль оси отверстия корпуса, выполнены два паза шириной «Z» и длиной «I». В
теле штока вдоль оси выполнен продольный глухой паз длиной «h» (допустмый ход штока) соответствующий по ширине диаметру калиброванного
болта, проходящего через этот паз. При этом длина пазов «I» всегда больше расстояния от торца корпуса до нижней точки паза «Н». В нижней части
корпуса 1 выполнен фланец с отверстиями для крепления на фундаменте, а в верхней части штока 2 выполнен фланец для сопряжения с защищаемым
объектом. Сборка опоры заключается в том, что шток 2 сопрягается с отверстием «D» корпуса по подвижной посадке. Паз штока совмещают с
поперечными отверстиями корпуса и соединяют калиброванным болтом 3, с шайбами 4, с предварительным усилием (вручную) навинчивают гайку 5,
скрепляя шток и корпус в положении при котором нижняя поверхность паза штока контактирует с поверхностью болта (высота опоры максимальна).
После этого гайку 5 затягивают тарировочным ключом до заданного усилия. Увеличение усилия затяжки гайки (болта) приводит к деформации корпуса
и уменьшению зазоров от «Z» до «Z1» в корпусе, что в свою очередь приводит к увеличению допустимого усилия сдвига (усилия трения) в сопряжении
отверстие корпуса - цилиндр штока. Величина усилия трения в сопряжении корпус-шток зависит от величины усилия затяжки гайки (болта) и для
каждой конкретной конструкции (компоновки, габаритов, материалов, шероховатости поверхностей, направления нагрузок и др.) определяется
экспериментально. При воздействии сейсмических нагрузок превышающих силы трения в сопряжении корпус-шток, происходит сдвиг штока, в
пределах длины паза выполненного в теле штока, без разрушения конструкции.
Формула полезной модели

229.

Опора сейсмостойкая, содержащая корпус и сопряженный с ним подвижный узел, закрепленный запорным элементом, отличающаяся тем, что в
корпусе выполнено центральное вертикальное отверстие, сопряженное с цилиндрической поверхностью штока, при этом шток зафиксирован
запорным элементом, выполненным в виде калиброванного болта, проходящего через поперечные отверстия корпуса и через вертикальный паз,
выполненный в теле штока и закрепленный гайкой с заданным усилием, кроме того в корпусе, параллельно центральной оси, выполнено два открытых
паза, длина которых, от торца корпуса, больше расстояния до нижней точки паза штока.

230.

231.

232.

233.

Литература по применении кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM и демпфирующей, виброгасящей
сейсмоизоляции типа «гармошка» ( по изобретению УЗЕЛ СОЕДИНЕНИЯ КазГАСУ № 2382151 поворачивающее шарнирное соединение колонны с
ригелем ) и демпфирующих ограничителей перемещений ( по изобретению изобретение № 165076 «Опора сейсмостойкая») на фланцевых
фрикционо-подвижных болтовых соединениях, для обеспечения сейсмостойкости установки очистки хозяйственно-бытовых сточных вод КОС «Гермес
Групп» с технологическими трубопроводами из полиэтилена и их программная реализация в SCAD Office, в том числе нелинейным методом расчета,
методом оптимизации и идентификации динамических и статических задач теории устойчивости с использованием противовзрывных ,
анисейсмических, фрикционно –демпфирующих связей (устройств) , в среде вычислительного комплекса SCAD Office ПРИ ВОССТАНОВЛЕНИИ,
РАЗРУШЕНЫХ СООРУЖЕНИЙ ПРИ особых воздействиях, за счет использования трения , рассеивающей взрывной или сейсмической энергии с
использованием фрикционно-демпфирующих связей Кагановского ( Новые конструктивные решения антисейсмической демпфирующей связи
Кагановского )http://www.elektron2000.com/article/1404.html ) и по внедрению отечественной системы на фрикционно -демпфирующей
сейсмоизоляций на фрикционно-подвижных соединениях, марки ФПС-2015, по изобретению Андреева Борис Александровича № 165076 «Опора
сейсмостойкая» и патента № 2010136746 «Способ защиты зданий и сооружений с использованием сдвигоустойчивых и легко сбрасываемых
соединений, использующие систему демпфирования фрикционности и сейсмоизоляцию для поглощения сейсмической энергии»
1. Поляков В.С., КилимникЛ.Ш., Черкашин А.В. Современные методы сейсмозащиты зданий. - М.: Стройиздат. 1989.320 с.
2. Саргсян А.Е., Джинчвелашвили Г.А. Оценка сейсмостойкости и сейсмоустойчивости сооружений с сейсмоизолирующими опорами. //Транспортное
строительство. 1998. №11. С. 19-23.
3. Джинчвелашвили Г.А., Мкртычев О.В. Эффективность применения сейсмоизолирующих опор при строительстве зданий и сооружений. //
Транспортное строительство. 2003. №9. С.15-19.
4. Черепинский Ю.Д. Сейсмоизоляция зданий. Строительство на кинематических опорах (Сборник статей). - М.: Blue Apple. 2009. 47 с.
5. Годустов И.С. Способ снижения горизонтальной инерционной нагрузки объекта на сейсмоизолирующем кинематическом фундаменте. /Патент РФ.
RU2342493 С2 (МПКE02D 27/34).
6. Годустов И.С., Заалишвили В.Б. Сейсмоизолирующий фундамент и способ возведения здания на нём. /Заявка на выдачу патента РФ от 29.10.2007
№2007140020/20 (043812) МПК E02D 27/34, Е04Н 9/02.
7. Годустов И.С., Заалишвили В.Б. Способ адаптации к смене типа горизонтальных нагрузок опор сейсмоизоляции. / Патент РФ. RU 2062833 CI, RU
2049890 CI, RU 2024689 С1.
8. Годустов И.С., Заалишвили В.Б. К вопросу создания сейс- моизоляции проектируемых зданий в условиях Северного Кавказа. / Труды молодых учёных.
2006. №2. Издательство «Терек », СКГТУ.
9. Амосов А.А., Синицын С.Б. Основы теории сейсмостойкости сооружений. - М.: АСВ. 2001. 96 с.
С техническими решениями фрикционно-демпфирующих опора на фрикционно-подвижных протяжных соединений (ФПС), можно ознакомиться ,
изобретения №№ 1143895, 1174616,1168755 SU, № 4,094,111 US Structural steel building frame having resilient connectors, TW201400676 Restraint antiwind and anti-seismic friction damping device (Тайвань) и согласно изобретения № 2010136746 E04 C2/00 " СПОСОБ ЗАЩИТЫ ЗДАНИЯ И СООРУЖЕНИЯ
ПРИ ВЗРЫВЕ С ИСПОЛЬЗОВАНИЕМ СДВИГОУСТОЙЧИВЫХ И ЛЕГКОСБРАСЫВАЕМЫХ СОЕДИНЕНИЙ, ИСПОЛЬЗУЮЩИЕ СИСТЕМУ ДЕМПФИРОВАНИЯ

234.

ФРИКЦИОННОСТИ И СЕЙСМОИЗОЛЯЦИЮ ДЛЯ ПОГЛОЩЕНИЯ ВЗРЫВНОЙ И СЕЙСМИЧЕСКОЙ ЭНЕРГИИ" опубликовано 20.01.2013 и патента на полезную
модель "Панель противовзрывная" № 154506 E04B 1/92, опубликовано 27.08.2015 Бюл № 24 № 165076 RU E 04H 9/02 «Опора сейсмостойкая»,
опубликовано 10.10.16, Бюл. № 28 , заявки на изобретение № 20181229421/20 (47400) от 10.08.2018 "Опора сейсмоизолирующая "гармошка",
заявки на изобретение № 2018105803/20 (008844) от 11.05.2018 "Антисейсмическое фланцевое фрикционно-подвижное соединение для
трубопроводов" F 16L 23/02 , заявки на изобретение № 2016119967/20( 031416) от 23.05.2016 "Опора сейсмоизолирующая маятниковая" E04 H 9/02
,изобретениям №№ 1143895, 1168755, 1174616, 20101136746 E04 C 2/00 с использ. изобр. № 165076 E04 H 9/02 "Опора сейсмостойкая", заявка на
изобретение "Виброизолирующая опора E04 Н 9 /02" номер заявка а 20190028 выданная Национальным Центром интеллектуальной собственности
" Государственного комитета по науке и технологиям Республики Беларусь от 5 февраля 2019 ведущим специалистом центра экспертизы
промышленной собственности Н.М.бортник Адрес: 220034 Минск, ул Козлова , 20 тел (017) 294-36-56, т/ф (017) 285-26-05 [email protected] и
изобретениям №№ 1143895,1174616, 1168755 SU, 165076 RU "Опора сейсмостойкая", 2010136746, 2413098, 2148805, 2472981, 2413820, 2249557,
2407893, 2467170, 4094111 US, TW201400676
С лабораторными испытаниями фрагментов , узлов для фрикционно -демпфирующих опора н фрикционно –подвижных соединений (ФПС) для
сейсмоизолирующих фрикционно-демпфирующих опор с сердечником из трубчатой опоры на ФПС, в испытательном центре СПб ГАСУ , ПКТИ и
организации «Сейсмофонд» при СПб ГАСУ , адрес: 1900005, СПб, 2-я Красноармейская ул.д 4
С рабочим альбомом ШИФР 1010-2с. 94 "Фундаменты сейсмостойкие с использованием сейсмоизолирующего скользящего пояса для строительства
малоэтажных зданий в районах сейсмичностью 7,8 и 9 баллов" выпуск 0-1 (фундаменты для существующих зданий), материалы для проектирования
и альбомом ШИФР 1010-2 с .2019 "Фундаменты сейсмостойкие с использованием сейсмостойкой фрикционно -демпфирующей системой
www.damptech.com, с трубчатой опорой на фрикционно-подвижных соединениях или с трубчатой опорой с платичесим шарниром для мостов и
строительных объектов" выпуск 0-3, можно ознакомится на сайте: https://www.damptech.com/video-gallery мом послать запрос по электронной
почте [email protected]
Приложение список перечень заявок на изобретения и научных публикаций в журналах СПб ГАСУ о демпфирующих сдвиговых энернопоглотителях,
для обеспечения устойчивости существующего лестничных маршей и сооружений от особых воздействий, можно ознакомится по ссылкам:
Описание изобретения на полезную модель Сейсмостойкая фрикционно 18 стр https://yadi.sk/i/JZ0YxoW0_V6FCQ
Заявка на изобретение полезную модель Энергопоглощающие дорожное барьерное ограждение 23 стр https://yadi.sk/d/dWKraP12fvXAlA
Описание изобретения на полезную модель Взрывостойкая лестница 10 стр https://yadi.sk/i/EDoOs4AFUWKYEg
Заявка на изобретение полезная модель Опора сейсмоизолирующая гармошка 20 стр https://yadi.sk/i/JOuUB_oy2sPfog
Заявка на полезную модель Опора сейсмоизолирующая маятниковая 32 стр https://yadi.sk/i/Ba6U0Txx-flcsg
Виброизолирующая опора Е04Н 9 02
РЕФЕРАТ
изобретения полезная 17 стр https://yadi.sk/i/dZRdudxwOald2w
Обеспечение взрывостойкости существующих железнодорожных мостов на основе 15 стр https://yadi.sk/i/en6RGTLgfhrg_A
Доклад в СПб ГАСУ усиление опор Крымского моста https://yadi.sk/i/RpW2sh5lMdx35A

235.

Скачать научную статью Сейсмофонд при СПб ГАСУ( опубликованную в США, Японии и др странах ), можно по ссылке : Использование лего
сбрасываемых конструкций для повышения сейсмостойкости сооружений http://scienceph.ru/f/science_and_world_no_3_43_march_vol_i.pdf
Изобретения с демпфирующей сейсмоизоляций «Сейсмофонд» широк используются американской фирмой RUBBER BEARING FRIKTION DAMPER
(RBFD) в Японии, Новой Зеландии, США, Китае, Тайване и др странах https://www.damptech.com/-rubber-bearing-friction-damper-rbfd
https://www.damptech.com/for-buildings-cover
http://downloads.hindawi.com/journals/sv/2018/5630746.pdf
https://www.youtube.com/watch?v=r7q5D6516qg
Теория сейсмостойкости находится в кризисе, а жизнь миллионов граждан проживающих в ЖБ гробах не относится к государственной безопасности
http://www.myshared.ru/slide/971578/
https://yadi.sk/i/JfXt8hs_aXcKRQ https://yadi.sk/i/p5IgwFurPlgp1w
Оценка возможности инициирования сейсмического геофизического и техногенного оружия с применением существующих технических средств и
технологий https://yadi.sk/i/3VmQxa78RhhBBA
ГОСТ 6249-52 «Шкала для определения силы землетрясения в пределах от 6 до 9 баллов»
http://scaleofintensityofearthquakes.narod.ru
http://scaleofintensityofearthquakes2.narod.ru
http://scaleofintensityofearthquakes3.narod.ru http://peasantsinformagency1.narod.ru
http://s-a-m-a-r-a-citi.narod.ru http://sergeyshoygu.narod.ru/pdf1.pdf
Обеспечение взрывостойкости существующих железнодорожных мостов на основе 15 стр https://yadi.sk/i/en6RGTLgfhrg_A
Патенты изобретения взрывозащите противовзрывная https://yadi.sk/i/-PwJxeHVvI_eoQ
Научный доклад на 67 конференции СПб ГАСУ 4 стр https://yadi.sk/i/sMuk8V-J0Ui_lw
Научная статья в журнале СПб ГАСУ
https://yadi.sk/i/Vf_86hLPmeYIsw
Доклад на конференции изобретателей Попов ЛПИ Политех 5 стр https://yadi.sk/i/c1D-6wvsIeJWnA
Антисейсмическое фланцевое фрикционн 4 стр https://yadi.sk/i/pXaZGW6GNm4YrA
Обеспечение взрывостойкости существующих лестничных маршей 8 стр https://yadi.sk/i/ZJNyX-y0gsfEyQ
Доклад сообщение научное Испытание математических моделей ФПС 60 стр + выводы https://yadi.sk/d/6lNXCB4lw-HgpA
Научная статья доклад сообщения конференции с 5 по 7 февраля 2014 19 стрhttps://yadi.sk/i/CnFN36oKLYPpzQ

236.

Научное сообщение доклад на 67 конференции проходившей в начале 3 5 февраля 2010 г в СПб ГАСУ стр 208 стр 211 2 страницы
https://yadi.sk/i/MaKtKmd5GP9ecw
Доклад сообщение Маживеа Уздина Испытание математических моделей на сейсмостойкость 137 стр
https://yadi.sk/d/MDvdSPojHUpe3w
ЛИСИ Научные статьи изобретателя СПбГАСУ научной конференции 9 стр https://yadi.sk/i/uLbA_SwO5GHO2w
Электронный адрес [email protected] (999) 535-47-29, ( 953) 151-39-15, (996) 798-26-54
Мажиев Хасан Нажоевич - Президент организации «Сейсмофонд» ИНН 201400078, ОГРН 1022000000824
C шарнирной виброгасящей сейсмоизоляции типа «гармошка» ( по изобретению УЗЕЛ СОЕДИНЕНИЯ КазГАСУ № 2382151 поворачивающее
шарнирное соединение колонны с ригелем ) и демпфирующих ограничителей перемещений ( по изобретению изобретение № 165076 «Опора
сейсмостойкая») на фланцевых фрикционо-подвижных болтовых соединениях, для обеспечения сейсмостойкости установки очистки хозяйственнобытовых сточных вод КОС «Гермес Групп» с технологическими трубопроводами из полиэтилена и изобретениями шарниной и демпфирующей
сейсмоизоляцией, для обеспечения устойчивости КОС и магистральных трубопроводов , от ударной волны, за счет использования сдвиговых
упругопластических шарниров и балочных энергопоглотителей, от особых воздействий направить запрос по электронной почте
[email protected]
Материалы научных публикаций, изобретений, альбомы, чертежи : "Опора сейсмостойкая», патент № 165076, БИ № 28 , от 10.10.2016, заявка на
изобретение № 2016119967/20- 031416 от 23.05.2016, Опора сейсмоизолирующая маятниковая", научные публикации: журнал «Сельское
строительство» № 9/95 стр.30 «Отвести опасность», журнал «Жилищное строительство» № 4/95 стр.18 «Использование сейсмоизолирующего пояса
для существующих зданий», журнал «Жилищное строительство» № 9/95 стр.13 «Сейсмоизоляция малоэтажных жилых зданий», журнал «Монтажные
и специальные работы в строительстве» № 4/95 стр. 24-25 «Сейсмоизоляция малоэтажных зданий», Российская газета от 26.07.95 стр.3 «Секреты
сейсмостойкости»- находятся на кафедре металлических и деревянных конструкций СПб ГАСУ : 190005, Санкт-Петербург, 2-я Красноармейская ул., д.
4, (д.т.н. проф ЧЕРНЫХ А. Г. строительный факультет , (996) 798-26-54, [email protected]
Подтверждение компетентности СПб ГАСУ Номер решения о прохождении процедуры подтверждения компетентности
8590-гу (А-5824) https://pub.fsa.gov.ru/ral/view/13060/applicant
Научные статьи, публикации, патенты, изобретения кабеленесущих систем: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM по
применению коменсторов для демпфирующей сейсмоизоляции кабеленесущих систем: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM и
антисейсмических фрикционных демпфирующих связей (соединений) косых компенсаторов на прогрессирующее (лавинообразное ) обрушение и
их программная реализация в SCAD Office хранятся на Кафедре металлических и деревянных конструкций 190005, Санкт-Петербург, 2-я ,
Красноармейская ул., д. 4, СПб ГАСУ у заведующий кафедрой металлических и деревянных конструкций , дтн проф ЧЕРНЫХ Александр Григорьевич
строительный факультет (921) 962-67-78, Карта Сбербанка № 2202 2006 4085 5233 Хасан Нажоевич Мажиев, Улубаев Солт-Ахмад Хаджиевич,
Сайдулаев Казбек Майрбекович

237.

Более подробно об применении шарнирной виброгасящей сейсмоизоляции типа «гармошка» ( по изобретению УЗЕЛ СОЕДИНЕНИЯ КазГАСУ №
2382151 поворачивающее шарнирное соединение колонны с ригелем ) и демпфирующих ограничителей перемещений ( по изобретению
изобретение № 165076 «Опора сейсмостойкая») на фланцевых фрикционо-подвижных болтовых соединениях, для обеспечения сейсмостойкости
установки очистки хозяйственно-бытовых сточных вод КОС «Гермес Групп» с технологическими трубопроводами из полиэтилена и использовании
демпфирующей сейсмоизоляции и антисейсмических фрикционных демпфирующих связей (соединений) рамных узлов металлических
конструкций на прогрессирующее (лавинообразное ) обрушение и их программная реализация в SCAD Office
на фрикционно- демпфирующий
сейсмоизоляции на фрикционно-подвижных соединениях марки ФПС-2015 по изобретению Андреева Борис Александровича № 165076 «Опора
сейсмостойкая» и патента № 2010136746 «Способ защиты зданий и сооружений с использованием сдвигоустойчивых и легко сбрасываемых
соединений, использующие систему демпфирования фрикционности и сейсмоизоляцию для поглощения сейсмической энергии» и обеспечение
сейсмостойкости кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM , можно ознакомится с тезисами размещенным
и направленные в Италию, Рим на итальянском сайте конференции ERES 2021 , на секции «Мосты жизни и устойчивость», где размещен доклад
организации Сейсмофонд при СПб ГАСУ инженера –патентоведа, зам президента организации «Сейсмофонд» ОГРН 1022000000824 Е. И. Андреевой на
научной 13 й Международная конференция по сейсмостойким инженерным сооружениям 26–28 мая 2021 г. Рим, Италия Университетский
городок Гуидо Марселья Линк Италия ERES 2021
Испытания на сейсмостойкость железнодорожных мостов с демпфирующей сейсмоизоляцией и их программная реализация в среде вычислительного
комплекса в SCAD Office
https://www.wessex.ac.uk/components/com_chronoforms5/chronoforms/uploads/Abstract/20200921232334_SPBGASU_ispitanie_na_seismostoykost_zhelezn
odorozhnikh_mostov_s_dempfiruyuchey_seismoizolyatsiey_v_vichslitelnom_komplekse_SCAD_Office_125r.pdf
https://ru.scribd.com/document/476936332/Ispitanie-Na-Seismostoykost-Zheleznodorozhnikh-Mostov-s-Dempfiruyuchey-Seismoizolyatsiey-v-VichslitelnomKomplekse-SCAD-Office-125
https://yadi.sk/d/6KGxBSmtbRYEGQ
https://www.damptech.com/-rubber-bearing-friction-damper-rbfd

238.

https://ru.files.fm/filebrowser#/Ispitanie na seismostoykost zheleznodorozhnikh mostov s dempfiruyuchey seismoizolyatsiey v vichslitelnom komplekse SCAD
Office 125r.doc
Ознакомится с применением и внедрению изобретений проф дтн ПГУП А.М.Уздина за рубежом в США, Японии, Канаде в Европе и др странах
шарнирной виброгасящей сейсмоизоляции типа «гармошка» ( по изобретению УЗЕЛ СОЕДИНЕНИЯ КазГАСУ № 2382151 поворачивающее
шарнирное соединение колонны с ригелем ) и демпфирующих ограничителей перемещений ( по изобретению изобретение № 165076 «Опора
сейсмостойкая») на фланцевых фрикционо-подвижных болтовых соединениях, для обеспечения сейсмостойкости установки очистки хозяйственнобытовых сточных вод КОС «Гермес Групп» с технологическими трубопроводами из полиэтилена можно по ссылкам Seismic resistance GD Damper
https://www.youtube.com/watch?v=I4YOheI-HWk&t=5s
https://www.youtube.com/watch?v=CIZCbPInf5k
https://www.youtube.com/watch?v=ZRJcowT24I8&t=1s
https://www.youtube.com/watch?v=bFjGdgQz1iA
Seismic Friction Damper - Small Model QuakeTek
https://www.youtube.com/watch?v=YwwyXw7TRhA
https://www.youtube.com/watch?v=ViGHmWVvEkU&t=2s
https://www.youtube.com/watch?v=oT4Ybharsxo
Earthquake Protection Damper
https://www.youtube.com/watch?v=GOkJIhVNUrY&t=2s
Ingeniería Sísmica Básica explicada con marco didáctico QuakeTek
QuakeTek
https://www.youtube.com/channel/UCCGoRHfZQlJ8cwdGJxOQgLQ
https://www.youtube.com/watch?v=aSZa--SaRBY&t=2s

239.

Friction damper for impact absorption DamptechDK
https://www.youtube.com/watch?v=pkfnGJ6Q7Rw&t=5s
https://www.youtube.com/watch?v=EFdjTDlStGQ
https://www.youtube.com/watch?v=NRmHBla1m8A

240.

241.

242.

Применение демпфирующая сейсмоизоляция типа «гармошка» для использования для кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80,
MEK70,MEK 110,CT,VM ( по изобретению УЗЕЛ СОЕДИНЕНИЯ КазГАСУ № 2382151 поворачивающее шарнирное соединение колонны с ригелем ) и
демпфирующих ограничителей перемещений ( по изобретению изобретение № 165076 «Опора сейсмостойкая») на фланцевых фрикционо-подвижных
болтовых соединениях, для обеспечения сейсмостойкости установки очистки хозяйственно-бытовых сточных вод КОС «Гермес Групп» с
технологическими трубопроводами из полиэтилена испытывалось для антисейсмических косых компенсаторов с демпфирующие связями, с
использованием противовзрывных , анисейсмических, фрикционно –демпфирующих связей (устройств) , в среде вычислительного комплекса SCAD
Office ПРИ ВОССТАНОВЛЕНИИ, РАЗРУШЕНЫХ СООРУЖЕНИЙ ПРИ особых , за счет использования трения , рассеивающей взрывной или сейсмической
энергии с использованием фрикционно-демпфирующих связей Кагановского ( Новые конструктивные решения антисейсмической демпфирующей
связи Кагановского http://www.elektron2000.com/article/1404.html ) и с демпфирующей сейсмоизоляции и антисейсмических фрикционных
демпфирующих связей (соединений) рамных узлов металлических конструкций на прогрессирующее (лавинообразное ) обрушение и их
программная реализация в SCAD Office
могут быть использоваться :

243.

ЛИТЕРАТУРА
1. Д. Пуме. Особенности проектирования многоэтажных зданий на аварийные нагрузки. «Строительная механика и расчет сооружений», 1977, №1.
2. Стругацкий Ю.М. Обеспечение прочности панельных зданий при локальных разрушениях их несущих конструкций. В сб. «Исследования несущих
бетонных и железобетонных конструкций сборных многоэтажных зданий», МНИИТЭП, М., 1980.
3. Сендеров Б.В. Аварии жилых зданий. М., СИ, 1991.
УДК 624.21.01
СПб ГАСУ № RA.RU.21 СТ39 от 27.05.2015,
190005, СПб, 2-я Красноармейская ул. д 4, «Сейсмофонд» ОГРН: 1022000000824, т/ф: (812) 694-78-10
, (999) 535-47-29 , (921) 962-67-78 [email protected] Копия аттестата испытательной лаборатории ПГУПС № SP01.01.406.045 от 27.05.2014,
действ 27.05.2019
прилагается к лабораторным испытаниям в ПК SCAD организацией «Сейсмофонд» при СПб ГАСУ
Научные консультанты от организации «Сейсмофонд» ОГРН 1022000000824 САЙДУЛАЕВ КАЗБЕК МАЙРБЕКОВИЧ, УЛУБАЕВ СОЛТ-АХМАД ХАДЖИЕВИЧ,
Доктор физико-математических наук, профессор кафедры моделирования социально-экономических систем, заведующий кафедрой моделирования
социально-экономических систем СПб ГУ МАЛАФЕЕВ О А
Подтверждение компетентности СПб ГАСУ Номер решения о прохождении процедуры подтверждения компетентности 8590-гу (А-5824)
https://pub.fsa.gov.ru/ral/view/13060/applicant

244.

245.

246.

247.

248.

249.

250.

251.

252.

253.

Используемая литература при лабораторных испытаниях по применению кабеленесущие системы: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK
110,CT,VM, ( по изобретению УЗЕЛ СОЕДИНЕНИЯ КазГАСУ № 2382151 поворачивающее шарнирное соединение колонны с ригелем ) и
демпфирующих ограничителей перемещений ( по изобретению изобретение № 165076 «Опора сейсмостойкая») на фланцевых фрикционо-подвижных
болтовых соединениях, для обеспечения сейсмостойкости установки очистки хозяйственно-бытовых сточных вод КОС «Гермес Групп» с
технологическими трубопроводами из полиэтилена
1 СПОСОБ ЗАЩИТЫ ЗДАНИЯ И СООРУЖЕНИЯ ПРИ ВЗРЫВЕ С ИСПОЛЬЗОВАНИЕМ СДВИГОУСТОЙЧИВЫХ И ЛЕГКОСБРАСЫВАЕМЫХ СОЕДИНЕНИЙ,
ИСПОЛЬЗУЮЩИЕ СИСТЕМУ ДЕМПФИРОВАНИЯ ФРИКЦИОННОСТИ И СЕЙСМОИЗОЛЯЦИЮ ДЛЯ ПОГЛОЩЕНИЯ ВЗРЫВНОЙ И СЕЙСМИЧЕСКОЙ ЭНЕРГИИ"
№ 2010136746 E 04 C 2/09 Дата опубликования 20.01.2013
2. Патент на полезную модель № 165 076 " Опора сейсмостойкая" 10.10.2016 Б.л 28
3. Патент на полезную модель № 154506 "Панель противовзрывная" 27.08.2015 бюл № 28
4.Изобретение № 1760020 "Сейсмостойкий фундамент" 07.09.1992
5. Изобретение № 1011847 "Башня" 30.08.1982
6. Изобретение № 1038457 "Сферический резервуар" 30.08.1982
7. Изобретение № 1395500 "Способ изготовления ячеистобетонных изделий на пористых заполнителях" 15.05.1988 8. Изобретение № 998300
"Захватное устройство для колонн" 23.02.1983
9. Захватное устройство сэндвич-панелей №
24717800 опуб 05 05.2011
10. Стена и способ ее возведения № 1728414 опул 19.06.1989
11. Заявки на изобретение № 20181229421/20(47400) от 10.08.2018 «Опора сейсмоизолирующая «гармошка». Используется Японии.
12. Заявки на изобретение № 2018105803/20 (008844) от 11.05.2018 «Антисейсмическое фланцевое фрикционно-подвижное соединение для
трубопроводов» F 16L 23/02 ,
13. Заявка на изобретение № 2016119967/20 ( 031416) от
23.05.2016 «Опора сейсмоизолирующая маятниковая» E04 H 9/02.
14. Журнал «Сельское строительство» № 9/95 стр.30 «Отвести опасность», А.И.Коваленко
15. Журнал «Жилищное строительство» № 4/95 стр.18 «Использование сейсмоизолирующего пояса для существующих зданий», А.И.Коваленко
16. Журнал «Жилищное строительство» № 9/95 стр.13 «Сейсмоизоляция малоэтажных жилых зданий»,
17. Журнал «Монтажные и специальные работы в строительстве» № 4/95 стр. 24-25 «Сейсмоизоляция малоэтажных зданий»,
18. Российская газета от 26.07.95 стр.3 «Секреты сейсмостойкости». А.И.Коваленко.
19. Российская газета от 11.06.95 «Землетрясение: предсказание на завтра», А.И.Коваленко
20. Газета «Грозненский рабочий» № 5 февраль 1996 «Честь мундира или сэкономленные миллиарды»,
21. «Голос Чеченской Республики» 1 февраль 1996 «Башни и баллы» А.И.Коваленко.
21. Республика ЧР № 7 август 1995 «Удар невиданной звезды или через четыре года». А.И.Коваленко
21. Газета «Земля России» за октябрь 1998 стр. 3 «Уникальные технологии возведения фундаментов без заглубления – дом на грунте.
Строительство на пучинистых и просадочных грунтах»
22. Газета «Земля России» № 2 ( 26 ) стр. 2-3 « Предложение ученых общественной организации инженеров «Сейсмофонд» –
Фонда «Защита и
безопасность городов» в области реформы ЖКХ.
23. Журнал «Жизнь и безопасность « № 3/96 стр. 290-294 «Землетрясение по графику» Ждут ли через четыре года планету
«Земля глобальные и
разрушительные потрясения «звездотрясения» А.И.Коваленко, Е.И.Коваленко.

254.

24. Журнал «Монтажные и специальные работы в строительстве» № 11/95 стр. 25 «Датчик регистрации электромагнитных
волн,
предупреждающий о землетрясении - гарантия сохранения вашей жизни!» и другие зарубежные научные издания и
журналах за 1994- 2004 гг.
А.И.Коваленко и др. изданиях С брошюрой «Как построить сейсмостойкий дом с учетом народного опыта сейсмостойкого строительства горцами
Северного
Кавказа сторожевых башен» с.79 г. Грозный –1996. А.И.Коваленко в ГПБ им Ленина г. Москва и РНБ СПб пл. Островского, д.3

255.

256.

257.

258.

259.

260.

261.

262.

С оригиналом свидетельством газеты «Земля РОССИИ» № П 0931 от 16 мая 1994 можно ознакомится по ссылке
https://disk.yandex.ru/i/xzY6tRNktTq0SQ https://ppt-online.org/962861
С оригиналом свидетельство о регистрации «Крестьянского информационного агентство» № П 4014 от 14 октября 1999 г можно ознакомится по
ссылке https://disk.yandex.ru/i/8ZF2bZg0sAs-Iw https://ppt-online.org/962861
Заключение выводы о пригодности компенсатора Темнова В Г с использованием демпфирующего гасителя напряжений ( колебаний ) для
теплотрассы, на основе применения фрикционно -подвижных сдвиговых соединений с косыми компенсаторами, с длинными овальными
отверстиями с болтовми креплениями с контрольным натяжением болтов , для обеспечения трубопроводов на основе изобретений проф. дтн ПГУПС
А.М.Уздина № 154506 «Панель противовзрывная» № 1143895, 1168755, 1174616, 2010136746, 887748 «Стыковое соединение растянутых элементов",
серийный выпуск (предназначены для работы в сейсмоопасных районах с сейсмичностью более 9 баллов по шкале MSK-64).
Предназначенного для сейсмоопасных районов с сейсмичностью до 9 баллов, серийный выпуск (в районах с сейсмичностью 8 баллов и выше для
крепления оборудования и трубопроводов необходимо использование сейсмостойких телескопических опор, а для соединения трубопроводов между
собой необходимо применение фланцевых фрикционно- подвижных соединений, работающих на сдвиг, с использованием фрикци -болта, состоящего
из латунной шпильки с пропиленным в ней пазом и с забитым в паз шпильки медным обожженным клином, согласно рекомендациям ЦНИИП им
Мельникова. ОСТ 36-146-88. ОСТ 108 275 63-80.РТМ 24.038.12-72. ОСТ 37.001.050- 73.альбома 1-487-1997.00.00 и изобрет №№ 1143895.
1174616,1168755 SU, 4,094.111 US. TW201400676 Rcstraintanli-windandanli-seismic-firiction-daniping-dcvice . согласно изобретения «Опора
сейсмостойкая» Мкл Е04Н 9/02, патент № 165076 RU. Бюл.28. от 10 10.2016, согласно изобретения "Антисейсмическое фланцевое фрикционноподвижное соединение для трубопроводов" заявка № 2018105803/2 (008844) от 27.02.2018 г..в местах подключения использованию термического
гасителя (температурного) колебаний для строительных конструкций (кровли) на основе применения фрикционно -подвижных сдвиговых
соединений с косыми компенсаторами, с длинными овальными отверстиями с болтовми креплениями с контрольным натяжением болтов , для
обеспечения сейсмостойкости трубопроводов на основе изобретений проф. дтн ПГУПС А.М.Уздина № 154506 «Панель противовзрывная» № 1143895,
1168755, 1174616, 2010136746, 887748 «Стыковое соединение растянутых элементов"

263.

Прилагает научною статью товарищей из КНР экспериментальное исследование Гибридной соединительной балки С Фрикционным амортизатором с
использованием Полустального материала Тао Ванг1*, Фэнли Янг1, Синь Ванг2 и Яо Цуй2
* 1. Лаборатория сейсмостойкости и инженерной вибрации, Институт инженерной механики, Китайское управление по землетрясениям (CEA), Харбин,
Китай
* 2государственная ключевая лаборатория прибрежной и морской инженерии, Школа гражданского строительства, факультет инженерной
инфраструктуры, Даляньский технологический университет, Далянь, Китай
Сообщалось, что соединительные балки RC получили серьезные повреждения во время землетрясения в Вэньчуане в 2008 году. Балки очень трудно
отремонтировать, как только появляются трещины. Чтобы улучшить пластичность и ремонтопригодность традиционной соединительной балки RC, в
этом исследовании предлагается управляемая повреждениями гибридная соединительная балка. Гибридная соединительная балка соединяет
конечности стены с помощью фрикционного демпфера, соединенного через сегменты стальной балки. Прочность и жесткость фрикционного демпфера
тщательно продуманы, чтобы сконцентрировать больше деформации на демпфере. Механизм трения может рассеивать больше энергии, чем
традиционная RC-соединительная балка. Неопределенности, возникающие в процессе проектирования, и характеристики, присущие традиционным
соединительным балкам RC или другим типам амортизаторов, значительно снижаются. Для всех соединений используются высокопрочные болты,
чтобы их можно было быстро заменить при обнаружении каких-либо повреждений после землетрясения. В этом исследовании фрикционный демпфер
с использованием полуметаллических фрикционных пластин и прокладок из нержавеющей стали в качестве контактной пары был испытан при
различных скоростях нагружения. Была измерена температура. Затем была разработана термомеханическая модель для корреляции рассеиваемой
энергии с коэффициентом трения или силой трения, которая может быть легко включена в процесс проектирования конструкции. Наконец, гибридная
соединительная балка была разработана и испытана квазистатически. Сила, деформация и способность рассеивать энергию были сопоставлены с
традиционной RC-соединительной балкой, которая также продемонстрировала управляемость повреждениями с помощью предлагаемой гибридной
соединительной балки.

264.

Вступление
В высотных зданиях часто используется система стен из железобетона (RC) в качестве элемента сопротивления поперечной силе. Двойной механизм
сейсмической защиты, т.е. соединительные балки и поперечные стенки, особенно подходит для обеспечения баланса между комфортом проживания и
безопасностью от землетрясений. Во время землетрясения в первую очередь повреждаются соединительные балки, и вся конструкция становится
более гибкой, что предотвращает попадание в конструкцию высокочастотной доминирующей энергии. Поэтому часто ожидается, что соединительная

265.

балка будет пластичной, как это предлагается во многих сейсмических проектных кодексах (Международный совет по кодам (ICC), 2015; МОХУРД,
2016a,b). Однако большая пластичность элементов RC влечет за собой больший ущерб, поскольку пластичность зависит от растрескивания бетона и
податливости стальной арматуры. Как только соединительная балка RC трескается, ее очень трудно отремонтировать, как сообщалось во время
землетрясения в Вэньчуане в 2008 году (Ван, 2008).
Соединительная балка, однажды объединенная с амортизаторами, также называемыми гибридными соединительными балками, привлекательна
благодаря своей управляемости повреждениями, которая превосходит традиционные RC-соединительные балки. Недавние исследования (Фортни и
др., 2007; Сюй, 2007; Тенг и др., 2010; Лу и др., 2013; Сюй и др., 2016) продемонстрировали, что пластичность значительно повышается за счет
использования амортизаторов в соединительной балке. Вязкоупругий соединительный демпфер был использован Монтгомери и Кристопулосом (2015)
для повышения сейсмических характеристик высотных зданий. Производительность двух ветвей стены, соединенных вязкоупругой связью, при
ветровых и сейсмических нагрузках также была подтверждена экспериментально. Самоцентрирующийся демпфер с использованием проводов SMA
для соединительной балки RC был разработан для обеспечения возможности повторного центрирования системы, что было продемонстрировано
экспериментами (Мао и др., 2012). Совсем недавно Ji и др. (2017) предложили короткое стальное срезное звено для замены всей соединительной
балки RC. Как способность рассеивать энергию, так и возможность быстрой замены были проверены с помощью квазистатических циклических
испытаний. Был построен четырехэтажный образец в масштабе 1/2, который был установлен с помощью соединительных балок из низкоуглеродистой
стали (Cheng et al., 2015). Соединение между стальной соединительной балкой и поперечной стенкой RC работало хорошо в течение всего испытания.
Однако в большинстве упомянутых выше конфигураций отсутствуют механизмы замены. После повреждения амортизаторы трудно заменить. Кроме
того, некоторые металлические амортизаторы, хотя и соединялись болтами, имели значительную избыточную прочность, что приводило к
повреждению соединения при больших деформациях.
Для решения этих проблем часто используется фрикционный демпфер. Теоретически, фрикционный демпфер обладает бесконечной начальной
жесткостью и стабильной силой после скольжения, которая превосходит другие типы демпферов при применении соединительной балки, как
продемонстрировали Ан и др. (2013) и Е. и др. (2018). Большинство фрикционных амортизаторов имеют линейный тип, работающий в осевом
направлении, например, фрикционный амортизатор Pall (Pall and Marsh, 1982) и амортизатор Sumitomo (Айкен и др., 1993). Они часто комбинируются с
другими механизмами для реализации более сложного поведения, такими как самоцентрирующийся демпфер (Filiatrault et al., 2000) и полуактивно
управляемый демпфер (Сюй и Нг, 2008). Энергия также может рассеиваться за счет крутящего момента трения (Муалла и Белев, 2002) или за счет
болтовых соединений (Лоо и др., 2014). Ключом к обеспечению стабильного поведения при трении являются материалы контактной пары. За

266.

последние два десятилетия было тщательно изучено несколько типов фрикционных материалов, в том числе полуметаллический фрикционный
материал, материал из металлических сплавов, керамический материал на основе железа, композитный материал на основе углерода и т. Д. (Чан и др.,
2004; Гурунат и Биджве, 2007; Юн и др., 2010; Латур и др., 2014; Ли и др., 2016). В этих исследованиях изучалось микроскопическое поведение
контактной поверхности, такое как адгезия, истирание, усталость, коррозия и так далее, с помощью сканирующей электронной микроскопии. В
инженерной практике может быть трудно измерить такое поведение во время землетрясения. Вместо этого смещение, скорость и сила могут быть
получены из доступного процесса проектирования. Поэтому связь поведения трения со смещением, скоростью или рассеиваемой энергией может быть
очень полезной для применения при проектировании.

267.

268.

С этой целью в данном исследовании для использования демпфирующих компенсаторов для теплотрпмм , теплосетей , предлагается фрикционный
демпфер, использующий полуметаллические фрикционные пластины и прокладки из нержавеющей стали в качестве контактной пары. Амортизаторы
были испытаны при различных скоростях нагружения, и была измерена температура. Затем была разработана термомеханическая модель для
корреляции рассеиваемой энергии с коэффициентом трения или силой трения, которая может быть легко включена в процесс проектирования
конструкции. Наконец, гибридная соединительная балка была разработана и испытана квазистатически. Сила, деформация и способность рассеивать
энергию были сопоставлены с традиционной RC-соединительной балкой, и даны выводы для обеспечения руководства по проектированию.
Механическое поведение фрикционного демпфера
Фрикционные амортизаторы отличаются бесконечной начальной жесткостью и почти постоянной силой скольжения, что очень привлекательно,
поскольку большая жесткость помогает противостоять ветровой нагрузке и небольшим или умеренным землетрясениям, в то время как постоянная
сила скольжения предотвращает непредсказуемую силу, передаваемую в основной элемент конструкции из-за эффекта избыточной прочности. В этом
исследовании был разработан фрикционный демпфер, который работает в направлении сдвига, чтобы адаптироваться к деформации соединительных
балок. Хотя он работает в режиме деформации сдвига, конфигурация аналогична тем, которые работают в осевом направлении.
Конфигурация фрикционного демпфера

269.

270.

271.

272.

273.

274.

275.

276.

277.

278.

279.

Материалы специальных технических условий (СТУ) по испытанию кабеленесущих систем: KS20,KS80,KSF80,PEXKS80, PEXKSF80, MEK70,MEK 110,CT,VM
и использования сдвигового демпфирующего компенсатор - гасителя сдвиговых напряжений в ПК SCAD, согласно заявки на изобретение от
14.02.2022 : "Огнестойкого компенсатора -гасителя температурных напряжений" заявка № 2022104632 от 21.02.2022 , вх 009751, "Фрикционнодемпфирующий компенсатор для трубопроводов" заявка № 2021134630 от 29.12.2021, "Термический компенсатор гаситель температурных
колебаний" Заявка № 2022102937 от 07.02.2022 , вх. 006318, "Термический компенсатор гаситель температурных колебаний СПб ГАСУ F16 L 23/00 №
20222102937 от 07 фев 2022, вх 006318, «Огнестойкий компенсатор –гаситель температурных колебаний»,-регистрационный 2022104623 от
21.02.2022, вх. 009751, "Фланцевое соединения растянутых элементов трубопровода со скошенными торцами" № а 20210217 от 23 сентября 2021,
Минск, "Спиральная сейсмоизолирующая опора с упругими демпферами сухого трения" № а 20210051, "Компенсатор тов. Сталина для
трубопроводов" № а 20210354 от 22 февраля 2022 Минск , для обеспечения сейсмостойкости кабеленесущей системы: KS20,KS80,KSF80,PEXKS80,
PEXKSF80, MEK70,MEK 110,CT,VM в сейсмоопасных районах , сейсмичностью более 9 баллов .

280.

Специальные технические условия (СТУ), альбомы , чертежи, лабораторные испытания : о применения демпфирующего сдвигового компенсатора,
гасителя сдвиговых напряжений , для теплотрасс для обеспечения сдвиговой прочности и сейсмостойкости теплотрасс, в сейсмоопасных районах
, сейсмичностью более 9 баллов, сдвиговых демпфирующих компенсаторов -гасителей температурных напряжений в теплотрассе, которые уже
давно используются нашими партнерами в США, Канаде фирмой STAR SEIMIC,
на основе изобретений проф дтн ПГУП А.М.Уздина №№ 1143895, 1168755, 1174616, 165076 «Опора сейсмостойкая», 154505 «Панель
противовзрывная», № 2010136746 «Способ защиты зданий и сооружений при взрыве с использованием сдвигоустойчивых и легко сбрасываемых
соединений , использующие систему демпфирования фрикционности и сейсмоизоляцию для поглощения взрывной и сейсмической энергии» ,
хранятся на Кафедре технологии строительных материалов и метрологии КТСМиМ 190005, Санкт-Петербург, 2-я , Красноармейская ул., д. 4, СПб
ГАСУ, находятся проф. дтн Юрий Михайловича Тихонова в ауд 305 С. Тема докторской диссертации дтн проф Тихонова Ю.М " Аэрированные легкие и
тепло-огнезащитные бетоны и растворы с применением вспученного вермикулита и перлита и изделия на их основе"
т (812) 694-7810 моб (921) 962-67-78, (911) 175-84-65

281.

282.

283.

284.

285.

286.

287.

288.

289.

290.

ФГАОУ ВО «СПбПУ» № RA.RU.21ТЛ09 от 26.01.2017, 195251, СПб, ул. Политехническая, д 29,
организация «Сейсмофонд» при СПб ГАСУ
ОГРН: 1022000000824,
т/ф:(812) 694-78-10
https://www.spbstu.ru [email protected] (921) 944-67-10 (ат. № RA.RU.21ТЛ09, выдан 26.01.2017)
Испытательного центра СПб ГАСУ, аккредитован Федеральной службой по аккредитации (аттестат
№ RA.RU.21СТ39, выдан 23.06.2015), ОО "Сейсмофонд" СПб ГАСУ 190005, СПб, 2-я
Красноармейская д 4 ( СПб ГАСУ) ОГРН: 1022000000824 ) Протокол 576 от 26.12.2023 (812) 694-78-
10
Эксперт. зак. ФГАОУ «СПбПУ № RA.RU.21TЛ09 26.07.2017 № 576 от 26.12.2023 СПОСОБ имени
Уздина А М ШПРЕНГЕЛЬНОГО УСИЛЕНИЯ ПРОЛЕТНОГО СТРОЕНИЯ мостового сооружения с
использованием треугольных балочных ферм для сейсмоопасных районов МПК E 01 D 22 /00
Техническое свидетельство по изобретению: «Способ им Уздина М.А. шпренгельного усиления
пролетного строения мостового сооружения с использованием трехгранных балочных ферм для
сейсмоопасных районов» Испытании напряженно-деформируемого состояния фрагментов
монтажного узла и пригодности монтажных соединений секций элементов трехгранных
комбинированных пространственных структур согласно заявки на изобретение : «Способ усиления
пролетного строения мостового сооружения с использованием комбинированных
пространственных трехгранных структур для сейсмоопасных районов Отправлено в (ФИПС) от
26.12.2023 с использованием комбинированных трехгранных структур, для устроства
быстровозодимых по изобртению: «Способ им Уздина М.А. шпренгельного усиления пролетного
строения мостового сооружения с использованием трехгранных балочных ферм для
сейсмоопасных районов» , согласно изобретения RU 80471 «Комбинированные пространственные
структуры «МАРХИ ПСПЛ «Новокисловодск» и согласно СП 20.13330.2011, СНиП 2.01.07-85*
"Нагрузки и воздействия", ДЛЯ защиты военной (армейской) авиации , нефтебаз авиабаз от атаки
дронов (беспилотников) блока НАТО Президент ОО "Сейсмофонд" при СПб ГАСУ Мажиев Х Н
[email protected] [email protected] [email protected] (911) 175-84-65, (921) 962-6778, (981) 886-57-42, (981) 276-49-92 .(996) 785-26-76 Повреждение четырех самолетов Ил-76 в
Пскове: каковы последствия при атаке украинских дронов в семи областях Автор, ответственный за
переписку: Коваленко Елена Ивановна , e-mail: [email protected] [email protected]
(921) 962-67-78, (996) 785-6276, ( 921) 944-67-10 https//t.me/resistance_test (812) 6947810

291.

ТС №2023-0000569 ОО «Сейсмофонд» № 2 СПОСОБ
имени Уздина А М ШПРЕНГЕЛЬНОГО УСИЛЕНИЯ ПРОЛЕТНОГО СТРОЕНИЯ мостового
сооружения с использованием треугольных балочных ферм для сейсмоопасных районов МПК
E 01 D 22 /00 НА ОСНОВАНИИ: Протокола испытании узлов и фрагментов сборки трехгранных
неразрезных комбинированных пространственных структур, ферм-балок, пилонов с
предварительным напряжением № 568 от 26.12.2023 (ИЛ ФГБОУ СПб ГАСУ, № RA.RU. 21СТ39 от
27.05.2015, , организация «Сейсмофонд» СПб ГАСУ ИНН 2014000780, для для повышения
грузоподьемности пролетного стоения мостового сооружения , с без крановой сборки
комбинированных пространственных структурных ферм -покрытия для повышения
грузододбеиности моста до 90 тонн с использованием пространственных структурных ферм -арок
из стержневых структур, МАРХИ ПСПК", "Кисловодск" ( RU 80471 "Комбинированная
пространственная структура" ) с большими перемещениями на предельное равновесие и
приспособляемость для «Способ усиления пролетного строения мостового сооружения с
использованием комбинированных пространственных трехгранных структур для
сейсмоопасных районов Отправлено в (ФИПС) от 26.12.2023 Trexgrannie fermi predvaritelnim
napryazhenie dlya nadstroyki pyatietajek naprazhenno-deformiruemoe trexgrannix ferm pyatigrannogo
sostavnogo 331 str https://disk.yandex.ru/d/oanBFWAQd2TOqA
https://disk.yandex.ru/i/5NwGgo2vy7TGyA [email protected]
Trexgrannie fermi predvaritelnim napryazhenie dlya nadstroyki pyatietajek naprazhennodeformiruemoe trexgrannix ferm pyatigrannogo sostavnogo 331 str https://ppt-online.org/1353302
https://mega.nz/file/gy82yYwL#UbQKx3flsm8gVryOJRVCjaubhjAx6fwBL9Y-aX5CDSM
https://mega.nz/file/9j8SRb4C#C4lBnEbatYHcdI9dkpotzTnBs9T8netbwZGduR6KQzE
https://ibb.co/album/hBXXtj https://ibb.co/1QRFVfS
ДОПОЛНИТЕЛЬНАЯ ИНФОРМАЦИЯ: LPI Kalinina Snesti nelzya ostavit Rekonstruktsiya khrushevok
pyatietazhek bez viseleniya 5-ti etazhki klasnoe zhile 30 str https://disk.yandex.ru/i/APJtJpHKnuNc_
https://ppt-online.org/1352248 https://mega.nz/file/XMpQADxI#q_NLqRo2E9AAUWFlJB5ty9O5aRpE61-5vumPJr7dbY https://ibb.co/album/D43YZH https://ibb.co/rQ7jrtB
https://pub.fsa.gov.ru/ral/view/13060/applicant
Конференция молодых ученых «Проблемы механики: теория, эксперимент и новые технологии» с
10 по 18 марта 2024 г. на территории горнолыжного центра «Шерегеш» Кемеровской области и в
Новосибирск. Секретарь конференции: Лаврук Сергей Андреевич Адрес: 630090, г. Новосибирск,
ул. Институтская, д. 4/1, ИТПМ СО РАН E-mail: [email protected] Телефон: (383)3308538

292.

ТС №2023-0000569 №3
ПРОДУКЦИЯ выполенена по изобретению: «Способ им Уздина М.А. шпренгельного усиления
пролетного строения мостового сооружения с использованием трехгранных балочных ферм для
сейсмоопасных районов» с использованием строительных элементов, в виде комбинированных
пространственных трехгранных пилонов, ферм-балок для ложных ангаров и реально
существующих , без крановой сборки , из трехгранных комбинированных с предварительным
напряжением ( см.: «Трехгранные фермы с предварительным напряжением для плоских
покрытий» Е.А.Мелехин, Н.В.Гончаров, А.Б Малыгин, «Напряженно -деформируемое стояние
трехгранных ферм с неразрезанными поясами пятигранного составного профиля» Е.А.Мелехин
НИУ МГСУ патент RU 2188277 МПК E04 С 3/04 ) трехгранных ферм-балок ,скортоным спсобом с
мионтированных на автомобилях, монтажных площадок, установленных на грузовых
автомашинах, переоборудованного для сборки на болтовых соединениях по изобретениям
проф дтн А.М.Уздина №№ 1143895, 1168755, 1174616, 2550777, 858604, 154506, 165076,
1760020, 2010136746 ( без крана) , с помощью монтажной лебедки , и с использованием
отечественных и зарубежных изобретений №№ 2140509 E 04 H 1/02, MPK E04 G 23/00 RU
2043465, 2121553, Малафеев 2336399, 2021450, Насадка 2579073, SU 1823907 ( нет в общей
доступности), 2534552, 2664562, 2174579, Курортный , 2597901, полезная модель 154158,
Марутяна Александр Суренович г.Кисловодск №№ 153753, 2228415, 2228415, 2136822, Способ
надстройки зданий №№ 2116417, 2336399, 2484219, 2116417, 2336399, 2484219, RU 80417
«Комбинированные пространственные структуры» и др стран ЕС на основании заявки на
изобртение: «Способ усиления пролетного строения мостового сооружения с использованием
комбинированных пространственных трехгранных структур для сейсмоопасных районов
Отправлено в (ФИПС) от 26.12.2023

293.

ТС №2022-0000576 № 4
Объект испытаний: по изобретению: «Способ им Уздина М.А. шпренгельного усиления
пролетного строения мостового сооружения с использованием трехгранных балочных ферм для
сейсмоопасных районов» упругопластическая стальная трехгранная ферма-балкакомбинированная, пространственная структура ферм –балка для устройства быстровозодимых ,
согласно изобретения RU 80471 «Комбинированные пространственные структуры «МАРХИ ПСПЛ
«Кисловодск» и согласно СП 20.13330.2011, СНиП 2.01.07-85* "Нагрузки и воздействия", на
основании изобртения «Способ им Уздина М.А. шпренгельного усиления пролетного строения
мостового сооружения с использованием трехгранных балочных ферм для сейсмоопасных
районов» и изобртения :«Способ усиления пролетного строения мостового сооружения с
использованием комбинированных пространственных трехгранных структур для сейсмоопасных
районов Отправлено в (ФИПС) от 26.12.2023 для усиление пролтеного строения мостового
сооружения , соглано изобртения : Способ усиления пролетного строения мостового сооружения
с использованием комбинированных пространственных трехгранных структур для
сейсмоопасных районов из стержневых структур, МАРХИ ПСПК", "Кисловодск" ( RU 80471
"Комбинированная пространсвенная структура" ) с большими пермещениями на предельное
равновесие и приспособляемость для усиления пролетного строения мостового сооружения с
использованием комбинированных пространственных трехгранных структур для сейсмоопасных
районов, согласно изобретения RU 80471 «Комбинированные пространственные структуры
«МАРХИ ПСПЛ «Кисловодск» и согласно СП 20.13330.2011, СНиП 2.01.07-85* "Нагрузки и
воздействия", с использованем болтовых соедиений из, типовых структурных серии 1.460.3-14 ГПИ
"Ленпроектстальконструкция", стальные конструкции покрытий производственных» № 2022111669
от 25.05.2022, «Сборно-разборный железнодорожный мост» № 2022113052 от 27.05.2022,
«Сборно-разборный универсальный мост» № 2022113510 от 21.06.2022, «Антисейсмический
сдвиговой компенсатор для гашения колебаний пролетного строения моста» № 2022115073 от
02.06.2022 ) , на болтовых соединениях с демпфирующей способностью при импульсных
растягивающих нагрузках, между диагональными натяжными элементами, верхнего и нижнего
пояса фермы, из пластинчатых балок, с применением гнутосварных прямоугольного сечения типа
«Молодечно» (серия 1.460.3-14 ГПИ «Ленпроектстальконструкция» с использованием
изобретений №№ 2155259 , 2188287, 2136822, 2208103, 2208103, 2188915, 2136822, 2172372,
2228415, 2155259, 1143895, 1168755

294.

ТС №2022-0000569 ОО «Сейсмофонд» №5
НА ОСНОВАНИИ: Протокола испытании узлов и фрагментов по изобретению: «Способ им Уздина
М.А. шпренгельного усиления пролетного строения мостового сооружения с использованием
трехгранных балочных ферм для сейсмоопасных районов», сборки трехгранных неразрезных
комбинированных пространственных структур, ферм-балок, пилонов с предварительным
напряжением для устройства быстровозодимых ложных и реально существующих для защиты от
дронов –камикадзе военных аэродромов , согласно изобретения RU 80471 «Комбинированные
пространственные структуры «МАРХИ ПСПЛ «Кисловодск» и согласно СП 20.13330.2011, СНиП
2.01.07-85* "Нагрузки и воздействия", № 568 от 13.09.2023 (ИЛ ФГБОУ СПб ГАСУ, № RA.RU. 21СТ39
от 27.05.2015, организация «Сейсмофонд» при СПб ГАСУ ИНН 2014000780, пространственных
структурных ферм -покрытия и с использованием стержневых структур, МАРХИ ПСПК",
"Новокисловодск" ( RU 80471 "Комбинированная пространственная структура" ) с большими
перемещениями на предельное равновесие и приспособляемость для модернизируемых и
реконструируемых военных существующих и новых ангаров Trexgrannie fermi predvaritelnim
napryazhenie dlya nadstroyki pyatietajek naprazhenno-deformiruemoe trexgrannix ferm pyatigrannogo
sostavnogo 331 str https://disk.yandex.ru/d/oanBFWAQd2TOqA
https://disk.yandex.ru/i/5NwGgo2vy7TGyA
[email protected] Trexgrannie fermi
predvaritelnim napryazhenie dlya nadstroyki pyatietajek naprazhenno-deformiruemoe trexgrannix ferm
pyatigrannogo sostavnogo 331 str https://ppt-online.org/1353302
https://mega.nz/file/gy82yYwL#UbQKx3flsm8gVryOJRVCjaubhjAx6fwBL9Y-aX5CDSM
https://mega.nz/file/9j8SRb4C#C4lBnEbatYHcdI9dkpotzTnBs9T8netbwZGduR6KQzE
https://ibb.co/album/hBXXtj
https://ibb.co/1QRFVfS ДОПОЛНИТЕЛЬНАЯ ИНФОРМАЦИЯ: LPI Kalinina Snesti nelzya ostavit
Rekonstruktsiya khrushevok pyatietazhek bez viseleniya 5-ti etazhki klasnoe zhile 30 str
https://disk.yandex.ru/i/APJtJpHKnuNc_ https://ppt-online.org/1352248
https://mega.nz/file/XMpQADxI#q_NLqRo2E9AA-UWFlJB5ty9O5aRpE61-5vumPJr7dbY
https://ibb.co/album/D43YZH https://ibb.co/rQ7jrtB
https://pub.fsa.gov.ru/ral/view/13060/applicant
Строительные элементывыполенны по изобретению: «Способ им Уздина М.А. шпренгельного
усиления пролетного строения мостового сооружения с использованием трехгранных балочных
ферм для сейсмоопасных районов», в виде комбинированных пространственных трехгранных ,
выполняются из трехгранных комбинированных с предварительным напряжением ( см.:
«Трехгранные фермы с предварительным напряжением для плоских покрытий» Е.А.Мелехин,

295.

Т №2023-0000576 ОО «Сейсмофонд»№ 6
Выводы : по изобретению: «Способ им Уздина М.А. шпренгельного усиления пролетного
строения мостового сооружения с использованием трехгранных балочных ферм для
сейсмоопасных районов», вполненных из комбинированных пространственные структурны
ферм - балок-пилонов, для шпренгельного усиления пролетного строения мостового
сооружения с использованием трехгранных балочных ферм для сейсмоопасных районов», с
использованием пространственных структурных ферм - покрытий и настройки верхних этажей
из стержневых структур, МАРХИ ПСПК", "Новокисловодск" ( RU 80471 "Комбинированная
пространсвенная структура" ) с большими пермещениями на предельное равновесие и
приспособляемость, для модернихируемых и реконструируемых хрущевок (пятиэтажек) с
надстройкой верхних этажей и висячих остекленных террас , вокруг пятиэтажки (хрущевки)
для реконструкции рятиэтажек (хрущевок) без выселения, с использованием сдвигового
компенсатора. Сдвиговые накладки- прошли проверку прочности по первой и второй группе
предельных состояний. РАСЧЕТНАЯ СХЕМА демпфирующих сдвиговых компенсаторов для
гасителя динамических колебаний и сдвиговых напряжений с учетом сдвиговой жесткости в ПК
SCAD СП 16.1330.2011 SCAD п.7.1.1 действий поперечных сил https://ppt-online Вывод.org/19380
https://www.youtube.com/watch?v=SUj1tSPexuw
https://softline.ru/uploads/67/cc/45/c9/8c/f7/86/7d/10/origin.pdf
В заключение необходимо сказать о соединении работающим на растяжение при
контролируемом натяжении может обеспечить не разрушаемость сухого или сварного стыка
при импульсных растягивающих нагрузках и многокаскадном демпфировании
комбинированных пространственных структурных ферм –балок (покрытия) для реконструкции
пятиэтажек ( хрущевок) с использованием пространственных структурных ферм – покрытий
военных, армейских ангаров, из стержневых структур, МАРХИ ПСПК", "Новокисловодск" ( RU
80471 "Комбинированная пространсвенная структура" ) с большими пермещениями на
предельное равновесие и приспособляемость для устройства быстровозодимых ложных и
реально существующих для защиты от дронов –камикадзе , военных аэродромов , согласно
изобретения RU 80471 «Комбинированные пространственные структуры «МАРХИ ПСПЛ
«Кисловодск» и согласно СП 20.13330.2011, СНиП 2.01.07-85* "Нагрузки и воздействия", ДЛЯ
защитв военной (армейской) авиации , нефтебаз, авиабаз от атаки дронов (беспилотников) блока
НАТО Улубаев Солт-Ахмад Хаджиевич https://pub.fsa.gov.ru/ral/view/26088/applicant

296.

ТС №2023-0000576 ОО «Сейсмофонд» № 7
Испытания математических моделей по изобретению: «Способ им Уздина М.А. шпренгельного
усиления пролетного строения мостового сооружения с использованием трехгранных балочных
ферм для сейсмоопасных районов» с использованием комбинированных пространственных
структурных трехгранных с использованием пространственных структурных ферм - покрытий
из стержневых структур, МАРХИ ПСПК", "Новокисловодск" ( RU 80471 "Комбинированная
пространсвенная структура" ) с большими пермещениями на предельное равновесие и
приспособляемость для модернихируемых , согласно изобретения RU 80471 «Комбинированные
пространственные структуры «МАРХИ ПСПЛ «Кисловодск» и согласно СП 20.13330.2011, СНиП
2.01.07-85* "Нагрузки и воздействия", для демпфирующих сдвиговых компенсаторов для гасителя
динамических колебаний и сдвиговых напряжений с учетом сдвиговой жесткости в ПК SCAD СП
16.1330.2011 SCAD п.7.1.1 ghb действий поперечных сил https://ppt-online.org/19380
https://www.youtube.com/watch?v=SUj1tSPexuw
https://softline.ru/uploads/67/cc/45/c9/8c/f7/86/7d/10/origin.pdf , предназначенных и для
сейсмоопасных районов с сейсмичностью более 9 баллов с трубопроводами, с креплением
трубопроводов с помощью фрикционных протяжных демпфирующих компенсаторов (ФПДК) согласно
программной реализации в SCAD Office проводились по прогрессивному методу испытания зданий и
сооружений как более новому. Для практического применения фрикционно-подвижных соединений
(ФПС) после введения количественной характеристики сейсмостойкости надо дополнительно
испытать узлы ФПС. Проведены испытания математических моделей в программе SCAD. Процедура
оценок эффекта и обработки полученных данных существенно улучшена и представляет собой
стройный алгоритм, обеспечивающий высокую воспроизводимость оценок. Изготовитель чертежей:
ОРГАН ПО СЕРТИФИКАЦИИ И ИЗГОТОВИТЕЛЬ комбинированных пространственных структурных
трехгранных ферм – покрытий армейского ангара , из стержневых структур, МАРХИ ПСПК",
"Новокисловодск" ( RU 80471 "Комбинированная пространсвенная структура" ) с большими
пермещениями на предельное равновесие и приспособляемость, типа «Молодечно» (серия
1.460.3-14 ГПИ «Ленпроектстальконструкция» ) скрепленными болтовыми натяжными соединениями
между диагональными, натяжными элементами ( раскосов ) верхнего и нижнего поясами
упругопластической стальной фермы, по китайской технологии, со встроенным бетонных настилом,
по американской технологии, с испытанием и расчетом в 3D –модели конечных элементов: ФГБОУ
СПб ГАСУ № RA.RU.21СТ39 от 27.05.2015, 190005, СПб, 2-я Красноармейская ул. д 4, ФГБОУ ВПО ПГУПС
№ SP01.01.406.045 от 27.05.2014, 190031, СПб, Московский пр.9, ИЦ «ПКТИ - Строй-ТЕСТ», ОО
«Сейсмофонд» ОГРН: 1022000000824 ИНН 2014000780 , КПП 201401001 т/ф: (812) 694-78-10,
(аттестат № RA.RU.21СТ39, выдан 27.05.2015) [email protected]

297.

ТС №2023-0000576 ОО «Сейсмофонд» № 8
Сейсмофондом при СПб ГАСУ :Выполен по изобретению: «Способ им Уздина М.А.
шпренгельного усиления пролетного строения мостового сооружения с использованием
трехгранных балочных ферм для сейсмоопасных районов» и соглано расчета SCAD
комбинированныъ простарнственных трехгранных стуктур, для шпренгельного усилемя
существующих мостов , согласно изобретения RU 80471 «Комбинированные пространственные
структуры «МАРХИ ПСПЛ «Новокисловодск» и согласно СП 20.13330.2011, СНиП 2.01.07-85*
"Нагрузки и воздействия", ДЛЯ с демпфирующими сдвиговыми жесткости с компенсаторами,
проф Уздина А М для гасителя динамических колебаний и сдвиговых напряжений с учетом
сдвиго строительство быстровозодимых ложных и реально существующих для защиты от
дронов –камикадзе военных аэродромов в ПК SCAD СП 16.1330.2011 SCAD п.7.1.1

298.

ТС №2023-0000576 ОО «Сейсмофонд» № 9
Методика проведения испытаний фрагментов антисейсмического фрикционнодемпфирующего соединения, соединенного с помощью фрикционных протяжных
демпфирующих компенсаторов (ФПДК) с контролируемым натяжением, расположенных в
длинных овальных отверстиях, предназначенного для сейсмоопасных районов с сейсмичностью
более 9 баллов для пролетных строений моста Уздина А М . для ускоренного повышения
грузопольемности строительство по изобретению: «Способ им Уздина М.А. шпренгельного
усиления пролетного строения мостового сооружения с использованием трехгранных
балочных ферм для сейсмоопасных районов», согласно изобретения RU 80471
«Комбинированные пространственные структуры «МАРХИ ПСПЛ «Новокисловодск» и согласно
СП 20.13330.2011, СНиП 2.01.07-85* "Нагрузки и воздействия", Разработана: Методика
проведения испытаний фрагментов антисейсмического фрикционно- демпфирующего
соединения, соединенного с помощью фрикционных протяжных демпфирующих компенсаторов
(ФПДК) с контролируемым натяжением, расположенных в длинных овальных отверстиях, из
комбинированных трехгранных просмтранмственных констркций по изобртениям про дтн
ПГУПС Уздина А М . Более подродно смотри изобриение №№ 1143895, 1168755, 1174616,
165-76, 2010136746 154506, 1760020, 858604, 2550777

299.

ТС №2023-0000575 ОО «Сейсмофонд» №

300.

ТС №2023-0000576
ОО «Сейсмофонд» № 11
При разработке проектной документации испытывались организацией Сейсмофонд СПб ГАСУ
фрагменты узлов в ПК SCAD для использования при разработке проектной документации для
повышения грузоподъьемности пролетного строения моста применялись комбинированные
строительные элементы в виде комбинированных пространственных трехгранных арок-балок ,
ферм-балок для повышения пролетного строения моста , при реконструкции мос та , ( без
крановой сборки ) , из трехгранных комбинированных с предварительным напряжением ( см.:

301.

ТС № 2023-0000576 ОО «Сейсмофонд» № 12
Изготовитель и
проектировщик «Способа им Уздина М.А. шпренгельного усиления пролетного строения мостового
сооружения с использованием трехгранных балочных ферм для сейсмоопасных районов» ,
выполнит организация Сейсмофонд" при СПб ГАСУ ФГБОУ СПб ГАСУ № RA.RU.21СТ39 от 27.05.2015,
190005, СПб, 2-я Красноармейская ул. д 4 т/ф (812) 694-78-10, (921) 962-78-78

302.

ТС № 2023-0000576
ОО «Сейсмофонд» № 13
Строительные элементы в виде комбинированных пространственных трехгранных , из
трехгранных комбинированных с предварительным напряжением ( см.: «Трехгранные фермы
с предварительным напряжением для плоских покрытий» Е.А.Мелехин, Н.В.Гончаров, А.Б
Малыгин, «Напряженно -деформируемое стояние трехгранных ферм с неразрезанными
поясами пятигранного составного профиля» Е.А.Мелехин НИУ МГСУ патент RU 2188277 МПК
E04 С 3/04 ) трехгранных ферм-балок , и скоросмтной способ по изобретению: «Способ им
Уздина М.А. шпренгельного усиления пролетного строения мостового сооружения с
использованием трехгранных балочных ферм для сейсмоопасных районов» для сборки на
болтовых соединениях по изобретениям проф дтн А.М.Уздина №№ 1143895, 1168755, 1174616,
2550777, 858604, 154506, 165076, 1760020, 2010136746 ( без крана) , с помощью монтажной
лебедки , и с использованием отечественных и зарубежных изобретений №№ 2140509 E 04 H
1/02, MPK E04 G 23/00 RU 2043465, 2121553, Малафеев 2336399, 2021450, Насадка 2579073, SU
1823907 ( нет в общей доступности), 2534552, 2664562, 2174579, Курортный , 2597901, полезная
модель 154158, Марутяна Александр Суренович г.Кисловодск №№ 153753, 2228415, 2228415,
2136822, Способ надстройки зданий №№ 2116417, 2336399, 2484219, 2116417, 2336399,
2484219, RU 80417 «Комбинированные пространственные структуры» и др стран ЕС
Президент ОО «Сейсмофонд» при СПб ГАСУИНН: 2014000780 (аттестат аккредитации СРО «НИПИ
ЦЕНСТРОЙПРОЕКТ» № 0223.01-2010-2010000211-П-29 от 27.03.2012 СРО «ИНЖГЕОТЕХ» № 0602010-2014000780-И-12,выдано 14.06.2023 Улубаев Солт-Ахмед Хаджиевич . г.Грозный
https://pub.fsa.gov.ru/ral/view/26088/applicant +

303.

ТС № 2023-0000576 ОО "Сейсмофонд" № 14
по
Изобретению: «Способ им Уздина М.А. шпренгельного усиления пролетного строения
мостового сооружения с использованием трехгранных балочных ферм для сейсмоопасных
районов» The Uzdin A M METHOD OF SPRENGTHENING THE SUPERSTRUCTURE of a bridge
structure using triangular girder trusses for earthquake-prone areas IPC E 01 D 22

304.

ТС № 2023-0000576 ОО "Сейсмофонд" № 15

305.

ТС № 2023-0000576 ОО"Сейсмофонд" №16
При разработке проектной документации по изобретению: «Способ им Уздина М.А.
шпренгельного усиления пролетного строения мостового сооружения с использованием
трехгранных балочных ферм для сейсмоопасных районов», проводились испытания
организацией Сейсмофонд СПб ГАСУ фрагменты узлов в ПК SCAD для использования при
разработке проектной документации для повышения грузоподъьемности пролетного строения
моста применялись комбинированные строительные элементы в виде комбинированных
пространственных трехгранных арок-балок , ферм-балок для повышения пролетного строения
моста , при реконструкции мос та , ( без крановой сборки ) , из трехгранных комбинированных с
предварительным напряжением ( см.: «Трехгранные фермы с предварительным напряжением
для плоских покрытий» Е.А.Мелехин, Н.В.Гончаров, А.Б Малыгин, «Напряженно деформируемое стояние трехгранных ферм с неразрезанными поясами пятигранного
составного профиля» Е.А.Мелехин НИУ МГСУ патент RU 2188277 МПК E04 С 3/04 ) трехгранных

306.

ТС № 2023-0000576 ОО «Сейсмофонд» № 17

307.

308.

ТС № 2023-0000576 ОО "Сейсмофонд" № 18
Строительные элементы в виде комбинированных пространственных трехгранных пилонов,
ферм-балок по изобретению: «Способ им Уздина М.А. шпренгельного усиления пролетного
строения мостового сооружения с использованием трехгранных балочных ферм для
сейсмоопасных районов»? из трехгранных комбинированных с предварительным
напряжением ( см.: «Трехгранные фермы с предварительным напряжением для плоских
покрытий» Е.А.Мелехин, Н.В.Гончаров, А.Б Малыгин, «Напряженно -деформируемое стояние
трехгранных ферм с неразрезанными поясами пятигранного составного профиля» Е.А.Мелехин
НИУ МГСУ патент RU 2188277 МПК E04 С 3/04 ) трехгранных ферм-балок , приставных пилонов,
и способ надстройки с автомобильных монтажных площадок, установленных на грузовых
автомашинах, переоборудованного для сборки на болтовых соединениях по изобретениям
проф дтн А.М.Уздина №№ 1143895, 1168755, 1174616, 2550777, 858604, 154506, 165076,
1760020, 2010136746 ( без крана) , с помощью монтажной лебедки , и с использованием
отечественных и зарубежных изобретений №№ 2140509 E 04 H 1/02, MPK E04 G 23/00 RU
2043465, 2121553, Малафеев 2336399, 2021450, Насадка 2579073, SU 1823907 ( нет в общей
доступности), 2534552, 2664562, 2174579, Курортный , 2597901, полезная модель 154158,
Марутяна Александр Суренович г.Кисловодск №№ 153753, 2228415, 2228415, 2136822, Способ
надстройки зданий №№ 2116417, 2336399, 2484219, 2116417, 2336399, 2484219, RU 80417
«Комбинированные пространственные структуры» и др стран ЕС

309.

ТС № 2023-0000576 ОО "Сеймофонд" №19
РОССИЙСКАЯ ФЕДЕРАЦИЯ
ОПОРА СЕЙСМОСТОЙКАЯ 165076
(19)
RU
(11)
165 076
(13)
ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ
U1
(51) МПК
E04H 9/02 (2006.01)
(12) ОПИСАНИЕ ПОЛЕЗНОЙ МОДЕЛИ К ПАТЕНТУ
Статус:
Пошлина:
не действует (последнее изменение статуса: 02.07.2021)
Возможность восстановления: нет.
(21)(22) Заявка: 2016102130/03, 22.01.2016
(24) Дата начала отсчета срока действия
патента:
22.01.2016
Приоритет(ы):
(22) Дата подачи заявки: 22.01.2016
(45) Опубликовано: 10.10.2016 Бюл. № 28
Адрес для переписки:
190005, Санкт-Петербург, 2Красноармейская ул д 4 пр. СПб ГАСУ
Коваленко Александр Иванович
(72) Автор(ы):
Андреев Борис Александрович (RU),
Коваленко Александр Иванович (RU)
(73) Патентообладатель(и):
Андреев Борис Александрович (RU),
Коваленко Александр Иванович (RU)

310.

ТС №2023-0000576 ОО "Сейсмофонд" № 20

311.

ТС № 2023-0000576 ОО "Сейсмофонд" № 21
СПОСОБ
имени Уздина А М ШПРЕНГЕЛЬНОГО УСИЛЕНИЯ ПРОЛЕТНОГО СТРОЕНИЯ мостового сооружения с
использованием треугольных балочных ферм для сейсмоопасных районов МПК E 01 D 22 /00

312.

ТС № 2023-0000576 ОО "Сейсмофонд" № 22
Лабортарные испытания по изобретению: «Способ им Уздина М.А. шпренгельного усиления
пролетного строения мостового сооружения с использованием трехгранных балочных ферм
для сейсмоопасных районов» и по изобртению:_»Стена и способ ее возведения» (19) SU (11) 1
728 414 (13)A1(51) МПКE04B 2/26(2006.01) (21)(22) Заявка: 4707656, 1989.06.19 (22) Дата
подачи заявки: 1989.06.19 (45)Опубликовано: 1992.04.23 (72) Авторы: ЧЕМОДАНОВ МАРК
АЛЕКСАНДРОВИЧ КОВАЛЕНКО АЛЕКСАНДР ИВАНОВИЧ, ЧЕРНАКОВ ВЛАДИСЛАВ АФАНАСЬЕВИЧ
(56)Документы, цитированные в отчёте о поиске: 3аявка Франции № 2536102, кл. Е04C 1/10.
1976.Патент CCCР № 965366, кл. Е 04 В 2/06, 1977.3аявка Франции Ns 2202212, кл. Е04 C 1/08,
1974. https://yandex.ru/patents/doc/SU1728414A1_19920423 и
СПОСОБ имени Уздина А М ШПРЕНГЕЛЬНОГО УСИЛЕНИЯ ПРОЛЕТНОГО СТРОЕНИЯ мостового
сооружения с использованием треугольных балочных ферм для сейсмоопасных районов МПК
E 01 D 22 /00 проводились в /СПБ ГАСУ

313.

ТС №2023-0000576 ОО "Сейсмофонд" № 23 СПОСОБ
имени Уздина А М ШПРЕНГЕЛЬНОГО УСИЛЕНИЯ ПРОЛЕТНОГО СТРОЕНИЯ мостового
сооружения с использованием треугольных балочных ферм для сейсмоопасных районов МПК
E 01 D 22 /00

314.

ТС №2023-0000576 ОО «Сейсмофонд» № 24
СВЕДЕНИЯ О ПРОДУКЦИИ И СОСТАВ ЭКСПЕРТНЫХ МАТЕРИАЛОВ : Лабортарные испытания по
изобретению «Способ им Уздина М.А. шпренгельного усиления пролетного строения
мостового сооружения с использованием трехгранных балочных ферм для сейсмоопасных
районов» и фрагменты, строительных элементы конструкции в виде комбинированных
пространственных трехгранных ферм-балок (перекрытия) /из прямоугольных труб (
изобретение № 154158) , комбинированных пространственных структурных перекрытий ( патент
№ 80471), с предварительным напряжением ( Е.А.Мелехин «Трехгранные фермы с
предварительным напряжением для плоских покрытий, Мелехин Е.А., НИУ МГСУ «Напряженно –
деформируемое состояние трехгранных ферм с неразрезными поясами пятигранного составного
профиля»), с использованием решетчатой пространственный узел покрытия (перекрытия) из
перекрестных ферм типа «Новокисловодск» патент № 153753, соединенные «Монтажное
устройство для разборного соединения элементов стрелы башенного крана,(патент 2336220 ),
проводились в СПб ГАСУ, c учетом изобретений, изобретенных в СССР проф. дтн ПГУПС
А.М.Уздиным [email protected] (921) 788-33-64 SU №№ 1143895, 1168755, 1174616, 2550777,
858604, 1760020, 165076, 2010136746, 154506 ), для быстровозводимых ложных и реально
существующих для защиты от дронов –камикадзе (беспилотиников) военных ангаров, без
крановой сборки, со сборкой узлов на военном аэродроме с использованием изобртения ( «
Конструкция противоснарядной защиты» № 2023112836 от 17.05.2023 вх 0272981 ) и согласно
заявки на изобретение, от 16.06.2023, б/ н регистр:«Способ надстройки пятиэтажного здания без
выселения» ), с помощью монтажной лебедки.
ПЕРЧЕНЬ ДОКУМЕНТОВ, ПРЕДСТАВЛЕННЫХ НА ЭКСПЕРТИЗУ: СП 56.13330.2011 Производственные
здания. Актуализированная редакция СНиП 31-03-2001,ГОСТ 30546.1-98, ГОСТ 30546.2-98, ГОСТ
30546.3-98, ГОСТ 17516.1-90, п.5, СП 14.13330-2011 п .4.6. «Обеспечение демпфированности
фрикционно-подвижного соединения (ФФПС) согласно альбома серии 4.402-9 «Анкерные болты»,
альбом, вып.5, «Ленгипронефтехим», ГОСТ 17516.1-90 (сейсмические воздействия 9 баллов по
шкале MSK-64) п.5, с применением ФПС, СП 16.13330.2011. п.14.3, ТКП 45-5.04-274-2012 (02250) ,
п.10.7, 10.8. Протокола № 515 от 18.09.2018 , ОО «Сейсмофонд», ИНН 2014000780 СПб ГАСУ №
RA.RU.21СТ39 от 27.05.2015, ФГБОУ ВПО ПГУПС № SP01.01.406.045 от 27.05.2014, действ.
27.05.2019, свидетельство НП «СРО «ЦЕНТРСТРОЙПРОЕКТ» № 0223.01-2010-2010000211-П-29 от
27.03.2012 и свид. СРО «ИНЖГЕОТЕХ» № 281-2010-2014000780-П-29 от 22.04.2010 в ИЦ "ПКТИСтройТЕСТ" и протокола испытания на осевое статическое усилие сдвига дугообразного зажима с
анкерной шпилькой № 1516-2 от 25.11.2017 и протокола испытаний на осевое статическое усилие
сдвига фрикционно-подвижного соединения по линии нагрузки № 1516-2/3 от 20.02.2017 г. :

315.

ТС №2023-0000576 ОО "Сейсмофонд" № 25
Reinforcement structure of truss bridge or arch bridge Abstract
Through co-action between auxiliary triangular structural frames which are each constructed at opposite
ends of a truss girder or arch girder and a cable stretched between the auxiliary triangular structural
frames, an upward directing force is exerted to the truss girder or arch girder, thereby effectively
inducing a load resisting force. A reinforcement structure of a truss bridge or arch bridge is comprised of
a truss girder 2 or arch girder a first and a second end of which are each provided with a main triangular
structural frame 6 which is further provided at an inner side thereof with an auxiliary triangular
structural frame 9, the auxiliary triangular structural frame 9 being joined at vertexes thereof with frame
structural elements at the respective sides of the main triangular structural frame 6, a cable 10
extending in a longitudinal direction of the truss bridge being stretched between a nearby part of the
joined part at the vertex of the auxiliary triangular structural frame 9 on the side of the first end of the
truss girder 2 or arch girder and a nearby part of the joined part at the corresponding vertex of the
auxiliary triangular structural frame 9 on the side of the second end of the truss girder 2 or arch girder,
deflecting means 11 adapted to exert a downward directing force to the cable 10 being inserted
between the cable 10 and a lower chord 3 of the truss girder 2 or arch girder so as to tension the cable
10, an upward directing force being exerted to the lower chord 3 by a reacting force attributable to
tension of the cable 10 through the deflecting means 11. Images (14)

316.

ТС №2023-0000576 ОО "Сейсмофонд" № 25

317.

ТС №2022-0000569 ОО «Сейсмофонд» № 27

318.

ТС №2023-0000576 ОО "Сейсмофонд" № 28
При испытаниях по изобретению: «Способ им Уздина М.А. шпренгельного усиления пролетного
строения мостового сооружения с использованием трехгранных балочных ферм для сейсмоопасных
районов» соединений комбинированных структур МАРХИ, «Новокисловодск» ПСПК для армейских
ангаров, использовались изобретения № 2010136746 E04C 2/00«СПОСОБ ЗАЩИТЫ ЗДАНИЯ И
СООРУЖЕНИЯ ПРИ ВЗРЫВЕ С ИСПОЛЬЗОВАНИЕМ СДВИГОУСТОЙЧИВЫХ И ЛЕГКОСБРАСЫВАЕМЫХ
СОЕДИНЕНИЙ, ИСПОЛЬЗУЮЩИЕ СИСТЕМУ ДЕМПФИРОВАНИЯ ФРИКЦИОННОСТИ И СЕЙСМОИЗОЛЯЦИЮ
ДЛЯ ПОГЛОЩЕНИЯ ВЗРЫВНОЙ И СЕЙСМИЧЕСКОЙ ЭНЕРГИИ» и изобретению "Панель противовзрывная" о
выдачи патента по заявке на полезную модель № 154 506, опубликовано 27.08.2015, бюл. № 24, патент
на полезную модель изобретение, "Опора сейсмостойкая», № 165076, бюллетень № 28 , опубликовано
10.10.2016, заявитель Андреев Борис Александрович, Коваленко Александр Иванович, патент на
изобретение «Захватное устройство для «сэндвич»-панелей № 2471700 , опубликовано 10.01.2013 190005,
СПб, 2-я Красноармейская ул д 4: (921) 962-67-78, (911) 175-8465 т/ф (812) 694-78-10
(54) КОМБИНИРОВАННОЕ ПРОСТРАНСТВЕННОЕ СТРУКТУРНОЕ ПОКРЫТИЕ КОМБИНИРОВАННОЕ
ПРОСТРАНСТВЕННОЕ СТРУКТУРНОЕ ПОКРЫТИЕ 80472
РОССИЙСКАЯ ФЕДЕРАЦИЯ
(19)
RU
ФЕДЕРАЛЬНАЯ СЛУЖБА
(11)
ПО ИНТЕЛЛЕКТУАЛЬНОЙ
СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
80 471
(13)
U1
(51) МПК

319.

ТС №2023-0000576 ОО "Сейсмофонд" № 29
Заключение : На основании прямого упругопластического расчета стальных ферм-балок с
большими перемещениями на предельное равновесие и приспособляемость (А.Хейдари,
В.В.Галишникова) и анализа результатов расчета проф дтн ПГУПС А.М.Уздина, можно сделать
следующие выводы по изобретению: «Способ им Уздина М.А. шпренгельного усиления
пролетного строения мостового сооружения с использованием трехгранных балочных ферм для
сейсмоопасных районов». 1. Очевидным преимуществом квазистатического расчета
пластинчатых балок с пластинчато -балочной системой с упруго пластинчатыми сдвиговыми
компенсаторами , является его относительная простота и высокая скорость выполнения, что
полезно на ранних этапах вариантного проектирования по изобретению: «Способ им Уздина М.А.
шпренгельного усиления пролетного строения мостового сооружения с использованием
трехгранных балочных ферм для сейсмоопасных районов», с целью выбора наиболее удачного
технического решения. 2. Допущения и абстракции, принимаемые при квазистатическом расчете,
рекомендованном , приводят к значительному запасу прочности стальных ферм и перерасходу
материалов в строительных конструкциях. 3. Рассматривалась упругая стадия работы , не
допускающая развития остаточных деформаций. Модульный анализ, являющийся частным случаем
динамического метода, не применим при нелинейном динамическом анализе. 4. Избыточная
нагрузка, действующее при чрезвычайных и критических ситуациях на трехгранную ферму- балку
и изменяющееся по координате и по времени, в SCAD следует задавать дискретными загружениями
фермы-балки . Каждому загружению соответствует свой график изменения значений и время
запаздывания. 5. SCAD позволяет учесть относительное демпфирование к коэффициентам Релея,
только для первой и второй собственных частот колебаний , что приводит к завышению
демпфирования и занижению отклика для частот возмущения выше второй собственной. Данное
обстоятельство может привести к ошибочным результатам при расчете сложных механических
систем при высокочастотных возмущениях (например, взрыв). 6. Динамические расчеты
пластинчато -балочной системы на воздействие, выполняемые в модуле «Прямое
интегрирование уравнений движения» SCAD, позволят снизить расход материалов и сметную
стоимость на усиления иповышение грузоподъемности железнодорожных мостов . 7. Остается
открытым вопрос внедрения рассмотренной инновационной методики в практику проектирования
и ее регламентирования в строительных нормах и приспособление трехгранной фермы с
неразрезными поясами пятигранного составного профиля с предварительным напряжением , с
применением замкнутых гнутосварных профилей прямоугольного сечения типа "Молодечно",
серия 1.460.3-14 "Ленпроекстальконструкция") для критических и чрезвычайных ситуация для
компании Минтранса, Дорстроя " для системы несущих элементов и элементов при

320.

ТС №2023-0000576 ОО «Сейсмофонд» № 30
Испытание фрагментов и узлов для повышения грузоводьмености железнолдоровных
изношенных пролентных строения мостовых сооружений выполены выполено по изобртени
«Способ им Уздина М.А. шпренгельного усиления пролетного строения мостового
сооружения с использованием трехгранных балочных ферм для сейсмоопасных районов»,
выполенного из фрагментов строительные элементы в виде комбинированных
пространственных трехгранных плоских покрытий на армейских быстровозводимых ангаров,
из трехгранных комбинированных с предварительным напряжением ( см.: «Трехгранные
фермы с предварительным напряжением для плоских покрытий» Е.А.Мелехин, Н.В.Гончаров,
А.Б Малыгин, «Напряженно -деформируемое стояние трехгранных ферм с неразрезанными
поясами пятигранного составного профиля» Е.А.Мелехин НИУ МГСУ патент RU 2188277 МПК
E04 С 3/04 ) из трехгранных ферм-балок , для сборки военного ангара , на болтовых
соединениях, выполенн организацией «Сейсмофонд» СПб ГАСУ, совместро с Творческим
Союзов Изобртетелй ( СПб ОО ТСИ ИНН 7809023460, ОГРН 1-037858027547 Председатель
Правления Горини Владимир Игоревич и организацией АО «СОКЗ» ИНН 783000419 ОГРН
102781034223,ген . дир Мирзаев Мирзе Мирзеханович ), по изобретениям проф дтн
А.М.Уздина №№ 1143895, 1168755, 1174616, 2550777, 858604, 154506, 165076, 1760020,
2010136746 ( без крана) , с помощью монтажной лебедки , и с использованием отечественных
и зарубежных изобретений №№ 2140509 E 04 H 1/02, MPK E04 G 23/00 RU 2043465,
2121553, Малафеев 2336399, 2021450, Насадка 2579073, SU 1823907 ( нет в общей
доступности), 2534552, 2664562, 2174579, Курортный , 2597901, полезная модель 154158,
Марутяна Александр Суренович г.Кисловодск №№ 153753, 2228415, 2228415, 2136822, Способ
надстройки зданий №№ 2116417, 2336399, 2484219, 2116417, 2336399, 2484219, RU 80417
«Комбинированные пространственные структуры» Русские люли поддержите , кто может
помогите копейкой внедрить изобретатение: «Способ им Уздина М.А. шпренгельного
усиления пролетного строения мостового сооружения с использованием трехгранных
балочных ферм для сейсмоопасных районов, для Фронта, для Победы, для инжереных и
железнодорожных войск СПЕЦвыпуск : серия №1-447-с43 для внедрения изобретения:

321.

Нужна помощь для курсантов и офицеров железнодорожных и инженерных войск Гудбай Америка Братья и Сестры курсанты и офицеры
железнодорожных и инженерных войск Русские люди Желающие студенты и аспиранты строительных университетов ВУЗОВ выпускники
железнодорожных факультетов 3 4 курса изучающие теоретическую механику и сопромат авторы статьи изобретатели , преподаватели, стажеры,
ассистенты ПГУПС СПб ГАСУ Политехнического университета СПб не возражают желающих поехать 22 июля 2024 на конференцию по мостовым
сооружениям в Лос -Вегас , Невада США Регистрация [email protected] https://beibridge.org
Регистрация на сайте Bridges 2024 conference Exhibition and Round table and Seminar Regist ration https://registrationbridges.brintex.com/Security/SignUp
Вместо ветерана боевых действий ( удостоверение ветеран боевых действий БД № 404894 , дата выдачи от 26 июля 2021 подпись С.В.Иванова ,
выдано Минстрой ЖКХ РФ ) , инвалид первой группы Коваленко Александр Иванович, военный пенсионер, с нищенской пенсией 21 тыс руб
(боевые не выплачивают 23 % в СПб ) , тяжело больного раком предстательной железы 4 -степени , гипертония -второй степени (72 года) , но
зарегистрированного 10.03.2024 от организации "Сейсмофонд " СПб ГАСУ, решится и сможет поехать из студентов строительных и
железнодорожных университетов , аспирантов и которых есть финансовые возможности , и есть 900 долларов за регистрацию и участия в
конференции 22 -23 июля 2024 Лос -Вегасе , Невад, США Научное сообщение, доклад на русском языке прилагается: " Прямой упругопластический
расчет ПК SCAD строительных ферм с большими перемещениями на предельное равновесие и приспособляемость , для повышения
грузоподъемности, выполненные по заявке на изобретение" "Способ имени Уздина А. М. шпренгельного усиления пролетного строения
мостового сооружения с использованием трехгранных балочных ферм , для сейсмоопасных районов" МПК E 04 D 22 /00
Учеными организации "Сейсмофонд" СПб ГАСУ подготовлен доклад , тезисы для конференции по проектированию мостов которая состоится в
2024 году (BEI-2024) 22 - 25 июля 2024 г. USA 3801 Las Vegas Blvd S Лас-Вегас , Невада, США Доклад научное сообщение , сборник тезисов, организации
Сейсмофонд СПбГАСУ для конференции Bridge Engineering Institute (BAY), которая пройдёт с 22 по 25 июля 2024 года в Лас-Вегасе, США. Это
официальное мероприятие Института мостостроительной инженерии (Bridge Engineering Institute). Оно станет форумом для международных
исследователей и практиков со всего мира» (812) 694-78-10
Bridge Engineering Conference in 2024 (BEI-2024) July 22 - July 25, 2024 3801 Las Vegas Blvd S Las Vegas , NV United States " Прямой упругопластический
расчет ПК SCAD строительных ферм с большими перемещениями на предельное равновесие и приспособляемость , для повышения
грузоподъемности, выполненные по заявке на изобретение" "Способ имени Уздина А. М. шпренгельного усиления пролетного строения
мостового сооружения с использованием трехгранных балочных ферм , для сейсмоопасных районов" МПК E 04 D 22 /00
https://t.me/resistance_test (921) 962-67-78, (921) 944-67-78, (996) 785-62-76, (911) 175-84-65
CONTACT INFORMATION
Email:
[email protected]
SKRIPUCHIY most SCAD raschet shprengelnogo usilenie proletnogo stroeniy mostovogo sooruzheniya povishenie gruzopodemnosti 444 str

322.

https://ppt-online.org/1497715
Для конференции по проектированию мостов которая состоится в 2024 году (BEI-2024) 22 - 25 июля 2024 г. USA 3801 Las Vegas Blvd S Лас-Вегас , Невада,
США Доклад научное сообщение , сборник тезисов, организации Сейсмофонд СПбГАСУ для конференции Bridge Engineering Institute (BAY), которая
пройдёт с 22 по 25 июля 2024 года в Лас-Вегасе, США. Это официальное мероприятие Института мостостроительной инженерии (Bridge Engineering
Institute). Оно станет форумом для международных исследователей и практиков со всего мира» (812) 694-78-10
https://dzen.ru/a/ZeycNg_i8w-xUvH- https://ppt-online.org/1497715 https://www.beibridge.org/BEI2024.html
Raschet SCAD shprengelnogo usilenie proletnogo stroeniy mostovogo sooruzheniya povishenie gruzopodemnosti 943 str
https://disk.yandex.ru/d/_km277VvOsbxTg
https://disk.yandex.ru/i/U4m3-qOpWBaa0Q
https://mega.nz/file/Q6dGXASI#sf6UqFwQnHGkFdOGp_8TgolJso89G8e0J_YoOvFBQMM
https://mega.nz/file/AzUygQBR#BkmE1Ha0lRShOl6OJHXvB8YY-WEFOPdhn-3CQi41IGg
Raschet SCAD shprengelnogo usilenie proletnogo stroeniy mostovogo sooruzheniya povishenie gruzopodemnosti 943 str.pdf
Raschet SCAD shprengelnogo usilenie proletnogo stroeniy mostovogo sooruzheniya povishenie gruzopodemnosti 943 str.docx
Skripuchiy sposob Uzdina bridje Katalozhnie list shptengelnogo usileniya povishenie nesychey sposobnosti mosta 492.docx
Skripuchiy sposob Uzdina bridje Katalozhnie list shptengelnogo usileniya povishenie nesychey sposobnosti mosta 492.pdf
++ kovalenko proletnye_stroeniya_33-44-55.pdf
SPBGASU katalozhnie listi skripuchiy most uzdina shprengelnim usileniem povishenie gruzopodemnosti 327 str.docx
SPBGASU katalozhnie listi skripuchiy most uzdina shprengelnim usileniem povishenie gruzopodemnosti 327 str.pdf
Skripuchiy sposob Uzdina bridje Katalozhnie list shptengelnogo usileniya povishenie nesychey sposobnosti mosta 492.docx
Skripuchiy sposob Uzdina bridje Katalozhnie list shptengelnogo usileniya povishenie nesychey sposobnosti mosta 492.pdf
SPBGASU Protokol ispitaniy SCAD sposob imeni Uzdina shprengelnogo usileniy proletnogo mostovogo sooruzheniya383 str.docx

323.

12
https://wdfiles.ru/ipsearch.html
SPBGASU Protokol ispitaniy SCAD sposob imeni Uzdina shprengelnogo usileniy proletnogo mostovogo sooruzheniya383 str.pdf
Otvet Minzdrava na xodataystvo perevesti prinuditelnogo na ambulatornoe lechenie Irinu Aleksandrovnu Skvortsova Stepana 12 str.pdf
Obyavlenie Demarskiy MO68 Sposob Uzdina shprengelnogo usileniya proletnogo stroeniya mostovogo sooruzheniya ispolzovaniem 2 str..docx
Obyavlenie Demarskiy MO68 Sposob Uzdina shprengelnogo usileniya proletnogo stroeniya mostovogo sooruzheniya ispolzovaniem 2 str..pdf
Made in Japan Skripuchiy most UZDINATexnicheskoe svidetelstvo povishenie gruzopodemnosti proletnogo stroeniya mostovogo sooruzheniya30 stt —
копия.docx
Made in Japan Skripuchiy most UZDINATexnicheskoe svidetelstvo povishenie gruzopodemnosti proletnogo stroeniya mostovogo sooruzheniya30 stt.pdf
Made in Japan Skripuchiy most UZDINATexnicheskoe svidetelstvo povishenie gruzopodemnosti proletnogo stroeniya mostovogo sooruzheniya30 stt — копия.pdf
Putiny Zhaloba Meksinu zayavlenie protokol uchastii izbiratelnoy komissii TIK 12 UIK-1474 Eliseev Vladislav Kirilovich 15 str.docx
Putiny Zhaloba Meksinu zayavlenie protokol uchastii izbiratelnoy komissii TIK 12 UIK-1474 Eliseev Vladislav Kirilovich 15 str.pdf
Xodataystvo prekrashenii Rus sidyashaya NET karatelnoy medistine vrach palachi 1 str.pdf
https://wdfiles.ru/ipsearch.html?page=2
SKRIPUCHIY most SCAD raschet shprengelnogo usilenie proletnogo stroeniy mostovogo sooruzheniya povishenie gruzopodemnosti 444 str
https://ppt-online.org/1497715
https://ibb.co/G5g7sHv
https://i.ibb.co/2kXq8Z7/SKRIPUCHIY-most-SCAD-raschet-shprengelnogo-usilenie-proletnogo-stroeniy-mostovogo-sooruzheniya-povis.jpg
Русские люди есть возможность помочь внедрения изобретений проф дтн А.М.Уздина №№ 1143895, 1168755, 1174616, зам президента
"Сейсмофонд" СПбГАСУ инж А.И.Коваленко №№ 2010136745, 165076, 154506 помогите копейкой ПАО СБЕР МИР 2202 2056 3053 9333 Aleksandr
Kovalenko Счет получателя 40817 810 5 5503 1236845 корреспондентский счет 30101 810 5 0000 0000653 привязан телефон 8 (911) 175 -84 -65
Регистрация на конференцию в США Невада у кого из аспирантов, студентов старших курсов , ассистентов, стажеров, лаборантов
заграничный паспорт Bridges 2024 conference Exhibition and Round table and Seminar Regist ration
https://registration-bridges.brintex.com/Security/SignUp
есть деньги и

324.

Bridges 2024 conference Exhibition and Round table and Seminar Regist ration
https://registration-bridges.brintex.com/Security/SignUp
Conference Day (13 March)
Public
£499.00 + VAT
FREE*
Private
£669.00 + VAT
+£109.00 + VAT
https://bridges.tn-events.co.uk/what-s-on/attend/
Pricing for Bridges 2024
Register Today! Places are selling out fast.
Bridges 2024 conference Exhibition and Round nable and Seminar Regist ration
13 - 14 March 2024 Coventry Building Society (CBS) Arena
https://bridges.tn-events.co.uk/what-s-on/attend/
Bridges Richmond 2024
Mathematics・Art ・Music・Architecture・Culture
Virginia Commonwealth University
Richmond, Virginia, USA, 1–5 August 2024
In 2024 we are holding the Bridges conference at Virginia Commonwealth University in Richmond, Virginia. Please watch the video below, learn about our
exciting line-up of invited speakers, and check back frequently for updates about the conference!
https://www.bridgesmathart.org/b2024/
First, we need to know the details of the person making this booking. Please enter your contact details below, even if you are not attending the event.
Once you have entered your details, click Book for yourself to register to attend the event yourself, or Book for a colleague to make a registration for someone
else.
We will also send you an email with your login details, which will allow you to to return to this site and see details of your bookings at any time.
Начало формы
CONTACT INFORMATION

325.

Title
Forename
Surname
Job Title
Organisation
Address line 1
Address line 2
Town
County
Postcode
Country
United Kingdom
Email Address
Telephone
+44
Mobile
+44
HOW WE USE YOUR DATA

326.

Please select this box if you are not happy for the Hemming Group Ltd. to share your details with the event sponsors and carefully selected third parties, who
may contact you with relevant communications and offers that may be of interest.
At the Hemming Group we take the protection of your data very seriously. To find out how we store data or for any questions that you may have about
data please access our Privacy Policy here . If you need any more information, please contact [email protected]. Communications will only come from
the Hemming Group, although may include content from our trusted partners. Don’t worry if you change your mind you can opt out at any time.
Book for yourselfBook for a colleague
Конец формы
https://registration-bridges.brintex.com/Security/SignUp
https://bridges.tn-events.co.uk
Welcome to Bridges 2024
Conference (13 March)
Roundtable Discussion & Seminar Day (14 March)
At a time when the impact of climate change on transport networks is increasingly in evidence with greater bridge damage and more frequent collapses, many
bridge engineers and owners are looking to increase the resilience of their structures as well as find new ways of reducing the carbon footprint of their activities.
The 2024 edition of Bridges Conference will showcase some compelling approaches that are being developed to address these challenges - some learned
through devastating experience - as well as cover essential subjects such as the next generation of Eurocodes, the new Bridge Inspection Manual, artificial
intelligence and SHM, bridge surveying with 3D modelling as well as innovative analysis methods for masonry arches.
Register now to secure your place at Bridges 2024 and avoid disappointment. Places are selling out fast!
https://bridges.tn-events.co.uk
https://www.theihe.org/events/bridges-2024/
https://www.showsbee.com/fairs/World-of-Bridges.html
Bridges 2024 Conference, Seminar & Exhibition
13-14 March, 2024
Bridges 2024 - Sustainability & Resilience

327.

Coventry Building Society Arena, Coventry, UK
For more information visit: https://bridges.tn-events.co.uk/
https://www.bridgeweb.com/Bridges-2024-Conference-SeminarandExhibition/9110
Объявление Гудбай Америка Братья и Сестры Русские люди Желающие студенты аспиранты строительных университетов ВУЗОВ выпускники
железнодорожных факультетов 3 4 курса изучающие теоретическую механику и сопромат авторы статьи изобретатели , преподаватели, стажеры,
ассистенты ПГУПС СПб ГАСУ Политехнического университета СПб не возражают желающих поехать 22 июля 2024 на конференцию по мостовым
сооружениям в Лос -Вегас , Невада США Регистрация [email protected] https://beibridge.org
https://dzen.ru/a/Ze1kWhDJVCtyw71W
English     Русский Rules