12.41M
Category: ConstructionConstruction
Similar presentations:

Сейсмостойкость нефтегазовых трубопроводов

1.

Газета «Земля РОССИИ» №10
От 13.05.2021 (921) 962-67-78
Карта СБЕР : 2202 2006 4085 5233 Счет получателя:
40817810455030402987
[email protected]
[email protected]
[email protected]
197371, СПб, а/я газета «Земля РОССИИ»
[email protected] 299 стр
Свидетельство регистрации Северо –Западном региональном управлении государственного Комитет РФ по печати
(г.СПб) номер П 0931 от 16.05.94. Газета перерегистрирована 19.06.1998, в связи со сменой учредителей , добавлен.
иностран языков. ОО «Сейсмофонд» ИНН: 2014000780, ОГРН : 1022000000824
Исх. № ЗР -3 от 08 мая 2021
Примение фрикционноподвижных болтовых соедиений для обеспечения сейсмостойкости
нефтегазовых трубопроводов с использованием спиральных
сейсмоизолирующих демпфирующих опорах с упругими демпферами
сухого трения E04 9/02 и их программная реализация в программном
комплексе SCAD Office ( Номер заявка на изобретение № ф 20210051 от 02.03.2021 Национальный центр
Спецвыпуск № 9 от 13 .05.2021 редакции газеты «Земля РОССИИ»
интеллектуальной собственности Государственного комитета по науки и техники Республики Беларусь [email protected])
Ветераны боевых действий на Северном Кавказе 1994-1995г и инженер- строительного отдела Государственного
института «ГРОЗГИПРОНЕФТЕХИМ», младший сержант- специалист строительных частей УНР- 207
Министерства обороны РФ г.Маздок, зам .редактора газеты «Земля России» военкор Петр Павлович Кадашов , за
обеспечение сейсмостойкой надежности, нефтегазотрубопроводов на основе спиральных сейсмоизолирующих
опорах, с упругими демпферами сухого трения, на фрикционно-подвижных фланцевых болтовых соединений с
длинными овальными отверстиями и контрольным натяжением, по линии нагрузки с применением
программного комплекса SCAD Office для анализа сейсмозащиты
трубопроводов

2.

Журнналистское расследование редакции газеты «Земля
РОССИИ» для депутатского реагирования, депутатам ГД РФ,
сенаторам Совета Федерации РФ, Правительству РФ от
Ветеранов боевых действий и военных изобретателей России за
справедливость
Эффективные решения повышения надежности трубопроводов с
использованием опоры на спиральных сейсмоизолирующих опорах с
упругими демпферами сухого трения на фланцевых соединений , фрикционноподвижных болтовых соединений с длинными овальными отверстиями и
контрольным натяжением по линии нагрузки, на болтовых соединения,
по
предотвращению ослабления резьбовых соединений, за счет
использования фрикционно –подвижных болтовых соединений,
установленные в длинные овальные отверстия с контролируемым
натяжением, увеличивающего демпфирующею способность
спиральной опоры , при импульсных, растягивающих и
динамических нагрузках и при многокаскадных демпфированиях
для предотвращения обрушения нефтегазотрубопроводов , что
приводит к уменьшению аварий и угрозе жизни обслуживающего персонала по обеспечение
вибростойкости, взрывопожаростойкости, сейсмостойкости, зданий , сооружений
,магистральных нефтегазотрубопроводов, нефтегазовой отрасли, мостов, зданий и сооружений,
оборудования, трубопроводов, железнодорожного пути, оборудования, электростанций,
магистральных трубопроводов , благодаря изобретениям организации «Сейсмофонд» ИНН 2014000780
ОГРН 1022000000824: № 2010136746, 165076, 154506,и изобретениям проф.дтн Уздина А М № 1168755,

3.

1174616, 1143895, с помощью фланцевых подвижных соединений (ФПС) и энергопоглотителей пиковых
ускорений (ЭПУ), с контролируемым натяжением ФПС, протяжных соединений, расположенных в овальных
отверстиях покрытых грунтовкой ПГУПС https://ppt-online.org/844938
Известно, какие финансовые потери несут предприятия нефтегазового
комплекса при землетрясении. Также не секрет, к каким порой
катастрофическим последствиям может привести авария на таком
предприятии, в том числе авария, связанная с повреждением здания
В основе технологии спиральной сейсмоизолирующей опоры с упругими
демпферами сухого терния , основаны на Фланцевых соединений, с упругими демпферами
сухого трения лежит изобретения проф дтн ПГУПС А.М.Уздина №№
1143895, 1168755, 1174616 простые стандартные инженерные решения
сухого трения

4.

Fp

5.

6.

Т а б л и ц а Б.1 — Фрикци –демпферы (Фрикционно –демпфирующие энергопоглотители ), используемые для энергопоглощения взрывной энергии, для обеспечения многокаскадного демпфирования при динамических нагрузках ,
преимущественно при импульсных растягивающих нагрузках
Типы фрикционно-демпфирующих энергопоглощающих крестовидных, трубчатых,
Схемы энергопоглощающих сдвиговых
фрикционно-демпфирующих энергопоглотителей в
Идеализированная зависимость фрикционнодемпфирующей «нагрузки для перемещения»
(F-D)
F
Энергопоглотитель квадратный трубчатый
Косой компенсатор
энергопоглотитель ( для
трубопроводов)
F
F
D
D
D
F
с высокой способностью
к поглощению пиковых
ускорений
F
F
F
D
D
D
D
F
Упругопластическая
опора на фрикционо –
подвижных соединениях
ФПС
F
F
F
D
D
D
D
F
F
Энергопоглощаю
щие
демпфирующие
D
Крестовидная опора
повышенной
способности к
энергопоглощению
взрывной и
сейсмической энергии
F
F
D
F
F
D
F
D
F
F
F
D
D
D
D
D
D
F
F
F
F
D

7.

F
F
D
F
D
D
F
F
Демпфирующая –
маятниковая опора
раскачивается при
смятии медного обожженного клина, забитого
в пропиленный паз
шпильки
F
D
D
D
F
F
F
DD
D
Квадратный пластический шарнир – ограничитель перемещений по
линии нагрузки (ограничитель перемещений
одноразовый)
FF
F
D
DD
D
D
D
D
F
Трубчатый упруго
пластичный шарнир –
ограничитель перемещений по линии нагрузки (одноразовый)
F F
Квадратная опора
(гармошка) пластический шарнир – ограничитель перемещений
по линии нагрузки
(одноразовый)
Односторонний по линии нагрузки
F F
D
F
D
F
D

8.

9.

10.

11.

12.

13.

14.

15.

16.

Государственный комитет по науке и технологиям Республики Беларусь
НАЦИОНАЛЬНЫЙ ЦЕНТР ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ
220034, г. Минск, ул. Козлова, 20 т. (017) 272-46-%, т./факс (017) 272-98-34, E-mail:
[email protected]
21 АПР 2021 №а 20210051
(98) Получатель: ОО
"Сейсмофонд" при ПГУПС,
1.Санкт-Петербург
ЗАПРОС
по заявке на выдачу
патента на изобретение ___________________________________________
(21) Заявка №
а 20210051
Дата поступления заявки
02 марта 2021 года (2021. 03. 02)
(86) Регистрационные данные заявки РСТ 87) Номер и дата публикации заявки РСТ

17.

(71) Заявитель(и) Коваленко Александр Иванович (RU)
(72) Автор(ы) Коваленко Александр Иванович (RU)
54) Название изобретения Спиральная сейсмоизолирующая опора с упругими
демпферами сухого трения Е04Н 9 / 0 2 ( ? )
Заявителю предлагается в трехмесячный срок с даты направления запроса (пункт 5
статьи 19 Закона Республики Беларусь от 16 декабря 2002 года «О патентах на
изобретения, полезные модели, промышленные образцы» (далее - Закон) исправить
недостатки заявки, указанные на обратной стороне запроса.
По ходатайству заявителя срок ответа на запрос может быть продлен, но не более чем
на три месяца, при условии, что ходатайство поступило до истечения срока ответа на
запрос и представлении документа об уплате патентной пошлины.
ПРОЦЕДУРА ИСПРАВЛЕНИЯ НЕДОСТАТКОВ:
Исправление и уточнение материалов заявки осуществляется путем представления
заменяющих листов, которые оформляются таким образом, чтобы их можно было
включить в материалы заявки без изменения предыдущих и последующих листов.
Заменяющие листы представляются в количестве экземпляров, предусмотренных
Положением о порядке составления заявки на выдачу патента на изобретение, проведения
по ней экспертизы и принятия решения по результатам экспертизы, утвержденным
постановлением Совета Министров Республики Беларусь от 2 февраля 2011 года № 119
(далее - Положение).
F-сли исправления касаются опечаток, погрешностей в указании библиографических
данных и т.п. и исправление документа не приведет к отрицательным последствиям в
отношении четкости при непосредственном репродуцировании, предложение о внесении
исправлений может быть выражено в письме заявителя без представления заменяющих
листов.
Замечания и доводы экспертизы:
Одновременно с документами заявки заявитель представил ксерокопию справки,
выданной медицинским учреждением, о том, что заявитель-автор Коваленко Александр
Иванович является инвалидом первой группы, что является основанием для освобождения
от патентных пошлин (пункт 1 статьи 296 Налогового кодекса Республики Беларусь).
Для подтверждения права на льготы, заявителю необходимо представить
надлежащим образом заверенную копию документа, подтверждающего право на такие
льготы.
Представленные материалы по оформлению полностью не соответствуют
требованиям Положения.
1. Документы заявки (заявление о выдаче патента Республики Беларусь на
изобретение, описание изобретения, формула, чертежи и реферат), которые отпечатаны
на черновиках, представлены в одном экземпляре.

18.

Обращаем внимание заявителя, что все документы заявки представляются в патентный
орган в ДВУХ экземплярах (пункты 6. 10 Положения).
Каждый документ заявки на изобретение (заявление, описание изобретения,
формула изобретения, чертежи, реферат) должен начинаться с нового листа и должен
использоваться только с одной стороны, за исключением заявления, которое оформляется
на одном листе с двух сторон (ПУНКТЫ 193, 194 Положения).
Все документы заявки должны быть напечатаны шрифтом черного цвета. Второй и
последующие листы каждого документа заявки последовательно нумеруются арабскими
цифрами. Номера листов проставляются в середине верхней или нижней части листа
(пункты 201, 202 Положения).
Текст описания изобретения, формула изобретения и реферат печатаются через
полтора межстрочных интервала шрифтом, имеющим буквы не менее 2,1 мм по высоте
(пункт 203 Положения).
1.
2. Объем правовой охраны, предоставляемой патентом на изобретение, определяется
формулой изобретения. Формула изобретения - логическое определение изобретения
совокупностью всех его существенных признаков (пункт 5 статьи 1 Закона).
Формула изобретения, в том виде как она изложена, содержит четыре
независимых пункта: пункты 1. 2 характеризуют объект устройство - «спиральная
сейсмоизолирующая опора с упругим демпфером сухого тренияпункт 3 - устройство «узел
упругого соединения для спиральной сейсмоизолирующей опоры», пункт 4 - «спосоСГ]
спиральной сейсмоизолирующей опоры».
Название изобрегения относится к объекту «устройство» - «Спиральная цийсмоизо.тарующая опора с упругими демпферами сухого трения». Таким образом,"
указанное название не отражает назначение заявленной группы изобретений.
В соответствии с требованиями пунктов 55, 189 Положения название изобретения
характеризует его назначение, соответствует сущности изобрегения. Название
изобретения не должно содержать вымышленных наименований, фамильярных
наименований, аббревиатур, товарных знаков и знаков обслуживания, рекламных,
фирменных и иных специальных наименований.
Название группы изобретений, относящихся к различным объекгам, один из которых
предназначен для получения (изготовления), осуществления или использования другого (в
другом), может содержать полное название одного изобретения и сокращенное другого.
3. Название изобрегения содержит индекс рубрики МПК. который необходимо
исключить (пункт 63 Положения).
форма У1ГЗИ-2

19.

5. Описание изобретения должно содержать следующие разделы:
1)
область техники, к которой относится изобретение:
2)
уровень техники;
3)
сущность изобретения;
4)
перечень фигур чертежей;
5) сведения,
подтверждающие возможность осуществления изобретения с
достижением технического результата (пункт 51 Положения).
2.1.2.
В разделе «Область техники» указываются конкретное назначение объекта
изобретения и область его применения. Если таких областей несколько, указываются
преимущественные области применения изобретения (пункт 64 Положения).
2.1.3.
В разделе описания изобретения «Уровень техники» приводятся сведения об
известных заявителю аналогах изобретения с выделением среди них аналога, наиболее
близкого к изобретению по совокупности признаков (прототип). В качестве аналога
изобретения выбирается средство того же назначения, близкое по сущности к
заявленному изобретению, известное из сведений, ставших общедоступными до даты
приоритета. При указании его аналога приводятся цифровая ссылка на источник
информации, в котором он раскрыт, а его расшифровка с указанием библиографических
данных источников приводится в конце описания. При описании аналога(ов) приводятся
его(их) признаки, которые совпадают с признаками заявленного изобретения (пункты 6567, 220 Положения).
При описании группы изобретений сведения об аналогах приводятся для каждого
изобретения в отдельности (пункт 71 Положения).
2.1.4.
В разделе описания «Сущность изобретения» раскрывается техническая
задача, на решение которой направлено заявленное изобретение, с указанием
технического результата, который может быть получен при использовании
изобретения. Сущность изобретения выражается совокупностью существенных
признаков, присущих соответствующему объекту, достаточной для осуществления
изобретения с достижением указанного в заявке на изобретение технического
результата и идентификации изобретения.
Для характеристики устройства как объекта изобретения используются следующие
признаки: конструктивное выполнение устройства, характеризуемое наличием и
функциональным назначением блоков, узлов, конструктивных элементов, их взаимным
расположением, формой выполнения элементов и (или) устройства в целом; связь между
блоками, узлами, элементами; форма выполнения связи между элементами; параметры и
иные характеристики элементов и их взаимосвязь: материал, из которого выполнены
элементы и (или) устройство в целом; среда, выполняющая функцию элемента (пункты
72 - 74 Положения).
Для характеристики способа используются, в частности, следующие признаки:
выполняемые действия (операции); последовательность выполняемых действий
(операций); условия осуществления действий (операций), использование веществ (сырья,
реагентов, катализаторов), устройств, штаммов, микроорганизмов, культур клеток
растений и животных, режимы проведения операций (пункт 76 Положения).
В разделе описания изобретения «Сущность изобретения» выделяются (если выявлен
наиболее близкий аналог) признаки, отличающие изобретение от наиболее близкого
аналога, и указывается совокупность существенных признаков, обеспечивающая
получение технического результата. Не допускается замена характеристики признака
отсылкой к ИСТОЧНИКУ информации, в котором раскрыт этот признак (пункт 96
Положения).
2.1.5.
В разделе описания изобретения «Сведения, подтверждающие возможность
осуществления изобретения» показывается возможность осуществления изобретения с
реализацией заявленного назначения и получением технического результата, если он не
следует очевидным образом из сущности изобретения. Если в формуле изобретения
19

20.

какие- либо признаки представлены в виде обобщенных понятий, то в этом разделе
приводятся сведения о конкретных средствах, используемых хтя реализации
изобретения. При описании группы изобретений необходимо, чтобы в данном разделе
описания были названы все признаки изобретения, содержащиеся в формуле, как в
отличительной, так и в ограничительной частях. Это относится к признакам как
независимого (независимых), так и зависимого (зависимых) пунктов (пункт 101
Положения).
форма УПЭИ-2
Для объекта у с т р о й с т в о в данном разделе приводится описание заявленного
устройства в статическом состоянии со ссылками на фигуры чертежей, если они
прилагаются. Цифровое обозначение конструктивного элемента в описании должно
указываться непосредственно после слова, к которому оно относится, и
соответствовать его цифровому обозначению на фигуре чертежа (пункт 100
Положения). Далее приводится описание действия устройства или способ его
использования в режиме, обеспечивающем достижение заявленного технического
результата, со ссылками на фигуры чертежей или иные поясняющие материалы (если
они прилагаются) (пункт 102 Положения).
Для объекта с п о с о б в разделе описания изобретения «Сведения, подтверждающие
возможность осуществления изобретения» приводятся операции, действия, приемы
способа, последовательность и условия их проведения, а также средства,
используемые при реализации способа. Если таковые известны до даты приоритета
изобретения, достаточно указания на них. При использовании неизвестных операций,
приемов, средств, приводятся их характеристика и подробное описание (пункт 103
Положения).
6. Формула изобретения должна полностью основываться на описании, го есть
характеризовать изобретение понятиями, содержащимися в его описании. Формула
изобретения должна выражать сущноиь изобрегения, то есть содержать
СОВОКУПНОСТЬ
его
су
щественных
признаков,
достаточную
для
достижения^казашшго^аявителем технического результата. Формула изобретения
должна быть ясной и точной, то есть признаки в формуле должны выражаться
таким образом, чтобы обеспечить возможность их идентификации, однозначного
понимания специалистом на основании известного уровня техники смыслового
содержания понятий, которыми эти признаки охарактеризованы (пункт 130, 131
Положения).
Согласно требованию пункта 136 Положения в формуле изобретения не следует
использовать термины и выражения, значение которых имеет неопределенный
характер. например, тонкий, широкий и т.п.
Независимый пункт формулы включает родовое понятие (название изобретения),
отражающее назначение, с которого начинается изложение формулы, и состоит, как
правило, из ограничительной части, включающей признаки изобретения, совпадающие с
признаками наиболее близкого аналога, и отличительной части, включающей признаки,
которые отличают изобретение от наиболее близкого аналога. При составлении
пункта формулы с разделением на 01раничительную и отличительную части после
изложения ограничительной части вводится словосочетание "отличающийся
(отличающееся) тем, что", непосредственно после которого излагается
отличительная часть (пункт 146 Положения).
При этом в соответствии с пунктом 190 Положения в описании и формуле
изобретения должно соблюдат ься требование единства терминологии, т.е. одни и те
же признаки в тексте описания и в формуле изобретения должны называться
одинаково.
20

21.

П р и з н а к и у с т р о й с т в а излагаются в формуле изобретения так. чтобы характеризовать его
в сгатическом состоянии. При характеристике выполнения конструктивного элемента
—устройства допускаемся указание на его подвижность, возможность реализации- -им
определенной функции (например, с возможностью торможения, с возможностью
фиксации) (пункт 155 Положения).
В формулу изобретения, относящегося к с п о с о б у , включаются признаки,
отражающие наличие действий или операций, совокупность которых обеспечивает
возможность реализации способа, порядок выполнения таких действий или операций,
условия и режимы их осуществления, а также средства, с помощью которых
реализуется способ (сырье, реагенты, приспособления). Операции приво.чятся в
последовательности, соответствующей реальному воспроизведению способа. Глаголы,
характеризующие действие, излагаются в действительном залоге, изъявительном
наклонении, третьем лице, множественном числе (например, наполняют, измельчают,
нагревают) {159- 161 Положения).
6. Реферат должен содержать краткое описание изобретения (пункт 175
Положения). В реферате указываются:
""форма УП'Ж-2название изобретения;
2.2.
область техники, к которой относится изобретение, и (или) область
применения, если это неясно из названия;
2.3.
сущность изобретения с указанием достигаемого технического результата,
приводятся признаки, необходимые для реализации изобретения в заявленном качестве
(пункт 176 Положения).
Заявителю предлагается оформить документы заявки в соответствии с
требованиями Положения, используя термины и определения, упомянутые в документах,
представленных в патентный орган 02.03.2021. Откорректированные документы
необходимо представить в двух экземплярах.
В сопроводительном письме необходимо указать на различия между заменяемыми и
заменяющими листами и дать объяснения причин вносимых изменений. Ьсли изменения
вносятся в формулу изобретения, в сопроводительном письме указываются также
ссылки на страницы и абзацы первоначального описания и (или) формулы изобретения,
подтверждающие правомерность вносимых изменений. В этом случае кроме заменяющих
листов должны быть представлены копии заменяемых листов с внесенными от руки
изменениями (пункт 240 Положения).
Сопроводительное письмо с пояснениями по каждому ПУНКТУ запроса должно быть подписано
заявителем (пункт 227 Положения).
ПРИМЕЧАНИЕ:
Если необходимые уточнения не представлены в установленный срок, либо не
представлены документы, отсутствовавшие на дату поступления заявки, либо не
представлено ходатайство о продлении установленного срока, принимается решение об
отказе в выдаче патента на изобретение
(статья 19 Закона).
Первый заместитель генерального директора
Заместитель начальника управления
21

22.

экспертизы промышленной собственности - начальник отдела биологии
Ответ замечания Национального Центра Интеллектуальной
собственности Минск Республика Беларусь на изобретение
[email protected]
Спиральная сейсмоиизолирующая опора с упругими демпферами сухого
трения Е04 9/02 (2021) № а 20210051 от 21 апреля 2021
Государственный комитет по науке и технологиям Республики Беларусь
НАЦИОНАЛЬНЫЙ ЦЕНТР ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ
220034, г. Минск, ул. Козлова, 20 т. (017) 272-46-%, т./факс (017) 272-9834, E-mail: [email protected]
21 АПР 2021 №а 20210051
(98) Получатель: ОО "Сейсмофонд" при СПб Г АСУ,
1. Санкт-Петербург
ЗАПРОС по заявке на выдачу
патента на изобретение
(21) Заявка № а 20210051
Дата поступления заявки 02 марта 2021 года (2021. 03. 02)
(86) Регистрационные данные заявки РСТ 87) Номер и дата публикации
заявки РСТ
(71) Заявитель(и) Коваленко Александр Иванович (RU)
(72) Автор(ы) Коваленко Александр Иванович (RU)
54) Название изобретения Спиральная сейсмоизолирующая опора с
упругими демпферами сухого трения Е04Н 9/02 (?)
Заявителю предлагается в трехмесячный срок с даты направления
запроса (пункт 5 статьи 19 Закона Республики Беларусь от 16 декабря
2002 года «О патентах на изобретения, полезные модели, промышленные
22

23.

образцы» (далее - Закон) исправить недостатки заявки, указанные на
обратной стороне запроса.
По ходатайству заявителя срок ответа на запрос может быть
продлен, но не более чем на три месяца, при условии, что ходатайство
поступило до истечения срока ответа на запрос и представлении
документа об уплате патентной пошлины.
ПРОЦЕДУРА ИСПРАВЛЕНИЯ НЕДОСТАТКОВ:
Исправление и уточнение материалов заявки осуществляется путем
представления заменяющих листов, которые оформляются таким
образом, чтобы их можно было включить в материалы заявки без
изменения предыдущих и последующих листов. Заменяющие листы
представляются в количестве экземпляров, предусмотренных
Положением о порядке составления заявки на выдачу патента на
изобретение, проведения по ней экспертизы и принятия решения по
результатам экспертизы, утвержденным постановлением Совета
Министров Республики Беларусь от 2 февраля 2011 года № 119 (далее Положение).
F-сли исправления касаются опечаток, погрешностей в указании
библиографических данных и т.п. и исправление документа не приведет к
отрицательным последствиям в отношении четкости при
непосредственном репродуцировании, предложение о внесении
исправлений может быть выражено в письме заявителя без
представления заменяющих листов.
Замечания и доводы экспертизы:
Одновременно с документами заявки заявитель представил
ксерокопию справки, выданной медицинским учреждением, о том, что
заявитель-автор Коваленко Александр Иванович является инвалидом
первой группы, что является основанием для освобождения от
патентных пошлин (пункт 1 статьи 296 Налогового кодекса Республики
Беларусь).
Для подтверждения права на льготы, заявителю необходимо
представить надлежащим образом заверенную копию документа,
подтверждающего право на такие льготы.
Представленные материалы по оформлению полностью не
соответствуют требованиям Положения.
1. Документы заявки (заявление о выдаче патента Республики
Беларусь на изобретение, описание изобретения, формула, чертежи и
реферат), которые отпечатаны на черновиках, представлены в одном
экземпляре.
23

24.

Обращаем внимание заявителя, что все документы заявки
представляются в патентный орган в ДВУХ экземплярах (пункты 6. 10
Положения).
2. Каждый документ заявки на изобретение (заявление, описание
изобретения, формула изобретения, чертежи, реферат) должен
начинаться с нового листа и должен использоваться только с одной
стороны, за исключением заявления, которое оформляется на одном
листе с ДВУХ СТОРОН (ПУНКТЫ 193, 194 Положения).
Все документы заявки должны быть напечатаны шрифтом черного
цвета. Второй и последующие листы каждого документа заявки
последовательно нумеруются арабскими цифрами. Номера листов
проставляются в середине верхней или нижней части листа (пункты
201, 202 Положения).
Текст описания изобретения, формула изобретения и реферат
печатаются через полтора межстрочных интервала шрифтом,
имеющим буквы не менее 2,1 мм по высоте (пункт 203 Положения).
3. Объем правовой охраны, предоставляемой патентом на
изобретение, определяется формулой изобретения. Формула
изобретения - логическое определение изобретения совокупностью всех
его существенных признаков (пункт 5 статьи 1 Закона).
Формула изобретения, в том виде как она изложена, содержит четыре
независимых пункта: пункты 1. 2 характеризуют объект устройство «спиральная сейсмоизолирующая опора с упругим демпфером сухого
тренияпункт 3 - устройство «узел упругого соединения для спиральной
сейсмоизолирующей опоры», пункт 4 - «спосоСГ] спиральной
сейсмоизолирующей опоры».
Название изобрегения относится к объекту «устройство» «Спиральная –сейсмоизолирующая опора с упругими демпферами сухого
трения».
Таким образом," указанное название не отражает назначение
заявленной группы изобретений.
В соответствии с требованиями пунктов 55, 189 Положения название
изобретения характеризует его назначение, соответствует сущности
изобрегения. Название изобретения не должно содержать вымышленных
наименований, фамильярных наименований, аббревиатур, товарных
24

25.

знаков и знаков обслуживания, рекламных, фирменных и иных
специальных наименований.
Название группы изобретений, относящихся к различным объекгам,
один из которых предназначен для получения (изготовления),
осуществления или использования другого (в другом), может содержать
полное название одного изобретения и сокращенное другого.
4. Название изобрегения содержит индекс рубрики МПК. который
необходимо исключить (пункт 63 Положения).
форма У1ГЗИ-2
5. Описание изобретения должно содержать следующие разделы:
- область техники, к которой относится изобретение:
- уровень техники;
- сущность изобретения;
- перечень фигур чертежей;
- сведения, подтверждающие возможность осуществления
изобретения с достижением технического результата (пункт 51
Положения).
5.1 В разделе «Область техники» указываются конкретное назначение
объекта изобретения и область его применения. Если таких областей
несколько, указываются преимущественные области применения
изобретения (пункт 64 Положения).
5.2 В разделе описания изобретения «Уровень техники» приводятся
сведения об известных заявителю аналогах изобретения с выделением
среди них аналога, наиболее близкого к изобретению по совокупности
признаков (прототип). В качестве аналога изобретения выбирается
средство того же назначения, близкое по сущности к заявленному
изобретению, известное из сведений, ставших общедоступными до даты
приоритета. При указании его аналога приводятся цифровая ссылка на
источник информации, в котором он раскрыт, а его расшифровка с
указанием библиографических данных источников приводится в конце
описания. При описании аналога(ов) приводятся его(их) признаки,
которые совпадают с признаками заявленного изобретения (пункты 6567, 220 Положения).
При описании группы изобретений сведения об аналогах приводятся для
каждого изобретения в отдельности (пункт 71 Положения).
5.3 В разделе описания «Сущность изобретения» раскрывается
техническая задача, на решение которой направлено заявленное
изобретение, с указанием технического результата, который может
25

26.

быть получен при использовании изобретения. Сущность изобретения
выражается совокупностью существенных признаков, присущих
соответствующему объекту, достаточной для осуществления
изобретения с достижением указанного в заявке на изобретение
технического результата и идентификации изобретения.
Для характеристики устройства как объекта изобретения
используются следующие признаки: конструктивное выполнение
устройства, характеризуемое наличием и функциональным назначением
блоков, узлов, конструктивных элементов, их взаимным расположением,
формой выполнения элементов и (или) устройства в целом; связь между
блоками, узлами, элементами; форма выполнения связи между
элементами; параметры и иные характеристики элементов и их
взаимосвязь: материал, из которого выполнены элементы и (или)
устройство в целом; среда, выполняющая функцию элемента (пункты 72
- 74 Положения).
Для характеристики способа используются, в частности, следующие
признаки: выполняемые действия (операции); последовательность
выполняемых действий (операций); условия осуществления действий
(операций), использование веществ (сырья, реагентов, катализаторов),
устройств, штаммов, микроорганизмов, культур клеток растений и
животных, режимы проведения операций (пункт 76 Положения).
В разделе описания изобретения «Сущность изобретения» выделяются
(если выявлен наиболее близкий аналог) признаки, отличающие
изобретение от наиболее близкого аналога, и указывается совокупность
существенных признаков, обеспечивающая получение технического
результата. Не допускается замена характеристики признака отсылкой
к ИСТОЧНИКУ информации, в котором раскрыт этот признак (пункт
96 Положения).
5.4 В разделе описания изобретения «Сведения, подтверждающие
возможность осуществления изобретения» показывается возможность
осуществления изобретения с реализацией заявленного назначения и
получением технического результата, если он не следует очевидным
образом из сущности изобретения. Если в формуле изобретения какиелибо признаки представлены в виде обобщенных понятий, то в этом
разделе приводятся сведения о конкретных средствах, используемых хтя
26

27.

реализации изобретения. При описании группы изобретений необходимо,
чтобы в данном разделе описания были названы все признаки
изобретения, содержащиеся в формуле, как в отличительной, так и в
ограничительной частях. Это относится к признакам как независимого
(независимых), так и зависимого (зависимых) пунктов (пункт 101
Положения).
форма УПЭИ-2
Для объекта устройство в данном разделе приводится описание
заявленного устройства в статическом состоянии со ссылками на
фигуры чертежей, если они прилагаются. Цифровое обозначение
конструктивного элемента в описании должно указываться
непосредственно после слова, к которому оно относится, и
соответствовать его цифровому обозначению на фигуре чертежа
(пункт 100 Положения). Далее приводится описание действия
устройства или способ его использования в режиме, обеспечивающем
достижение заявленного технического результата, со ссылками на
фигуры чертежей или иные поясняющие материалы (если они
прилагаются) (пункт 102 Положения).
Для объекта способ в разделе описания изобретения «Сведения,
подтверждающие возможность осуществления изобретения»
приводятся операции, действия, приемы способа, последовательность и
условия их проведения, а также средства, используемые при реализации
способа. Если таковые известны до даты приоритета изобретения,
достаточно указания на них. При использовании неизвестных операций,
приемов, средств, приводятся их характеристика и подробное описание
(пункт 103 Положения).
6. Формула изобретения должна полностью основываться на
описании, го есть характеризовать изобретение понятиями,
содержащимися в его описании. Формула изобретения должна
выражать сущноиь изобрегения, то есть содержать СОВОКУПНОСТЬ
его су щественных признаков, достаточную для
достижения^казашшго^аявителем технического результата. Формула
изобретения должна быть ясной и точной, то есть признаки в формуле
должны выражаться таким образом, чтобы обеспечить возможность
их идентификации, однозначного понимания специалистом на основании
известного уровня техники смыслового содержания понятий, которыми
эти признаки охарактеризованы (пункт 130, 131 Положения).
27

28.

Согласно требованию пункта 136 Положения в формуле изобретения
не следует использовать термины и выражения, значение которых
имеет неопределенный характер. например, тонкий, широкий и т.п.
Независимый пункт формулы включает родовое понятие (название
изобретения), отражающее назначение, с которого начинается
изложение формулы, и состоит, как правило, из ограничительной части,
включающей признаки изобретения, совпадающие с признаками наиболее
близкого аналога, и отличительной части, включающей признаки,
которые отличают изобретение от наиболее близкого аналога. При
составлении пункта формулы с разделением на 01раничительную и
отличительную части после изложения ограничительной части
вводится словосочетание "отличающийся (отличающееся) тем, что",
непосредственно после которого излагается отличительная часть
(пункт 146 Положения).
При этом в соответствии с пунктом 190 Положения в описании и
формуле изобретения должно соблюдат ься требование единства
терминологии, т.е. одни и те же признаки в тексте описания и в
формуле изобретения должны называться одинаково.
Признаки устройства излагаются в формуле изобретения так. чтобы
характеризовать его в сгатическом состоянии. При характеристике
выполнения конструктивного элемента —устройства допускаемся
указание на его подвижность, возможность реализации- -им
определенной функции (например, с возможностью торможения, с
возможностью фиксации) (пункт 155 Положения).
В формулу изобретения, относящегося к способу, включаются
признаки, отражающие наличие действий или операций, совокупность
которых обеспечивает возможность реализации способа, порядок
выполнения таких действий или операций, условия и режимы их
осуществления, а также средства, с помощью которых реализуется
способ (сырье, реагенты, приспособления). Операции приво.чятся в
последовательности, соответствующей реальному воспроизведению
способа. Глаголы, характеризующие действие, излагаются в
действительном залоге, изъявительном наклонении, третьем лице,
множественном числе (например, наполняют, измельчают, нагревают)
{159- 161 Положения).
6. Реферат должен содержать краткое описание изобретения (пункт
175 Положения). В реферате указываются:
28

29.

""форма УП'Ж-2
- название изобретения;
- область техники, к которой относится изобретение, и (или) область
применения, если это неясно из названия;
- сущность изобретения с указанием достигаемого технического
результата, приводятся признаки, необходимые для реализации
изобретения в заявленном качестве (пункт 176 Положения).
Заявителю предлагается оформить документы заявки в
соответствии с требованиями Положения, используя термины и
определения, упомянутые в документах, представленных в патентный
орган 02.03.2021. Откорректированные документы необходимо
представить в двух экземплярах.
В сопроводительном письме необходимо указать на различия между
заменяемыми и заменяющими листами и дать объяснения причин
вносимых изменений. Ьсли изменения вносятся в формулу изобретения, в
сопроводительном письме указываются также ссылки на страницы и
абзацы первоначального описания и (или) формулы изобретения,
подтверждающие правомерность вносимых изменений. В этом случае
кроме заменяющих листов должны быть представлены копии
заменяемых листов с внесенными от руки изменениями (пункт 240
Положения).
Сопроводительное письмо с пояснениями по каждому ПУНКТУ
запроса должно быть подписано заявителем (пункт 227 Положения).
ПРИМЕЧАНИЕ:
Если необходимые уточнения не представлены в установленный срок,
либо не представлены документы, отсутствовавшие на дату
поступления заявки, либо не представлено ходатайство о продлении
установленного срока, принимается решение об отказе в выдаче
патента на изобретение (статья 19 Закона).
Первый заместитель генерального директора
Заместитель начальника управления экспертизы промышленной
собственности - начальник отдела биологии
Л.М.Юхнович т. (017) 272-94-35 форма УГПИ-2
Дата поступления заявки на Дата подачи заявки на выдачу
Регистрационный номер заявки на выдачу
29

30.

выдачу патента на изобретение*: патента на изобретение*:
патента на изобретение*:
ЗАЯВЛЕНИЕ о выдаче патента Республики Беларусь на изобретение
I Ipoiuy (просим) выдать патент Республики Беларусь на изобретение на
имя заявителя (заявителей)
В государственное учреждение «Национальный центр интеллектуальной
собственности»
Заявитель (заявители):
Фамилия, собственное имя, отчество (если таковое имеется)
физического лица (физических лиц) и (или) полное наименование
юридического лица (юридических лиц) согласно учредительному
документу:
Адрес места жительства (места пребывания) или места нахождения:
Номер телефона** : Номер факса**:
Адрес электронной почты**:
? смотреть продолжение на дополнительном листе (листах)
Код страны места жительства (места пребывания) или места
нахождения по стандарту Всемирной организации
интеллектуальной собственности (далее - ВОИС) ST.3 (если он
установлен):
Общегосударственный классификатор предприятий и
организаций Республики Беларусь (далее - ОКНО) ***
Наименование юридического лица, которому подчиняется или в состав
(систему) которого входит юридическое лицо заявитель (заявители)
(при наличии)"*:
Название заявляемою изобретения (группы изобретений), которое
должно совпадать с названием, приводимым в описании изобретения:
? изобретение создано при осуществлении научной и научно-технической
деятельности в рамках:
? государственной научно-технической программы:
? региональной научно-технической программы;
полностью ? частично ? полностью ? частично
? полностью ? частично
? полностью ? частично
? отраслевой научно-технической программы, финансируемой за
счет средств: республиканского бюджета ? полно
30

31.

местного бюджета
государственных целевых бюджетных фондов государственных
внебюджетных фондов
заявитель (заявители) является:
? государственным заказчиком;
? исполнителем;
? лицом, которому право на получение патента на изобретение передано
государственным заказчиком (исполнителем)
? Заявка на выдачу патента на изобретение подается как
выделенная
Дата подачи первоначальной заявки на выдачу патента на изобретение:
Номер первоначальной заявки на выдачу патента на изобретение: ?
подачи первой заявки на выдачу патента на изобретение в государстве
участнике Парижской конвенции по охране промышленной
собственности от 20 марта 1883 года (далее - конвенционный
приоритет);
? поступления дополнительных материалов к ранее поданной заявке на
выдачу патента на изобретение;
Учетный номер титательспика (далее - УНП) ***
? подачи более ранней заявки на выдачу патента на изобретение в
государственное учреждение «Национальный центр интеллектуальной
собственности».
Дата испрашиваемого приоритета
Номер первой заявки на выдачу патента на изобретение или более
ранней заявки на выдачу патента на изобретение
Код страны подачи по стандарту ВОИС ST.3 (при испрашиваний
конвенционного приоритета)
Примечание. Бланк заявления оформляется на одном листе с двух
сторон.
Адрес для переписки в соответствии с правилами адресования почтовых
отправлений с указанием фамилии, собственного имени, отчества (если
таковое имеется) или наименования адресата (заявителя (заявителей),
патентного поверенного, общего представителя):
Номер факса**:
Номер телефона**:
31

32.

Адрес электронной почты**:
Адрес электронной почты**:
Представитель (фамилия, собственное имя. отчество (если таковое
имеется), регистрационный номер патентною поверенного, если
представителем назначен патентный поверенный)
является: ? патентным поверенным; ? общим представителем Номер
телефона**: Номер факса**:
Основание (основания)дли возникновения права на получение патента на
изобретение
Заявитель (заявители) является: П I) автором (соавторами);
? 2) нанимателем автора;
П 3) заказчиком по договору на
выполнение нау чпо-исследовагельских.
опьпио-коиетрукторских
или ICMKW ичееких работ ь ошошенин
созданного при выполнении договора
изобретения
Q 4) физическим и (или) юридическим лицом (липами), которым право на
получение патента передано липами, указанными в пунктах I) - 3):
? 5) правопреемником (правопреемниками) автора(соакгоров);
Г) 6) правопреемником (правопреемниками) нанимателя автора:
? 7) правопреемником (правопреемниками) заказчика по договор} на
выполнение научно-исследовательских, опытно-конструкторских
или технологических работ в отношении созданного при выполнении
договора изобретения:
Количество листов в одном жземн-шре
Количество экземпляров
Перечень прилагаемых документов:
П S)правопреемником (правопреемниками) физического и (или)
юридического лииа(лиц). которым право на получение патент передано
лишми. указанными в пункт I) - 3)
Фигура №
чертежей (если фигур несколько), предлагаемая для публикации с
формулой изобретения в
официальном бюллетене пагенч ною органа Автор (соавторы)
32

33.

Фамилия, собственное имя. омеаво (если таковое имеется):
Адрес честй «ИТЫь^тв» (места пребывания ЬклкмАя кол арапы IK>
стан; lap ту ВОИС S 1.3 (если он установлен):
? смотреть продолжение на дополнительном листе (листах)
Подпись (подписи) заявителя (заявителей) или его (их) патентного
поверенного с указанием фамилии и инициалов (от имени юридического
лица (юридических лиц) заявление подписывается руководителем этого
юридического лица (юридических лиц) или иным лицом (лицами),
уполномоченным на но. с указанием фамилии, инициалов и должности
подписывающего лица (лиц):
Дата подписания:
Заполняется государственным учреждением «Национальный центр
интеллектуальной собственности». "Если имеется.
" Заполняется в случае, если заявителем (заявителями) является
юридическое лицо (юридические лица) Республики Беларусь.
"Заполняется только при испрашивании приоритета более раннего,
чем дата поступления заявки на выдачу патента на изобретение в
государственное учреждение «Национальный центр интеллектуальной
собственности».
Заявление в Государственный комитет по науке и технологиям
Республики Беларусь Национальный центр интеллектуальной
собственности 220034 г Минск ул Козлова 20 (017) 285-26-05
[email protected]
Ведущему специалисту центра экспертизы промышленной
собственности Н.М.Бортнику 16 февраля 2021
Авторы изобретения
Спиральная сейсмоизолирующая опора с упругими демпферами сухого
трения Е04Н 9/02
Дата поступления заявки на выдачу патента на изобретение*:
Дата подачи заявки на выдачу патента на изобретение*: 16.02.2021
Регистрационный номер заявки на выдачу патента на изобретение*:
ЗАЯВЛЕНИЕ о выдаче патента Республики Беларусь на изобретение
33

34.

Прошу (просим) выдать патент Республики Беларусь на изобретение на
имя заявителя (заявителей)
В государственное учреждение «Национальный центр интеллектуальной
собственности»
Заявитель (заявители): физическое лицо Коваленко Александр Иванович
– инвалид I группы по общим заболеваниям
Фамилия, собственное имя, отчество (если таковое имеется)
физического лица (физических лиц) и (или) полное наименование
юридического лица (юридических лиц) согласно учредительному
документу: Коваленко Александр Иванович
Адрес места жительства (места пребывания) или места нахождения:
190005, г.Санкт-Петербург , 2 –я Красноармейская ул дом 4 СПб ГАСУ
(921) 962-67-78
Фонд поддержки и развития сейсмостойкого строительства "Защита и
безопасность городов" "СЕЙСМОФОНД" Номер телефона (999) 53547-29 Номер факса (812) 694-78-10 Адрес электронной почты*
[email protected] [email protected]
[email protected]
Код страны места жительства (места пребывания) или места
нахождения по стандарту Всемирной организации интеллектуальной
собственности (далее – ВОИС) SТ.3 (если он установлен): СССР
Ленинград
смотреть продолжение на дополнительном листе (листах)
Общегосударственный классификатор предприятий и организаций
Республики Беларусь (далее – ОКПО) ***
Организ. "Сейсмофонд" ОГРН 1022000000824
Учетный номер плательщика (далее – УНП) ***ОО "Сейсмофонд" ИНН
2014000780
Наименование юридического лица, которому подчиняется или в состав
(систему) которого входит юридическое лицо – заявитель (заявители)
(при наличии)***: Общественная организация "Фонд поддержки и
развития сейсмостойкого строительства "Защита безопасность
городов" "СЕЙСМОФОЕНД" КПП 201401001 ИНН 2014000780
34

35.

Название заявляемого изобретения (группы изобретений), которое
должно совпадать с названием, приводимым в описании изобретения:
Спиральная сейсмоизолирующая опора с упругими демпферами сухого
трения Е04Н 9/02
? изобретение создано при осуществлении научной и научно-технической
деятельности в рамках:
? государственной научно-технической программы;
? региональной научно-технической программы;
? отраслевой научно-технической программы, финансируемой за счет
средств:
республиканского бюджета
? полностью ? частично
местного бюджета
? полностью ? частично
государственных целевых бюджетных фондов
??? полностью ? частично
государственных внебюджетных фондов
? полностью ? частично
заявитель (заявители) является:
? государственным заказчиком;
? исполнителем;
? лицом, которому право на получение патента на изобретение передано
государственным заказчиком (исполнителем)
Заявка на выдачу патента на изобретение подается как выделенная
Дата подачи первоначальной заявки на выдачу патента на изобретение:
Номер первоначальной заявки на выдачу патента на изобретение:
Прошу установить приоритет изобретения по дате****:
подачи первой заявки на выдачу патента на изобретение в государстве
– участнике Парижской конвенции по охране промышленной
собственности от 20 марта 1883 года (далее – конвенционный
приоритет);
поступления дополнительных материалов к ранее поданной заявке на
выдачу патента на изобретение;
35

36.

подачи более ранней заявки на выдачу патента на изобретение в
государственное учреждение «Национальный центр интеллектуальной
собственности».
Номер первой заявки на выдачу патента на изобретение или более
ранней заявки на выдачу патента на изобретение
Дата испрашиваемого приоритета Код страны подачи по стандарту
ВОИС SТ.3 (при испрашивании конвенционного приоритета)
________________________________________
Примечание. Бланк заявления оформляется на одном листе с двух
сторон.
Адрес для переписки в соответствии с правилами адресования почтовых
отправлений с указанием фамилии, собственного имени, отчества (если
таковое имеется) или наименования адресата (заявителя (заявителей),
патентного поверенного, общего представителя): 190005, г.СанктПетербург, 2-я Красноармейская ул. дом 4 ОО «Сейсмофонд» при СПб
ГАСУ Номер тел ( 921) 962-67-78 Номер факc (812) 694-78-10
Адр электр почты [email protected] [email protected]
47-29, (996) 798-26-54
(999) 535-
Представитель (фамилия, собственное имя, отчество (если таковое
имеется), регистрационный номер патентного поверенного, если
представителем назначен патентный поверенный)
является:
патентным поверенным; общим представителем
Номер тел (996) 798-26-54 Номер факса (812) 694-78-10 Адрес
электронной почты: [email protected] Перечень прилагаемых
документов:
Количество листов в одном экземпляре
Количество экземпляров
Основание (основания) для возникновения права на получение патента на
изобретение
1. описание изобретения
2. формула изобретения
(независимые пункты 2 )
3. чертежи
4. реферат
36

37.

5. документ об уплате патентной пошлины
6. другой документ (указывается конкретно его назначение): описание
прототипа патент RU 1832165 " Виброизолирующая опора", RU №
184085 "Виброизолирующий компенсатор"
RU 165076 "Опора сейсмостойкая"
.Изобретение № 1760020 "Сейсмостойкий фундамент" 07.09.1992
11. Заявки на изобретение № 20181229421/20(47400) от 10.08.2018
«Опора сейсмоизолирующая «гармошка». Используется Японии.
12. Заявки на изобретение № 2018105803/20 (008844) от 11.05.2018
«Антисейсмическое фланцевое фрикционно-подвижное соединение для
трубопроводов» F 16L 23/02 ,
13. Заявка на изобретение № 2016119967/20 ( 031416) от 23.05.2016
«Опора сейсмоизолирующая маятниковая» E04 H 9/02.
. "СПОСОБ ЗАЩИТЫ ЗДАНИЯ И СООРУЖЕНИЯ ПРИ ВЗРЫВЕ С
ИСПОЛЬЗОВАНИЕМ СДВИГОУСТОЙЧИВЫХ И
ЛЕГКОСБРАСЫВАЕМЫХ СОЕДИНЕНИЙ, ИСПОЛЬЗУЮЩИЕ
СИСТЕМУ ДЕМПФИРОВАНИЯ ФРИКЦИОННОСТИ И
СЕЙСМОИЗОЛЯЦИЮ ДЛЯ ПОГЛОЩЕНИЯ ВЗРЫВНОЙ И
СЕЙСМИЧЕСКОЙ ЭНЕРГИИ" № 2010136746 E 04 C 2/09 Дата
опубликования 20.01.2013
24.Прилагается справка об инвалидности Коваленко Александра
Ивановича по общим заболеваниям - 1 стр согласно НАЛОГОВого
КОДЕКСа РЕСПУБЛИКИ БЕЛАРУСЬ ОСОБЕННАЯ ЧАСТЬ от 29
декабря 2009 г. N 71-З
СТАТЬЯ 263 ЛЬГОТЫ ПО ПАТЕНТНЫМ ПОШЛИНАМ
1. Плательщики – физические лица, если иное не установлено частью
второй настоящего пункта, уплачивают 25 процентов от
установленного размера патентных пошлин (за исключением юридически
значимых действий, за совершение которых взимается патентная
пошлина в соответствии с пунктами 4, 15, 43 - 67, 71 - 75, 77 84 приложения 23 к настоящему Кодексу).
Освобождаются от патентных пошлин (за исключением юридически
значимых действий, за совершение которых взимается патентная
пошлина в соответствии с пунктами 43 - 67, 71 - 75, 77 -84 приложения
23 к настоящему Кодексу) плательщики – физические лица:
* инвалиды I группы.
* http://www.nalog.gov.by/ru/article263/
25. Прилагается свидетельство о рождении Коваленко Александра
Ивановича о его белорусской национальности
37

38.

6
1
7
4
1
Инвалид
1
1
1
1
1
Освобожден
Заявитель (заявители) является:
1) автором (соавторами);
? 2) нанимателем автора;
3) заказчиком по договору на выполнение научно-исследовательских,
опытно-конструкторских
или технологических работ в отношении созданного при выполнении
договора изобретения
4) физическим и (или) юридическим лицом (лицами), которым право на
получение патента передано лицами, указанными в пунктах 1) – 3);
5) правопреемником (правопреемниками) автора (соавторов);
6) правопреемником (правопреемниками) нанимателя автора;
7) правопреемником (правопреемниками) заказчика по договору на
выполнение научно-исследовательских, опытно-конструкторских
или технологических работ в отношении созданного при выполнении
договора изобретения;
8) правопреемником (правопреемниками) физического и (или)
юридического лица (лиц), которым право на получение патента передано
лицами, указанными в пунктах 1) – 3)
Фигура № __1____ чертежей (если фигур несколько), предлагаемая для
публикации с формулой изобретения в официальном бюллетене
патентного органа
Автор (соавторы): Инвалид I группы по общим заболеваниям Коваленко
Александр Иванович
Фамилия, собственное имя, отчество (если таковое имеется):
Коваленко Александр Иванович
38

39.

Адрес места жительства (места пребывания), включая код страны по
стандарту ВОИС SТ.3 (если он установлен):
Адрес для переписки для журналистов: а/я газета "Земля РОССИИ",
197371, г. Санкт-Петербург . (RU) [email protected]
смотреть продолжение на дополнительном листе (листах)
Подпись (подписи) заявителя (заявителей) инвалида первой группы или
его (их) патентного поверенного с указанием фамилии и инициалов (от
имени юридического лица (юридических лиц) заявление подписывается
руководителем этого юридического лица (юридических лиц) или иным
лицом (лицами), уполномоченным на это, с указанием фамилии,
инициалов и должности подписывающего лица (лиц):
(подпись)
Дата подписания: 16.02.2021 Инвалид I группы по общим заболеваниям
Коваленко Александр Иванович
* Заполняется государственным учреждением «Национальный
центр интеллектуальной собственности».
**Если имеется.
*** Заполняется в случае, если заявителем (заявителями) является
юридическое лицо (юридические лица) Республики Беларусь.
**** Заполняется только при испрашивании приоритета более
раннего, чем дата поступления заявки на выдачу патента на
изобретение в государственное учреждение «Национальный центр
интеллектуальной собственности». [email protected]
[email protected] [email protected]
Р Е Ф Е Р А Т изобретения на полезную модель Спиральная сейсмоизолирующая опора с упругими
демпферами сухого трения
Спиральная сейсмоизолирующая опора с упругими демпферами сухого трения предназначена для
сейсмозащиты оборудования, сооружений, объектов, зданий от сейсмических, взрывных, вибрационных,
неравномерных воздействий за счет использования спиралевидной сейсмоизолирующей опоры с
упругими демпферами сухого трения и упругой гофры, многослойной втулки (гильзы) из упругого
троса в полимерной из без полимерной оплетке и протяжных фланцевых фрикционно- податливых
соединений отличающаяся тем, что с целью повышения сеймоизолирующих свойств спиральной
демпфирующей опоры или корпус опоры выполнен сборным с трубчатым сечением в виде раздвижного
демпфирующего «стакан» и состоит из нижней целевой части и сборной верхней части подвижной в
вертикальном направлении с демпфирующим эффектом, соединенные между собой с помощью
фрикционно-подвижных соединений и контактирующими поверхностями с контрольным натяжением
фрикци-болтов с упругой тросовой втулкой (гильзой) , расположенных в длинных овальных отверстиях,
при этом пластины-лапы верхнего и нижнего корпуса расположены на упругой перекрестной гофры
39

40.

(демпфирующих ножках) и крепятся фрикци-болтами с многослойным из склеенных пружинистых
медных пластин клином, расположенной в коротком овальном отверстии верха и низа корпуса опоры.
Спиральная сейсмоизолирующая опора с упругими демпферами сухого трения , содержащая
трубообразный спиралевидный корпус-опору в виде перевернутого «стакан» заполненного тощим
фиробетоно и сопряженный с ним подвижный узел из контактирующих поверхностях между которыми
проложен демпфирующий трос в пластмассой оплетке с фланцевыми фрикционно-подвижными
соединениями с закрепленными запорными элементами в виде протяжного соединения.
Кроме того в корпусе, параллельно центральной оси, выполнено восемь симметричных или более
открытых пазов с длинными овальными отверстиями, расстояние от торца корпуса, больше
расстояния до нижней точки паза опоры.
Увеличение усилия затяжки фрикци-болта приводит к уменьшению зазора <Z> корпуса, увеличению сил
трения в сопряжении составных частей корпуса спиралевидной опоры и к увеличению усилия сдвига при
внешнем воздействии.
Податливые демпферы спиральной сейсмоизолирующей опора с упругими демпферами сухого трения,
представляют собой двойную фрикционную пару, имеющую стабильный коэффициент трения по
свинцовому листу в нижней и верхней части виброизолирующих, сейсмоизолирующих поясов, вставкой со
свинцовой шайбой и латунной гильзой для создания протяжного соединяя.
Сжимающее усилие создается высокопрочными шпильками в спиральной сейсмоизолирующей опоре с
упругими демпферами сухого трения, с вбитыми в паз шпилек обожженными медными клиньями,
натягиваемыми динамометрическими ключами или гайковертами на расчетное усилие. Количество
болтов определяется с учетом воздействия собственного веса ( массы) оборудования, сооружения, здания,
моста и расчетные усилия рассчитываются по СП 16.13330.2011 ( СНиП II -23-81* ) Стальные
конструкции п. 14.4, Москва, 2011, ТКТ 45-5.04-274-2012 (02250), «Стальные конструкции» Правила
расчет, Минск, 2013. п. 10.3.2
Сама составная спиралевидная сейсмоизолирующая опора с упругими демпферами сухого трения,
выполнена спиралевидной в виде перевернутого «стакана» с заполненная тощим фибробетоном,
трубчатая либо стаканчато-трубного вида на фланцевых, фрикционно – подвижных соединениях с
фрикци-болтами установленная на перекрестную виброизолирующею упругою гофру ( демпфирующие
ножки) на свинцовых листах .
Фрикци-болт с тросовой втулкой (гильзой) - это вибропоглотитель пиковых ускорений (ВПУ) с
помощью которого поглощается вибрационная, взрывная, ветровая, сейсмическая, вибрационная
энергия. Фрикци-болт снижает на 2-3 балла импульсные растягивающие нагрузки при землетрясениях и
взрывной нагрузки от ударной воздушной волны. Фрикци–болт повышает надежность работы
вентиляционного оборудования, сохраняет каркас здания, мосты, ЛЭП, магистральные трубопроводы за
счет уменьшения пиковых ускорений, за счет протяжных фрикционных соединений, работающих на
растяжение. ( ТКП 45-5.04-274-2012 (02250) п. 10.3.2 стр. 74 , Минск, 2013, СП 16.13330.2011,СНиП II-2381* п. 14.3- 15.2).
Упругая втулка (гильза) фрикци-болта состоящая из стального троса в пластмассовой оплетке или без
пластмассовой оплетки, пружинит за счет трения между тросами, поглощает при этом вибрационные,
взрывной, сейсмической нагрузки , что исключает разрушения сейсмоизолирующего основания , опор под
агрегатов, мостов , разрушении теплотрасс горячего водоснабжения от тяжелого автотранспорта и
вибрации от ж/д . Надежность friction-bolt на виброизолирующих опорах достигается путем
обеспечения многокаскадного демпфирования при динамических нагрузках, преимущественно при
импульсных растягивающих нагрузках на здание, сооружение, оборудование,труопровоы, которое
устанавливается на спиральных сейсмоизолирующих опорах, с упругими демпферами сухого трения,
на фланцевых фрикционно- подвижных соединениях (ФФПС) по изобретению "Опора сейсмостойкая" №
165076 E 04 9/02 , опубликовано: 10.10.2016 № 28 от 22.01.2016 ФИПС (Роспатент) Авт. Андреев. Б.А.
Коваленко А.И, RU 2413098 F 16 B 31/02 "Способ для обеспечения несущей способности
металлоконструкций с высокопрочными болтами"
В основе спиральной сейсмоизолирующей опоры с упругими демпферами сухого трения, на
фрикционных фланцевых соединениях, на фрикци-болтах (поглотители энергии) лежит принцип
который называется "рассеивание", "поглощение" вибрационной, сейсмической, взрывной, энергии.
Использования фланцевых фрикционно - подвижных соединений (ФФПС) для спиральной
сейсмоизолирующей опоры, с упругими демпферами сухого трения, на фрикционно –болтовых и
протяжных соединениях с демпфирующими узлами крепления (ДУК с тросовым зажимом-фрикци-
40

41.

болтом ), имеет пару структурных элементов, соединяющих эти структурные элементы со
скольжением, разной шероховатостью поверхностей в виде демпфирующих тросов или упругой гофры (
обладающие значительными фрикционными характеристиками, с многокаскадным рассеиванием
сейсмической, взрывной, вибрационной энергии. Совместное скольжение включает зажимные средства
на основе friktion-bolt ( аналог американского Hollo Bolt ), заставляющие указанные поверхности,
проскальзывать, при применении силы.
В результате взрыва, вибрации при землетрясении, происходит перемещение (скольжение) фрагментов
фланцевых фрикционно-подвижных соединений ( ФФПС), спиральной сейсмоизолирующей опоры с
упругими демпферами сухого трения, скользящих и демпфирующих фрагментами спиральной ,
винтовой опоры , по продольным длинным овальным отверстиям виброиолирующей и
сейсмоизолирующей опоры. Происходит поглощение энергии, за счет трения частей корпуса опоры при
сейсмической, ветровой, взрывной нагрузки, что позволяет перемещаться и раскачиваться спиральнодемпфирующей и пружинистой опоры с оборудованием на расчетное допустимое перемещение, до 3-5 см (
по расчету на сдвиг в SCAD Office , и спиралевидная сейсмоизолирующая опора, рассчитана на одно, два
землетрясения или на одну взрывную нагрузку от ударной взрывной волны.
После длительной вибрационной, взрывной, сейсмической нагрузки, на спиралевидную
сейсмоизолирующею опору с упругими демпферами сухого трения, необходимо заменить сломанные
упругие гофрированные ножки, смятые троса или гофру вынуть из контактирующих поверхностей,
обмотать скользящий двигающий шток –спиралевидный перевернутый «стакан» вставить опять в
новый трубчатый стакан , забить в паз латунной шпильки демпфирующего узла крепления, новые
упругопластичный стопорные обожженные медный многослойный клин (клинья), с помощью домкрата
поднять и выровнять виброизолирующею опору под вентиляционным агрегатом, оборудования,
сооружения, здание, теплотрассу, трубопровод и затянуть новые фланцевые фрикци- болтовые
соедиения, с контрольным натяжением, на начальное положение конструкции с фрикционными
соединениями, восстановить протяжного соединения на сейсмоизолирующей демпфирующей опоре, для
дальнейшей эксплуатации после взрыва, аварии, землетрясения для дальнейшей эксплуатации для
надежной сейсмозащиты, виброизоляции от многокаскадного демпфирования агрегатов , сооружения,
трубопровода новой восстановленной спиральной сейсмоизолирующей опоры с упругими демпферами
сухого трения и усилить основания под трубопровод, теплотрассу, агрегаты, оборудования, задний и
сооружений
Описание заявки на изобретение на полезную модель Спиральная
сейсмоизолирующая опора с упругими демпферами сухого трения Е04Н 9/02
Предлагаемое техническое решение предназначено для защиты агрегатов,
оборудования, зданий, мостов, сооружений, магистральных трубопроводов, линий
электропередач, рекламных щитов от сейсмических воздействий за счет
использования спиральной сейсмоизолирующей, виброизолирующей опоры с
упругими демпферами сухого трения установленных на пружинистую гофру с
ломающимися демпфирующими ножками при при многокаскадном демпфировании
и динамических нагрузках на протяжных фрикционное- податливых соединений
проф. ПГУПС дтн Уздина А М "Болтовое соединение" №№ 1143895 , 1168755 ,
1174616 "Болтовое соединение плоских деталей".
Известны фрикционные соединения для защиты объектов от динамических
воздействий. Известно, например, болтовое соединение плоских деталей встык,
патент RU №1174616, F15B5/02 с пр. от 11.11.1983, RU 2249557 D 66C 7/00 " Узел
упругого соединения трехглавного рельса с подкрановой балкой ", RU № 2148 805
G 01 L 5/24 "Способ определения коэффициента закручивания резьбового
соединения "
41

42.

Изобретение относится к области строительства и может быть
использовано для виброизоляции зданий, сооружений, технологического
оборудования и трубопроводов. Система содержит спиралевидную
сейсмоизолирующею опору с упругими демпферами сухого трения в виде
спиральной сейсмоизолирующей опоры с разной жесткостью, демпфирующий
элемент стального листа свитого по спирали. Использование изобретения
позволяет повысить эффективность сейсмозащиты и виброизоляции в
резонансном режиме.
Изобретение относится к строительству и машиностроению и может
быть использовано для виброизоляции технологического оборудования,
агрегатов трубопроводов и со смещенным центром масс, например станки
токарной группы, ткацкие станки, платформы вентиляционных агрегатов и др.
Наиболее близким техническим решением к заявляемому объекту является
виброизолирующая система по патенту РФ №2649484, F16F 7/00 (прототип),
содержащая, четыре виброизолятора с маятниковым подвесом, имеющих
разную жесткость и связанных с опорными элементами оборудования.
Недостатком известного устройства является недостаточная
эффективность на резонансе из-за отсутствия демпфирования колебаний.
Технический результат - повышение эффективности демпфирующей
сейсмоизоляции в резонансном режиме и упрощение конструкции и монтажа
сейсмоизолирующей опоры.
Это достигается тем, что в демпфирующая сейсмозащита для зданий и
сооружений , содержащей по крайней мер, за счет демпфирующей спиральной
опоры , имеющих разную жесткость и связанных с опорными элементами
оборудования, дополнительно содержится платформа, на которой крепится
виброизолируемое зданий, сооружение, трубопровод и которая опирается на
спиральную сейсмоизолирующую опору с упругими демпферами сухого трения
и демпфирующий элемент в виде на фрикционно –подвижных болтовых
соединений для обеспечения сейсмостойкости , расположенные по спирали
стальных листов в вертикальной и горизонтальной плоскости, при этом
спиралевидная сейсмоизолирующая опора с упругими демпферами сухого
трения установлена с использованием фрикци-болта с забитым обожженным
медным упругопластичным клином, конце демпфирующий элемент, а
демпфирующий элемент выполнен в виде медного клина забитым в паз латунной
шпильки с медной втулкой, при этом нижняя часть штока соединена с
основанием спиральной опоры , жестко соединенным с демпирующей
спиральной стальной лентой на фрикционно –подвижных болтовых соединениях
для обеспечения демпфирования спиралевидной опоры
На фиг. 1 представлена общая компоновочная схема вид с верху спиральной
сейсмоизолирующей опорй с упругими демпферами сухого трения по спирали
состоящих из трех колец листов в виде спиралевидного вытянутого
42

43.

стаканчика с пружинистыми демпферами сухого трения и пружинистыми
характеристиками
Предлагаемой спиральной сейсмоизолирующей опора с упругими демпферами
сухого трения
На фиг. 1 - вид сверху - схема демпфирующего элемента спиралей,
выполненных в три витка , вытянутых спиралей на фрикционно- подвижных
болтовых соединениях, с длинными овальными отверстиями в виде упругих
колец в виде упругодемпфирующей , демпферов с сухим трением
Спиральная сейсмоизолирующая опора с упругими демпферами сухого трения,
виброизолирующая система для зданий и сооружений, содержит основание 3 и 2
–овальные отверстия , для болтов по спирали и имеющих одинаковую
жесткость и связанных с опорными элементами верхней части пояса зданий
или сооружения я.
Система дополнительно содержит опорную пластину 3, которая крепится
фрикци-болтом с пропиленным пазов в латунной шпильки для забитого медного
обожженного стопорного клина ( не показан на фигуре 2 ) и которая опирается
на нижний пояс основания и демпфирующий элемент 1 в виде спиральновидной
сейсмоизолирующей опоры с упругими демпферами сухого тр ения за счет
применения фрикционно –подвижных болтовых соединениях, выполненных по
изобретению проф дтн ПУГУПС №1143895, 1168755, 1174616, 2010136746
«Способ защиты зданий», 165076 «Опора сейсмостойкая» В спиралевидную
трубчатую опору , после сжатия расчетной нагрузкой , внутрь заливается
тощий по расчету фибробетон по нагрузкой , сжатой спиральной
сейсмоизолирующей опоры
Демпфирующий элемент спиралевидной опоры , выполнен в виде спиральной
сейсмоизолирующей опоры с упругими демпферами сухого трения за счет
фрикционно-подвижных соединениях (ФПС)
Сталь для демпфирующей спирально опоры , марки ЭИ-708, а диаметр
опоры е находится в оптимальном интервале величин 20 см - 40 смм.
Спиральная сейсмоизолирующая опора с упругими демпферами сухого трения,
работает следующим образом.
При колебаниях грунта сейсмоизолирующая и виброизолирующая опора для
демпфирующей сейсмоизоляции объекта, здания, сооружения, трубопровода
(на чертеже не показан) с упругими демпферами сухого трения , для
спиралевидной сейсмоизолирующей опоры с упругими демпферами сухого
трения , элементы 1 и 4 воспринимают как вертикальные, так и
горизонтальные нагрузки, ослабляя тем самым динамическое воздействие на
демпфирующею сейсмоизоляцию объект, т.е. обеспечивается
43

44.

пространственную сейсмозащиту, виброзащиту и защита от ударной нагрузки
воздушной волны
Спиральная сейсмоизолирующая опора с упругими демпферами сухого трения,
как виброизолирующая система работает следующим образом.
При колебаниях виброизолируемого объекта , спиральная сейсмоизоляция на
основе фрикционо-подвижных болтовых соединениях , расположенные в длинных
овальных отверстиях воспринимают вертикальные нагрузки, ослабляя тем
самым динамическое воздействие на здание, сооружение, трубопровод.
Горизонтальные нагрузки воспринимаются спиральными сейсмоизоляторами
1, и разрушение тощего фибробетона 4 расположенного внутри спиральной
демпфирующей опоры .
Предложенная виброизолирующая система является эффективной, а также
отличается простотой при монтаже и эксплуатации.
Упругодемпфирующая спиральная сейсмоизолирующая опора с упругими
демпферами сухого трения работает следующим образом.
При колебаниях объекта защиты спиральной сейсмоизолирующей опоры с
упругими демпферами сухого трения , которые воспринимает вертикальные
нагрузки, ослабляя тем самым динамическое воздействие на здание ,
сооружение . Горизонтальные колебания гасятся за счет фрикци-болта
расположенного в при креплении опоры к основанию фрикци-болтом , что дает
ему определенную степень свободы колебаний в горизонтальной плоскости.
Соединение содержит металлические листы свитые в три слоя петлей снятые
фрикционо –подвижными болтовыми соединениями для обеспечения
сейсмостойкости. В стальных листах , в виде вытянутого по спирали и
спиралевидной формы в три витка , в которых выполнены длинные овальные
отверстия, через которые пропущены болты . При малых горизонтальных
нагрузках силы трения между листами пакета и болтами не преодолеваются. С
увеличением нагрузки происходит взаимное проскальзывание листов или прокладок
относительно накладок контакта листов с меньшей шероховатостью.
Взаимное смещение листов происходит до упора болтов в края длинных овальных
отверстий для скольжения при многокаскадном демпфировании и после
разрушения при импульсных растягивающих нагрузках или при многокаскадном
демпфировании , уже не работают упруго. После того как все болты
соединения дойдут до упора края, в длинных овальных отверстий, соединение
начинает работать упруго за счет разрушения фибробетона, а затем
происходит разрушение соединения за счет смятия листов и среза болтов, что
нельзя допускать . Сдвиг по вертикали допускается 2 - 4 см или более
44

45.

Недостатками известного решения аналога являются: не возможность
использовать опоры как сейсмоизолирующие демпфирующее основание,
ограничение демпфирования по направлению воздействия только по горизонтали и
вдоль овальных отверстий; а также неопределенности при расчетах из-за
разброса по трению. Известно также устройство для фрикционного
демпфирования антиветровых и антисейсмических воздействий, патент
TW201400676(A)-2014-01-01. Restraint anti-wind and anti-seismic friction damping
device, E04B1/98, F16F15/10, патент США Structural stel bulding frame having
resilient connectors № 4094111 E 04 B 1/98, RU № 2148805 G 01 L 5/24 "Способ
определения коэффициента закручивания резьбового соединения" , RU № 2413820
"Фланцевое соединение растянутых элементов замкнутого профиля", Украина №
40190 А "Устройство для измерения сил трения по поверхностям болтового
соединения" , Украина патент № 2148805 РФ "Способ определения
коэффициента закручивания резьбового соединения"
Таким образом получаем спиралевидная сейсмоизолирующая опора с упругими
демпферами сухого трения и виброизолирующею конструкцию кинематической
или маятниковой опоры, которая выдерживает вибрационные и сейсмические
нагрузки но, при возникновении динамических, импульсных растягивающих
нагрузок, взрывных, сейсмических нагрузок, превышающих расчетные силы трения
в сопряжениях, смещается от своего начального положения
Недостатками указанной конструкции являются: сложность конструкции и
сложность расчетов из-за наличия большого количества сопрягаемых трущихся
поверхностей и надежность болтовых креплений
Целью предлагаемого решения является упрощение конструкции, уменьшение
количества сопрягаемых трущихся поверхностей до одного или нескольких
сопряжений отверстий корпуса- крестообразной, трубной, квадратной опоры,
типа спиралевидного штока – многоразового сейсмостойкого трубчатого
вытянутого стакана , а также повышение точности расчета при использования
демпфирующей гофры, тросовой втулки (гильзы) на фрикци- болтовых
демпфирующих податливых креплений и прокладки между контактирующими
поверхностями упругую обмотку из тонкого троса ( диаметр 2 мм ) в
пластмассовой оплетке или без оплетки, скрученного в два или три слоя
пружинистого троса.
Сущность предлагаемого решения заключается в том, что спиралевидная
сейсмоизолирующая опора с упругими демпферами сухого трения, выполнена из
разных частей: нижней - корпус, закрепленный на фундаменте с помощью
подвижного фрикци –болта с пропиленным пазом, в который забит медный
обожженный клин, с бронзовой втулкой (гильзой) и свинцовой шайбой и верхней шток сборный в виде Спиральной сейсмоизолирующей опоры с упругими
демпферами сухого трения, установленный с возможностью перемещения вдоль
оси и с ограничением перемещения за счет деформации и виброизолирующего
45

46.

спиралевидного вытянутого «стакана» по спирали «корпуса под действием
запорного элемента в виде стопорного фрикци-болта с тросовой
виброизолирующей втулкой (гильзой) с пропиленным пазом в стальной шпильке и
забитым в паз медным обожженным клином.
В верхней и нижней частях опоры корпуса выполнены овальные длинные
отверстия, (сопрягаемые с цилиндрической поверхностью спиралевидной опоры) и
поперечные отверстия (перпендикулярные к центральной оси), в которые
устанавливают запирающий элемент- стопорный фрикци-болт с
контролируемым натяжением, с медным клином, забитым в пропиленный паз
стальной шпильки и с бронзовой или латунной втулкой ( гильзой), с тонкой
свинцовой шайбой. Кроме того в квадратных трубчатых или крестовидных
корпусах, параллельно центральной оси, выполнены восемь открытых длинных
пазов, которые обеспечивают корпусу возможность деформироваться за счет
протяжных соединений с фрикци- болтовыми демпфирующими,
виброизолирующими креплениями в радиальном направлении.
В теле спиральной сейсмоизолирующая опора с упругими демпферами сухого
трения
Спиралевидной опоры, вдоль центральной оси, выполнен длинный паз ширина
которого соответствует диаметру запирающего элемента (фрикци- болта), а
длина соответствует заданному перемещению трубчатой, квадратной или
крестообразной опоры. Запирающий элемент создает нагрузку в сопряжении
опоры - корпуса, с продольными протяжными пазами с контролируемым
натяжением фрикци-болта с медным клином обмотанным тросовой
виброизолирующей втулкой (пружинистой гильзой) , забитым в пропиленный паз
стальной шпильки и обеспечивает возможность деформации корпуса и «переход»
сопряжения из состояния возможного перемещения в состояние «запирания» с
возможностью перемещения только под вибрационные, сейсмической нагрузкой,
взрывные от воздушной волны.
Сущность предлагаемой конструкции поясняется чертежами, где на
фиг.1 изображена спиральная сейсмоизолирующая опора с упругими
демпферами сухого трения на фрикционных соединениях с контрольным
натяжением ;
на фиг.2 изображен вид с боку спиралевидной сейсмоизолирующая опора с
упругими демпферами сухого трения со стопорным (тормозным) фрикци –болт с
забитым в пропиленный паз стальной шпильки обожженным медным стопорным
клином;
фиг. 4 изображен разрез укладки пружинистого гофрированного основания под
Спиральная сейсмоизолирующая опора с упругими демпферами сухого трения
виброизолирующею, сейсмоизлирующею опору;
фиг. 5 изображена пружинистая гофра с демпфирующими ножками
46

47.

фиг. 6 изображен демпфирующие фрикци –болты с тросовой гильзой
(пружинистой втулкой)
фиг. 7 изображена виброизолирующий латунный фрикци –болта с забитыми
обожженными медными стопорными клиньями, забитыми в пропиленные пазы
стальных шпилек для виброизолирующей, сейсммоизолирующей кинематической
опоры ;
фиг. 8 изображен пружинистый стальной трос в пластмассовой оплетке
фиг. 9 изображен упругоплатичный многослойный склеенный медный забивной
клин в фрикци-болт
фиг. 10 изображен демпфирующих фрикци –болт,
медным обожженным клином
с запитым в пропиленный паз
фиг. 11 изображен латунный фрикци -болт с пропиленным болгаркой пазом
фиг. 12 изображено протяжное фрикци -болт с забитым медным клином
фиг. 13 изображен способ определения коэффициента закручивания резьбового
соединения" по изобретении. № 2148805 МПК G 01 L 5/25 " Способ определения
коэффициента закручивания резьбового соединения" и № 2413098 "Способ для
обеспечения несущей способности металлических конструкций с высокопрочными
болтами"
фиг. 14 изображено Украинское устройство для определения силы трения по
подготовленным поверхностям для болтового соединения по Украинскому
изобретению № 40190 А, заявление на выдачу патента № 2000105588 от
02.10.2000, опубликован 16.07.2001 Бюл 8 и в статье Рабера Л.М. Червинский А.Е
"Пути соевршенствоания технологии выполнения фрикционных соединений на
высокопрочных болтах" Национальная металлургический Академия Украины ,
журнал Металлургическая и горная промышленность" 2010№ 4 стр 109-112
фиг. 15 изображен образец для испытания и Определение коэффициента трения
между контактными поверхностями соединяемых элементов СТП 006-97
Устройство соединений на высокопрочных болтах в стальных конструкциях
мостов, СТАНДАРТ ПРЕДПРИЯТИЯ УСТРОЙСТВО СОЕДИНЕНИЙ НА
ВЫСОКОПРОЧНЫХ БОЛТАХ В СТАЛЬНЫХ КОНСТРУКЦИЯХ МОСТОВ
КОРПОРАЦИЯ «ТРАНССТРОЙ» МОСКВА 1998, РАЗРАБОТАНого Научноисследовательским центром «Мосты» ОАО «ЦНИИС» (канд. техн. наук А.С.
Платонов,канд. техн. наук И.Б. Ройзман, инж. А.В. Кручинкин, канд. техн. наук
М.Л. Лобков, инж. М.М. Мещеряков) для испытаний на вибростойкость,
сейсмостойкость образца, фрагмента, узлов крепления протяжных фрикционно
47

48.

подвижных соединений (ФПС) по изобретениям проф ПГУПС А .М Уздина №№
1143895, 1168755, 1174616, 165076 «Опора сейсмостойкая»
Спиральная сейсмоизолирующая опора с упругими демпферами сухого трения
установленная на пружинистой гофре с демпфирующими ножками, состоит из
двух корпусов (нижний целевой), (верхний составной), в которых выполнены
вертикальные длинные овальные отверстия диаметром «D», шириной «Z» и
длиной . Нижний корпус опоры охватывает верхний корпус опоры (трубная,
квадратная, крестовидная). При монтаже опоры верхняя часть корпуса опоры
поднимается до верхнего предела, фиксируется фрикци-болтами с контрольным
натяжением, со стальной шпилькой болта, с пропиленным в ней пазом и
предварительно забитым в шпильке обожженным медным клином. и тросовой
пружинистой втулкой (гильзой) В стенке корпусов виброизолирующей,
сейсмоизолирующей кинематической опоры перпендикулярно оси корпусов опоры
выполнено восемь или более длинных овальных отверстий, в которых установлен
запирающий элемент-калиброванный фрикци –болт с тросовой демпирующей
втулкой, пружинистой гильзой, с забитым в паз стальной шпильки болта
стопорным ( пружинистым ) обожженным медным многослойным
упругопластичнм клином, с демпфирующей свинцовой шайбой и латунной втулкой
(гильзой).
В теле спиралевидной сейсмоизолирующей опоры с упругими демпферами
сухого трения, трубчатого –стаканного вида в виде штоков , вдоль оси выполнен
продольный глухой паз длиной «h» (допустимый ход штока) соответствующий по
ширине диаметру калиброванного фрикци - болта, проходящего через этот паз. В
нижней части опоры, корпуса, выполнен фланец для фланцевого подвижного
соединения с длинными овальными отверстиями для крепления на фундаменте, а
в верхней части корпуса выполнен фланец для сопряжения с защищаемым
объектом, сооружением, мостом
Сборка спиралевидной опоры заключается в том, что составной ( сборный)
трубчатой в виде стакана, основного корпуса по подвижной посадке с фланцевыми
фрикционно- подвижными соединениям (ФФПС). Паз спиралевидной опоры,
совмещают с поперечными отверстиями трубчатой спиралевидной опоры в
трущихся спиралевидных стенок опоры , скрепленных фрикци-болтом (высота
опоры максимальна). После этого гайку затягивают тарировочным ключом с
контрольным натяжением до заданного усилия в зависимости от массы здания,
сооружения, оборудования, агрегатов, моста, здания. Увеличение усилия затяжки
гайки на фрикци-болтах приводит к деформации корпуса и уменьшению зазоров
от «Z» до «Z1» в корпусе, что в свою очередь приводит к увеличению
допустимого усилия сдвига (усилия трения) в сопряжении отверстие в
крестообразной, трубчатой, квадратной опоре корпуса.
Величина усилия трения в сопряжении внутреннего и наружного корпусов для
спиралевидной трубчатой опоры зависит от величины усилия затяжки гайки
(болта) с контролируемым натяжением и для каждой конкретной конструкции
виброизолирующего, сейсмоизолирующей кинематической опоры (компоновки,
48

49.

габаритов, материалов, шероховатости и пружинистости стального тонкого
троса уложенного между контактирующими поверхностями деталей
поверхностей, направления нагрузок и др.) определяется экспериментально или
расчетным машинным способом в ПК SCAD.
Виброизоляция, сейсмоизолирующая спиралевидной опора установленная на
гофрированной пружинистое основание , сверху и снизу закреплена на
фланцевых фрикционо-подвижных соединениях (ФФПС). Во время вибрационных
нагрузок или взрыве за счет трения между верхним и нижним корпусом опоры
происходит поглощение вибрационной, взрывной и сейсмической энергии.
Фрикционно- подвижные соединения состоят из скрученных пружинистых
тросов- демпферов сухого трения с энергопоглощающей гофрой и свинцовыми
(возможен вариант использования латунной втулки или свинцовых шайб)
поглотителями вибрационной , сейсмической и взрывной энергии за счет
демпфирующих гофрированных ножек, тросовой втулки из скрученного тонкого
стального троса, пружинистых многослойных медных клиньев и сухого трения,
которые обеспечивают смещение опорных частей фрикционных соединений на
расчетную величину при превышении горизонтальных вибрационных, взрывных,
сейсмических нагрузок от вибрационных воздействий или величин, определяемых
расчетом на основные сочетания расчетных нагрузок, сама кинематическая
опора при этом начет раскачиваться, за счет выхода обожженных медных
клиньев, которые предварительно забиты в пропиленный паз стальной шпильки
при креплении опоры к нижнему и верхнему виброизолирующему поясу .
Податливые демпферы представляют собой двойную фрикционную пару, имеющую
стабильный коэффициент трения по упругой многослойной, перекрестной гофре .
Сжимающее усилие создается высокопрочными шпильками, натягиваемыми
динамометрическими ключами или гайковертами на расчетное усилие.
Количество болтов определяется с учетом воздействия собственного веса
вентиляционного оборудования, здания, сооружения, моста.
Сама составная опора выполнена спиралевидного вида , либо стаканчатотрубного вида с фланцевыми фрикционно - подвижными болтовыми соединениями.
Сжимающее усилие создается высокопрочными шпильками с обожженными
медными клиньями забитыми в пропиленный паз стальной шпильки,
натягиваемыми динамометрическими ключами или гайковертами на расчетное
усилие с контрольным натяжением.
Количество болтов определяется с учетом воздействия собственного веса
(массы) оборудования, сооружения, здания, моста, Расчетные усилия
рассчитываются по СП 16.13330.2011 ( СНиП II -23-81* ) Стальные конструкции
49

50.

п. 14.4, Москва, 2011, ТКТ 45-5.04-274-2012 (02250), «Стальные конструкции»
Правила расчет, Минск, 2013. п. 10.3.2
Фрикци-болт, является энергопоглотителем пиковых ускорений (ЭПУ), с помощью
которого, поглощается вибрационная, взрывная, ветровая, сейсмическая,
вибрационная энергия. Фрикци-болт снижает на 2-3 балла импульсные
растягивающие нагрузки при землетрясении и при взрывной, ударной воздушной
волне. Фрикци –болт повышает надежность работы оборудования, сохраняет
вентиляционные агрегаты для для Белорусской АЭС, каркас здания, моста, ЛЭП,
магистрального трубопровода, за счет уменьшения пиковых ускорений, за счет
использования протяжных фрикционных соединений, работающих на растяжение
на фрикци- болтах, установленных в длинные овальные отверстия с
контролируемым натяжением в протяжных соединениях согласно ТКП 45-5.04274-2012 (02250) п. 10.3.2 стр. 74 , Минск, 2013, СП 16.13330.2011,СНиП II-23-81*
п. 14.3- 15.2.
Тросовая скрученная из стального тонкого троса ( диаметр 2 мм) втулка (гильза)
фрикци-болта при виброизоляции нагревается за счет трения между верхней
составной и нижней целевой пластинами (фрагменты опоры) до температуры
плавления и плавится, при этом поглощаются пиковые ускорения взрывной,
сейсмической энергии и исключается разрушение оборудования, ЛЭП, опор
электропередач, мостов, также исключается разрушение теплотрасс горячего
водоснабжения от тяжелого автотранспорта и вибрации от ж/д.
В основе виброзащиты с использованием спиралевидной сейсмоизолирующей
опоры с упругими демпферами сухого трения на фрикционных соединениях, на
фрикци-болтах с тросовой втулкой, лежит принцип который, на научном языке
называется "рассеивание", "поглощение" сейсмической, взрывной, вибрационной
энергии.
Виброизолирующая , сейсмоизолирующая кинематическая опора рассчитана на
одну сейсмическую нагрузку (9 баллов), либо на одну взрывную нагрузку. После
взрывной или сейсмической нагрузки необходимо заменить смятые или сломанные
гофрированное виброиозирующее основание, в паз шпильки фрикци-болта,
демпфирующего узла забить новые демпфирующий и пружинистый медные
клинья, с помощью домкрата поднять, выровнять опору и затянуть болты на
проектное контролируемое протяжное натяжение.
При воздействии вибрационных, взрывных нагрузок , сейсмических нагрузок
превышающих силы трения в сопряжении в Спиральной сейсмоизолирующей
опоры с упругими демпферами сухого трения, трубчатого вида , происходит
сдвиг трущихся элементов типа шток, корпуса опоры, в пределах длины
спиралевидных паза выполненного в составных частях нижней и верхней
трубчатой опоры, без разрушения оборудования, здания, сооружения, моста.
50

51.

О характеристиках виброизолирующей, сейсмоизлирующей кинематической
опоры (без раскрывания новизны технического решения) сообщалось на научной
XXVI Международной конференции «Математическое и компьютерное
моделирование в механике деформируемых сред и конструкций», 28.09 -30-09.2015,
СПб ГАСУ: «Испытание математических моделей установленных на
сейсмоизолирующих фланцевых фрикционно-подвижных соединениях (ФФПС) и их
реализация в ПК SCAD Office» (руководитель испытательной лабораторией ОО
"Сейсмофонд" можно ознакомиться на сайте:
https://www.youtube.com/watch?v=B-YaYyw-B6s&t=779s
С решениями фланцевых фрикционно-подвижных соединений (ФПС) и
демпфирующих узлов крепления (ДУК) (без раскрывания новизны технического
решения) можно ознакомиться: dwg.ru, rutracker.org. www1.fips.ru.
dissercat.comhttp://doc2all.ru, см. изобретения №№ 1143895, 1174616,1168755 SU, №
4,094,111 US Structural steel building frame having resilient connectors, TW201400676
Restraint anti-wind and anti-seismic friction damping device (Тайвань).
https://www.maurer.eu/fileadmin/mediapool/01_products/Erdbebenschutzvorrichtungen/B
roschueren_TechnischeInfo/MSO_Seismic-Brochure_A4_2017_Online.pdf
С лабораторными испытаниями фланцевых фрикционно –подвижных соединений
для виброизоирующей кинематической опоры в испытательном центре СПб ГАСУ
и ОО «Сейсмофонд» при СПб ГАСУ , адрес: 1900005, СПб, 2-я Красноармейская
ул.д 4 (без раскрывания новизны технического решения) можно ознакомиться по
ссылке :
https://www.youtube.com/watch?v=XCQl5k_637E
https://www.youtube.com/watch?v=trhtS2tWUZo
https://www.youtube.com/watch?v=ktET4MHW-a8&t=756s
https://www.youtube.com/watch?v=rbO_ZQ3Iud8
https://www.youtube.com/watch?v=qH5ddqeDvE4
https://www.youtube.com/watch?v=sKeW_0jsSLg
Сопоставление с аналогами спиралевидной я сейсмоизолирующей опоры с
упругими демпферами сухого трения, показаны следующие существенные
отличия:
1. Между подошвой спиральной сейсмоизолирующей опоры с упругими
демпферами сухого трения, нижним и верхним сейсмоизолирующим поясом по
всему периметру виброизолирующего основания под агрегатами и периметру
размещения демпфирующих прокладок с продольными гофрами (5...10 штук)
одинаковой высоты.
2. Упругая податливость демпфирующей гофрированной прокладки
регулируется прочностью пружинной стали, толщиной листа, высотой
продольных гофров, числом гофров.
51

52.

3. Под фрикци- болтами, соединяющими окружности спиральной
сейсмоизолирующей опоры с упругими демпферами сухого трения , применены
упругие тарельчатые шайбы, выполненные пружинными стальными.
4. В отличие от резиновых неметаллических прокладок, свойства которой
ухудшаются со временем, из-за старения резины, свойства демпфирующей
прокладки остаются неизменными во времени, а долговечность их такая же, как
у агрегатов , оборудования.
Экономический эффект достигнут из-за повышения долговечности
демпфирующей упругой гофрированной прокладки с виброизолирующей
кинематической опоры , так как в ней отсутствует быстро изнашивающаяся и
стареющая резина , пружинные сложны при расчет и монтаже. Экономический
эффект достигнут также из-за удобства обслуживания узла при эксплуатации.
Литература которая использовалась для составления заявки на изобртение:
Спиральная сейсмоизолирующая опора с упругими демпферами сухого трения
1. Сабуров В.Ф. Закономерности усталостных повреждений и разработка
методов расчетной оценки долговечности подкрановых путей производственных
зданий. Автореферат диссертации докт. техн. наук. - ЮУрГУ, Челябинск, 2002. 40 с.
2. Подкрановые конструкции. Патент 2067075. Россия МКИ В 66 С 7/00,
18.10.93. Бюл.№27, 1997.
3. Нежданов К.К., Туманов В.А., Нежданов А.К., Карев М.А. Патент России.
RU №2192383 С1 (Заявка №2000 119289/28 (020257), Подкрановая транспортная
конструкция. Опубликован 10.11.2002.
1. "СПОСОБ ЗАЩИТЫ ЗДАНИЯ И СООРУЖЕНИЯ ПРИ ВЗРЫВЕ С
ИСПОЛЬЗОВАНИЕМ СДВИГОУСТОЙЧИВЫХ И ЛЕГКОСБРАСЫВАЕМЫХ
СОЕДИНЕНИЙ,
ИСПОЛЬЗУЮЩИЕ
СИСТЕМУ
ДЕМПФИРОВАНИЯ
ФРИКЦИОННОСТИ И СЕЙСМОИЗОЛЯЦИЮ ДЛЯ ПОГЛОЩЕНИЯ ВЗРЫВНОЙ
И СЕЙСМИЧЕСКОЙ ЭНЕРГИИ" № 2010136746 E 04 C 2/09 Дата опубликования
20.01.2013
2. Патент на полезную модель № 165 076 " Опора сейсмостойкая" 10.10.2016 Б.л
28
3. Патент на полезную модель № 154506 "Панель противовзрывная" 27.08.2015
бюл № 28
4.Изобретение № 1760020 "Сейсмостойкий фундамент" 07.09.1992
5. Изобретение № 1011847 "Башня" 30.08.1982
6. Изобретение № 1038457 "Сферический резервуар" 30.08.1982
7. Изобретение № 1395500 "Способ изготовления ячеистобетонных изделий на
пористых заполнителях" 15.05.1988 8. Изобретение № 998300 "Захватное
устройство для колонн" 23.02.1983
9. Захватное устройство сэндвич-панелей № 24717800 опуб 05 05.2011
10. Стена и способ ее возведения № 1728414 опул 19.06.1989
11. Заявки на изобретение № 20181229421/20(47400) от 10.08.2018 «Опора
сейсмоизолирующая «гармошка». Используется Японии.
12. Заявки на изобретение № 2018105803/20 (008844) от 11.05.2018
52

53.

«Антисейсмическое фланцевое фрикционно-подвижное соединение для
трубопроводов» F 16L 23/02 ,
13. Заявка на изобретение № 2016119967/20 ( 031416) от 23.05.2016 «Опора
сейсмоизолирующая маятниковая» E04 H 9/02.
1.. Журнал «Сельское строительство» № 9/95 стр.30 «Отвести опасность»
2. Журнал «Жилищное строительство» № 4/95 стр.18 «Использование
сейсмоизолирующего пояса для существующих зданий».
3. Журнал «Жилищное строительство» № 9/95 стр.13 «Сейсмоизоляция
малоэтажных жилых зданий»,
4. Журнал «Монтажные и специальные работы в строительстве» № 4/95 стр.
24-25 «Сейсмоизоляция малоэтажных зданий»,
5. Российская газета от 26.07.95 стр.3 «Секреты сейсмостойкости». .
6. Российская газета от 11.06.95 «Землетрясение: предсказание на завтра»
8. Газета «Грозненский рабочий» № 5 февраль 1996 «Честь мундира или
сэкономленные миллиарды»,
9. «Голос Чеченской Республики» 1 февраль 1996 «Башни и баллы» .
10. Республика ЧР № 7 август 1995 «Удар невиданной звезды или через четыре
года».
11. Газета «Земля России» за октябрь 1998 стр. 3 «Уникальные технологии
возведения фундаментов без заглубления –
дом на грунте. Строительство на
пучинистых и просадочных грунтах»
12. Газета «Земля России» № 2 ( 26 ) стр. 2-3 « Предложение ученых
общественной организации инженеров «Сейсмофонд» –
Фонда «Защита и
безопасность городов» в области реформы ЖКХ.
13. Журнал «Жизнь и безопасность « № 3/96 стр. 290-294 «Землетрясение по
графику» Ждут ли через четыре года планету
«Земля глобальные и
разрушительные потрясения «звездотрясения» .
14. Журнал «Монтажные и специальные работы в строительстве» № 11/95 стр.
25 «Датчик регистрации электромагнитных
волн, предупреждающий о
землетрясении - гарантия сохранения вашей жизни!» и другие зарубежные
научные издания и
журналах за 1994- 2004 гг. изданиях С брошюрой «Как
построить сейсмостойкий дом с учетом народного опыта сейсмостойкого
строительства горцами Северного
Кавказа сторожевых башен» с.79 г.
Грозный –1996. в ГПБ им Ленина г. Москва и РНБ СПб пл. Островского, д.3 .
Фигуры к заявке на изобретение полезная модель Спиральная сейсмоизолирующая
опора с упругими демпферами сухого трения
53

54.

Фиг 1 Спиральная сейсмоизолирующая опора с упругими демпферами сухого трения
Фиг 2 Спиральная сейсмоизолирующая опора с упругими демпферами сухого трения
Фиг 3 Спиральная сейсмоизолирующая опора с упругими демпферами сухого трения
54

55.

Фиг 4 Спиральная сейсмоизолирующая опора с упругими демпферами сухого трения
Фиг 5 Спиральная сейсмоизолирующая опора с упругими демпферами сухого трения
Фиг 6 Спиральная сейсмоизолирующая опора с упругими демпферами сухого трения
Фиг 7 Спиральная сейсмоизолирующая опора с упругими демпферами сухого трения
55

56.

Фиг 8 Спиральная сейсмоизолирующая опора с упругими демпферами сухого трения
Фиг 9 Спиральная сейсмоизолирующая опора с упругими демпферами сухого трения
Фиг 10 Спиральная сейсмоизолирующая опора с упругими демпферами сухого трения
Фиг 11 Спиральная сейсмоизолирующая опора с упругими демпферами сухого трения
Фиг 12 Спиральная сейсмоизолирующая опора с упругими демпферами сухого трения
Фиг 13 Спиральная сейсмоизолирующая опора с упругими демпферами сухого трения
56

57.

Фиг 14 Спиральная сейсмоизолирующая опора с упругими демпферами сухого трения
Фиг 15
Спиральная сейсмоизолирующая опора с упругими демпферами сухого трения
Формула изобретения спиральной сейсмоизолирующей опоры с упругими демпферами сухого трения
1. Спиральная сейсмоизолирующая опора с упругими демпферами сухого трения, демпфирующая
сейсмоизоляция для зданий , сооружений, трубопроводов , содержащая спиралевидную сейсмоизолирующую
опору – перевернутый раздвинутый «стакан» с упругими демпферами сухого трения на фрикционноподвижных болтовых соединениях, с одинаковой жесткостью с демпфирующий элементов при
многокаскадном демпфировании, для сейсмоизоляции и поглощение сейсмической энергии, в горизонтальнойи
вертикальной плоскости по лини нагрузки, при этом основание спиральной трубчатой опоры и упругих
элементов, выполнено в виде упругодемпфирующих спиралей с сухим тернием между стальными листами
2. Спиральная сейсмоизолирующая опора с упругими демпферами сухого трения , сейсмоизолирующая
демпфирующая опора , повышенной надежности с улучшенными демпфирующими свойствами, содержащая
трубообразный «стакан», корпуса -опоры и сопряженный с ним подвижный узел с фланцевыми фрикционноподвижными соединениями и упругой втулкой (гильзой), закрепленные запорными элементами в виде протяжного
соединения контактирующих поверхности детали и накладок выполнены из пружинистого троса между
контактирующими поверхностями, с разных сторон, отличающийся тем, что с целью повышения надежности
демпфирующее сейсмоизоляции, корпус спиралевидной опоры, выполнен трубчатого сечения и состоит из нижней
целевой части установленной на гофрированном демпфирующем основании, и сборной верхней части подвижной в
вертикальном направлении с демпфирующим эффектом с сухим трением, соединенные между собой с помощью
57

58.

фрикционно-подвижных соединений с контрольным натяжением фрикци-болтов с тросовой пружинистой втулкой
(гильзы) , расположенных в длинных овальных отверстиях , при этом пластины-лапы верхнего или нижнего корпуса
расположены на гофрированном демпфирующем основании , виброизолирующая кинематическая опора , которые
крепятся к нижнему и верхнему сейсмоизолирующему поясу с помощью фрикци-болтами с медным
упругоплатичном, пружинистым многослойным, склеенным клином или тросовым пружинистым зажимом ,
расположенной в коротком овальном отверстии верха и низа корпуса спиралевидной трубчатой опоры.
3. Узел упругого соединения для спиральной сейсмоизолирующей опорой с упругими демпферами сух ого
трения , отличающийся тем, что узел снабжен размещенной под опорой и опирающейся на верхний пояс
демпфирующей прокладкой, выполненной из пружинной стали с продольными, имеющими плавные закругления
гофрами и непрерывной по всей длине периметра сейсмоизолирующего основания , причем ширина упомянутой
демпфирующей гофры (прокладки) на 5-10% меньше ширины верхнего пояса , при этом сквозь подошву снаружи
верхнего пояса и сквозь поддерживающие верхний пояс упомянутой опоры пропущены болты, снабженные
тарельчатыми пружинными шайбами или с забитым медным обожженным клином в пропиленный паз латунной
шпильки.
4. Способ спиральной сейсмоизолирующей опоры с упругими демпферами сухого трения, для
обеспечения несущей способности сейсмоизолирующей трубчатой опоры, с креплением трущихся поверхностей
по спирали симметрично на фрикционно -подвижного соединения с высокопрочными фрикци-болтами с
тросовой втулкой (гильзой), включающий приготовление образца-свидетеля, содержащего элемент
виброизолирующей опоры и тестовую накладку, контактирующие поверхности которых предварительно
обработаны по проектной технологии организации "Сейсмофонд" при СПб ГАСУ ИНН 2014000780, ОГРН
1022000000824, соединяют высокопрочным фрикци- болтом и гайкой при проектном значении усилия натяжения
болта, устанавливают на элемент сейсмоизолирующей опоры ( демпфирующей), для определения усилия сдвига и
постепенно увеличивают нагрузку на накладку до момента ее сдвига, фиксируют усилие сдвига и затем
сравнивают его с нормативной величиной показателя сравнения, далее, в зависимости от величины отклонения,
осуществляют коррекцию технологии монтажа сейсмоизолирующей опоры, отличающийся тем, что в качестве
показателя сравнения используют проектное значение усилия натяжения высокопрочного фрикци- болта с
медным обожженным клином забитым в пропиленный паз латунной шпильки с втулкой -гильзы из стального
тонкого троса , а определение усилия сдвига на образце-свидетеле осуществляют устройством, содержащим
неподвижную и сдвигаемую детали, узел сжатия и узел сдвига, выполненный в виде рычага, установленного на
валу с возможностью соединения его с неподвижной частью устройства и имеющего отверстие под
нагрузочный болт, а между выступом рычага и тестовой накладкой помещают самоустанавливающийся
сухарик, выполненный из закаленного материала.
5. Способ по п.1, отличающийся тем, что при отношении усилия сдвига к проектному усилию натяжения
высокопрочного фрикци-болта с втулкой и тонкого стального троса в оплетке, диапазоне 0,54-0,60
корректировку технологии монтажа сейсмоизолирующей и скрученной в спираль опоры, не производят, при
отношении в диапазоне 0,50-0,53 при монтаже увеличивают натяжение болта, а при отношении менее
0,50, кроме увеличения усилия натяжения, дополнительно проводят обработку контактирующих
поверхностей спиральной сейсмоизолирующей опоры цинконаполненной грунтовокой ЦВЭС , которая
используется при строительстве мостов https://vmp-anticor.ru/publishing/265/2394/
http://docs.cntd.ru/document/1200093425.
Заявление в Государственный комитет по науке и технологиям Республики Беларусь
Национальный центр интеллектуальной собственности 220034 г Минск ул Козлова 20 (017) 28526-05 [email protected] Ведущему специалисту центра экспертизы промышленной
собственности Н.М.Бортнику 16 февраля 2021
Авторы изобретения Спиральная сейсмоизолирующая опора с упругими демпферами
сухого трения Е04Н 9/02 Коваленко Александр Иванович
Дата
поступления заявки на
выдачу патента на
Дата подачи
заявки на выдачу
патента на
изобретение*:
28.01.2019
58
Регистрационный номер заявки
на выдачу патента на изобретение*:

59.

изобретение*:
ЗАЯВЛЕНИЕ
о выдаче патента Республики
Беларусь на изобретение
В государственное учреждение «Национальный
центр интеллектуальной собственности»
Заявитель (заявители): физическое лицо Коваленко Александр Иванович – инвалид I группы по общим заболеваниям
Прошу (просим)
выдать
патент
Фамилия, собственное
имя, отчество
(если таковое
имеется) физического лица (физических лиц) и (или) полное
наименование
юридического
лица
(юридических
лиц)
согласно учредительному документу: Коваленко Александр
Республики Беларусь на изобретение наИванович
имя
заявителя (заявителей)
Код страны места жительства
(места пребывания) или
197371, г.Санкт-Петербург , a/я Газета Земля РОССИИ» Фонд
места нахождения по
стандарту Всемирной
поддержки и развития сейсмостойкого строительства "Защита и
организации
безопасность городов" "СЕЙСМОФОНД" Номер телефона (999) 535интеллектуальной
собственности (далее –
47-29 Номер факса (812) 694-78-10 Адрес электронной почты*
ВОИС) SТ.3 (если он
[email protected] [email protected]
смотреть продолжение на дополнительном листе (листах) установлен): СССР
Ленинград
Адрес места жительства (места пребывания) или места нахождения:
Общегосударственный
Учетный номер плательщика (далее –
классификатор предприятий и
УНП) ***
Наименование юридического лица, которому подчиняется или в состав (систему) которого входит юридическое лицо –
***
организаций
Республики
Беларусь
заявитель (заявители)
(при наличии)
: Общественная организация
"Фонд поддержки ИНН
и развития
сейсмостойкого
ОО "Сейсмофонд"
2014000780
строительства
"Защита
безопасность
городов"
"СЕЙСМОФОЕНД"
КПП
201401001
ИНН
2014000780
(далее – ОКПО) ***
Название заявляемого изобретения (группы изобретений), которое должно совпадать с
Организ.
"Сейсмофонд"
названием,
приводимым
в описании изобретения:
Спиральная
сейсмоизолирующая опора с упругими демпферами сухого трения
ОГРН 1022000000824
Е04Н 9/02
изобретение создано при осуществлении научной и научно-технической деятельности в рамках:
государственной научно-технической программы;
региональной научно-технической программы;
отраслевой научно-технической программы, финансируемой за счет средств:
республиканского бюджета
полностью частично
местного бюджета
полностью частично
государственных целевых бюджетных фондов
полностью частично
государственных внебюджетных фондов
полностью частично
заявитель (заявители) является:
государственным заказчиком;
исполнителем;
лицом, которому право на получение патента на изобретение передано государственным заказчиком
(исполнителем)
Заявка
на
Дата подачи первоначальной заявки на выдачу патента
выдачу патента на на изобретение:
изобретение подается
как выделенная
Номер первоначальной заявки на выдачу патента на
изобретение:
59

60.

Прошу установить приоритет изобретения по дате****:
подачи первой заявки на выдачу патента на изобретение в государстве – участнике
Парижской конвенции по охране промышленной собственности от 20 марта 1883 года (далее –
конвенционный приоритет);
поступления дополнительных материалов к ранее поданной заявке на выдачу патента на
изобретение;
подачи более ранней заявки на выдачу патента на изобретение в государственное
учреждение «Национальный центр интеллектуальной собственности».
Номер первой заявки
на выдачу патента на
изобретение или более
ранней заявки на выдачу
патента на изобретение
Дата испрашиваемого
приоритета
Код страны подачи по
стандарту ВОИС SТ.3 (при
испрашивании конвенционного
приоритета)
________________________________________
Примечание. Бланк заявления оформляется на одном листе с двух сторон.
Адрес для переписки в соответствии с правилами адресования почтовых отправлений с
указанием фамилии, собственного имени, отчества (если таковое имеется) или наименования
адресата (заявителя (заявителей), патентного поверенного, общего представителя): 197371, г.СанктПетербург, а/я газета «Земля РОССИИ» Организация «Сейсмофонд» при СПб ГАСУ
Номер тел ( 921)
Номер факc (812)
Адр электр почты [email protected]
Представитель (фамилия,
962-67-78
694-78-10 собственное имя, отчество (если таковое имеется),
регистрационный номер патентного поверенного, если представителем назначен патентный
поверенный)
является:
патентным поверенным;
общим представителем
К
К
Основание (основания) для
оличест оличест
возникновения права на
во
Перечень прилагаемых
во
получение патента на изобретение
листов
документов:
экземпл
Номер тел (996) 798-26-54 Номерв одном
факса (812)
694-78-10 Адрес электронной почты:
[email protected]
яров
экземпл
яре
60

61.

1.
описание изобретения
6
1
2.
формула изобретения
1
1
7
1
(независимые пункты
2 )
3.
чертежи
4
1
4.
реферат
1
1
5. документ об уплате патентной
пошлины
нвалид
И
6.
другой документ
(указывается конкретно его назначение):
описание прототипа патент RU 1832165 "
Виброизолирующая опора", RU № 184085
"Виброизолирующий компенсатор"
Заявитель (заявители) является:
1) автором (соавторами);
2) нанимателем автора;
О
3) заказчиком по договору на
свобожд выполнение научно-исследовательских, опытноен
конструкторских
или
технологических
отношении
созданного при
договора изобретения
работ
в
выполнении
4) физическим и (или) юридическим лицом
(лицами), которым право на получение патента
передано лицами, указанными в пунктах 1) – 3);
RU 165076 "Опора сейсмостойкая"
Изобретение № 1760020
"Сейсмостойкий фундамент"
07.09.1992
.
5) правопреемником
(правопреемниками) автора (соавторов);
11. Заявки на изобретение № 20181229421/20(47400)
от 10.08.2018 «Опора сейсмоизолирующая «гармошка».
Используется Японии.
12. Заявки на изобретение № 2018105803/20 (008844) от
11.05.2018 «Антисейсмическое фланцевое фрикционноподвижное соединение для трубопроводов» F 16L 23/02 ,
13. Заявка на изобретение № 2016119967/20 ( 031416) от
23.05.2016 «Опора сейсмоизолирующая маятниковая» E04 H
9/02.
6) правопреемником
(правопреемниками) нанимателя автора;
7) правопреемником
(правопреемниками)
заказчика по договору на выполнение научноисследовательских, опытно-конструкторских
или технологических работ в отношении
созданного
при
выполнении
договора
изобретения;
. "СПОСОБ ЗАЩИТЫ ЗДАНИЯ И СООРУЖЕНИЯ ПРИ ВЗРЫВЕ С
ИСПОЛЬЗОВАНИЕМ СДВИГОУСТОЙЧИВЫХ И ЛЕГКОСБРАСЫВАЕМЫХ СОЕДИНЕНИЙ,
ИСПОЛЬЗУЮЩИЕ СИСТЕМУ ДЕМПФИРОВАНИЯ ФРИКЦИОННОСТИ И
8) правопреемником
(правопреемниками) физического и (или)
юридического лица (лиц), которым право
на получение патента передано лицами,
указанными в пунктах 1) – 3)
СЕЙСМОИЗОЛЯЦИЮ ДЛЯ ПОГЛОЩЕНИЯ ВЗРЫВНОЙ И СЕЙСМИЧЕСКОЙ ЭНЕРГИИ" №
2010136746 E 04 C 2/09 Дата опубликования 20.01.2013
24.Прилагается справка об инвалидности Коваленко Александра Ивановича по общим
заболеваниям - 1 стр согласно НАЛОГОВого КОДЕКСа РЕСПУБЛИКИ БЕЛАРУСЬ
ОСОБЕННАЯ ЧАСТЬ от 29 декабря 2009 г. N 71-З
СТАТЬЯ 263 ЛЬГОТЫ ПО ПАТЕНТНЫМ ПОШЛИНАМ
1. Плательщики – физические лица, если иное не установлено частью
второй настоящего пункта, уплачивают 25 процентов от установленного
размера патентных пошлин (за исключением юридически значимых
действий, за совершение которых взимается патентная пошлина в
соответствии с пунктами 4, 15, 43 - 67, 71 - 75, 77 - 84 приложения 23 к
настоящему Кодексу).
Освобождаются от патентных пошлин (за исключением юридически
значимых действий, за совершение которых взимается патентная пошлина в
соответствии с пунктами 43 - 67, 71 - 75, 77 -84 приложения 23 к настоящему
Кодексу) плательщики – физические лица:
* инвалиды I группы.
* http://www.nalog.gov.by/ru/article263/
25. Прилагается свидетельство о рождении Коваленко
Александра Ивановича о его белорусской национальности
Фигура № __1____ чертежей (если фигур несколько), предлагаемая для
публикации с формулой изобретения в официальном бюллетене патентного органа
Автор (соавторы): Инвалид I группы по общим заболеваниям Коваленко
Александр Иванович
61

62.

Фамилия, собственное имя, отчество (если
таковое имеется): Коваленко Александр
Иванович
Адрес места жительства (места пребывания), включая код страны по
стандарту ВОИС SТ.3 (если он установлен):
Адрес для переписки для журналистов: а/я газета
"Земля РОССИИ", 197371, г. Санкт-Петербург . (RU)
[email protected]
смотреть продолжение на дополнительном листе (листах)
Подпись (подписи) заявителя (заявителей) инвалида первой группы или его (их) патентного поверенного с указанием
фамилии и инициалов (от имени юридического лица (юридических лиц) заявление подписывается руководителем этого юридического
лица (юридических лиц) или иным лицом (лицами), уполномоченным на это, с указанием фамилии, инициалов и должности
подписывающего лица (лиц):
(подпись)
*
Дата
подписания:
16.02.2021
______
Инвалид
группы по общим
заболеваниям
Заполняется
государственным
учреждением
«Национальный
центр Iинтеллектуальной
собственности».
**
Коваленко
Иванович
Если Александр
имеется.
***
Заполняется в случае, если заявителем (заявителями) является юридическое лицо (юридические лица) Республики
Беларусь.
****
Заполняется только при испрашивании приоритета более раннего, чем дата поступления заявки на выдачу патента на
изобретение в государственное учреждение «Национальный центр интеллектуальной собственности».
62

63.

63

64.

64

65.

РОССИЙСКАЯ ФЕДЕРАЦИЯ
(19)
65

66.

RU 2010136746
(11)
20
(13)
ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ
A
(51) МПК
(12)
E04C 2/00 (2006.01)
ЗАЯВКА НА ИЗОБРЕТЕНИЕ
Состояние делопроизводства: Экспертиза завершена (последнее изменение статуса: 02.10.2013)
(21)(22) Заявка: 2010136746/03, 01.09.2010
(71) Заявитель(и):
Открытое акционерное общество "Теплан
Приоритет(ы):
(22) Дата подачи заявки: 01.09.2010
(72) Автор(ы):
Подгорный Олег Александрович (RU),
(43) Дата публикации заявки: 20.01.2013 Бюл. № 2
Акифьев Александр Анатольевич (RU),
Адрес для переписки:
Тихонов Вячеслав Юрьевич (RU),
443004, г.Самара, ул.Заводская, 5, ОАО "Теплант"
Родионов Владимир Викторович (RU),
Гусев Михаил Владимирович (RU),
Коваленко Александр Иванович (RU)
(54) СПОСОБ ЗАЩИТЫ ЗДАНИЯ И СООРУЖЕНИЯ ПРИ ВЗРЫВЕ С ИСПОЛЬЗОВАНИЕМ
СДВИГОУСТОЙЧИВЫХ И ЛЕГКОСБРАСЫВАЕМЫХ СОЕДИНЕНИЙ, ИСПОЛЬЗУЮЩИЕ
СИСТЕМУ ДЕМПФИРОВАНИЯ ФРИКЦИОННОСТИ И СЕЙСМОИЗОЛЯЦИЮ ДЛЯ ПОГЛОЩЕНИЯ
ВЗРЫВНОЙ И СЕЙСМИЧЕСКОЙ ЭНЕРГИИ
(57) Формула изобретения
1. Способ защиты здания от разрушений при взрыве или землетрясении, включающий
выполнение проема/проемов рассчитанной площади для снижения до допустимой величины
взрывного давления, возникающего во взрывоопасных помещениях при аварийных
внутренних взрывах, отличающийся тем, что в объеме каждого проема организуют зону,
представленную в виде одной или нескольких полостей, ограниченных эластичным
огнестойким материалом и установленных на легкосбрасываемых фрикционных соединениях
при избыточном давлении воздухом и землетрясении, при этом обеспечивают плотную
посадку полости/полостей во всем объеме проема, а в момент взрыва и землетрясения под
действием взрывного давления обеспечивают изгибающий момент полости/полостей и
осуществляют их выброс из проема и соскальзывают с болтового соединения за счет
ослабленной подпиленной гайки.
2. Способ по п.1, отличающийся тем, что «сэндвич»-панели, щитовые панели
смонтированы на высокоподатливых с высокой степенью подвижности фрикционных,
скользящих соединениях с сухим трением с включением в работу фрикционных гибких
стальных затяжек диафрагм жесткости, состоящих из стальных регулируемых натяжений
затяжек сухим трением и повышенной подвижности, позволяющие перемещаться
перекрытиям и «сэндвич»-панелям в горизонтали в районе перекрытия 115 мм, т.е. до 12 см,
66

67.

по максимальному отклонению от вертикали 65 мм, т.е. до 7 см (подъем пятки на уровне
фундамента), не подвергая разрушению и обрушению конструкции при аварийных взрывах и
сильных землетрясениях.
3. Способ по п.2, отличающийся тем, что каждая «сэндвич»-панель крепится на
сдвигоустойчивых соединениях со свинцовой, медной или зубчатой шайбой, которая
распределяет одинаковое напряжение на все четыре-восемь гаек и способствует
одновременному поглощению сейсмической и взрывной энергии, не позволяя разрушиться
основным несущим конструкциям здания, уменьшая вес здания и амплитуду колебания
здания.
4. Способ по п.3, отличающийся тем, что за счет новой конструкции сдвигоустойчивого
податливого соединения на шарнирных узлах и гибких диафрагмах «сэндвич»-панели могут
монтироваться как самонесущие без стального каркаса для малоэтажных зданий и
сооружений.
5. Способ по п.4, отличающийся тем, что система демпфирования и фрикционности и
поглощения сейсмической энергии может определить величину горизонтального и
вертикального перемещения «сэндвич»-панели и определить ее несущую способность при
землетрясении или взрыве прямо на строительной площадке, пригрузив «сэндвич»-панель и
создавая расчетное перемещение по вертикали лебедкой с испытанием на сдвиг и
перемещение до землетрясения и аварийного взрыва прямо при монтаже здания и
сооружения.
6. Способ по п.5, отличающийся тем, что расчетные опасные перемещения определяются,
проверяются и затем испытываются на программном комплексе ВК SCAD 7/31 r5, ABAQUS
6.9, MONOMAX 4.2, ANSYS, PLAKSIS, STARK ES 2006, SoliddWorks 2008, Ing+2006,
FondationPL 3d, SivilFem 10, STAAD.Pro, а затем на испытательном при объектном
строительном полигоне прямо на строительной площадке испытываются фрагменты и узлы,
и проверяются экспериментальным путем допустимые расчетные перемещения строительных
конструкций (стеновых «сэндвич»-панелей, щитовых деревянных панелей, колонн,
перекрытий, перегородок) на возможные при аварийном взрыве и при землетрясении более 9
баллов перемещение по методике разработанной испытательным центром ОО «Сейсмофонд»
- «Защита и безопасность городов».
67

68.

68

69.

Изобретение полезная модель Опора сейсмостойкая Сейсмофонд Андреев Б А Коваленко А И
Опора сейсмостойкая состоит из корпуса 1 в котором выполнено вертикальное отверстие диаметром « D»,
которое охватывает цилиндрическую поверхность штока 2 по подвижной посадке, например Н9/f9. В стенке
корпуса перпендикулярно его оси, выполнено два отверстия в которых установлен калиброванный болт
3.Кроме того, вдоль оси отверстия корпуса, выполнены два паза шириной «z» и длиной «l». В штоке
вдоль оси выполнен продольный (глухой) паз длиной «h» (допустимый ход штока) соответствующий по
ширине диаметру калиброванного болта 3 , проходящего через паз штока.
В нижней части корпуса 1 выполнен фланец с отверстиями для крепления на фундаменте, а в верхней
части штока 2 выполнен фланец для сопряжения с защищаемым объектом. Сборка опоры заключается в
том, что шток 2 сопрягается с отверстием «D» корпуса по подвижной посадке. Паз штока совмещают с
поперечными отверстиями корпуса и соединяют калиброванным болтом 3 , с шайбами 4, на который с
предварительным усилием (вручную) навинчивают гайку 5, скрепляя шток и корпус в положении при
котором нижняя поверхность паза штока контактирует с поверхностью болта (высота опоры
максимальна).
После этого гайку 5 затягивают тарировочным ключом до заданного усилия. Увеличение усилия затяжки
гайки (болта) приводит к уменьшению зазоров « z» корпуса и увеличению усилия сдвига в сопряжении
отверстие корпуса-цилиндр штока. Зависимость усилия трения в сопряжении корпус-шток от величины
усилия затяжки гайки(болта) определяется для каждой конкретной конструкции (компоновки, габаритов,
материалов, шероховатости поверхностей и др.) экспериментально
Е04Н9/02
Опора сейсмостойкая
Предлагаемое техническое решение предназначено для защиты
сооружений, объектов и оборудования от сейсмических воздействий за
счет использования фрикционно податливых соединений. Известны
фрикционные соединения для защиты объектов от динамических
воздействий. Известно, например Болтовое соединение плоских деталей
встык по Патенту RU 1174616 , F15B5/02 с пр. от 11.11.1983.
Соединение содержит металлические листы, накладки и прокладки. В
листах, накладках и прокладках выполнены овальные отверстия через
которые пропущены болты, объединяющие листы, прокладки и накладки
в пакет. При малых горизонтальных нагрузках силы трения между
листами пакета и болтами не преодолеваются. С увеличением нагрузки
происходит взаимное проскальзывание листов или прокладок
относительно накладок контакта листов с меньшей шероховатостью.
Взаимное смещение листов происходит до упора болтов в края овальных
отверстий после чего соединения работают упруго. После того как все
болты соединения дойдут до упора в края овальных отверстий,
соединение начинает работать упруго, а затем происходит разрушение
соединения за счет смятия листов и среза болтов. Недостатками
известного являются: ограничение демпфирования по направлению
воздействия только по горизонтали и вдоль овальных отверстий; а также
неопределенности при расчетах из-за разброса по трению. Известно
также Устройство для фрикционного демпфирования антиветровых и
69

70.

антисейсмических воздействий по Патенту TW201400676(A)-2014-01-01.
Restraint anti-wind and anti-seismic friction damping device, E04B1/98,
F16F15/10.
Устройство содержит базовое основание, поддерживающее защищаемый
объект, нескольких сегментов (крыльев) и несколько внешних пластин. В
сегментах выполнены продольные пазы. Трение демпфирования
создается между пластинами и наружными поверхностями сегментов.
Перпендикулярно вертикальной поверхности сегментов, через пазы,
проходят запирающие элементы-болты, которые фиксируют сегменты и
пластины друг относительно друга. Кроме того, запирающие элементы
проходят через блок поддержки, две пластины, через паз сегмента и
фиксируют конструкцию в заданном положении. Таким образом
получаем конструкцию опоры, которая выдерживает ветровые нагрузки
но, при возникновении сейсмических нагрузок, превышающих расчетные
силы трения в сопряжениях, смещается от своего начального положения,
при этом сохраняет конструкцию без разрушения.
Недостатками указанной конструкции являются: сложность конструкции
и сложность расчетов из-за наличия большого количества сопрягаемых
трущихся поверхностей.
Целью предлагаемого решения является упрощение конструкции,
уменьшение количества сопрягаемых трущихся поверхностей до одного
сопряжения отверстие корпуса-цилиндр штока, а также повышение
точности расчета.
Сущность предлагаемого решения заключается в том, что опора
сейсмостойкая выполнена из двух частей: нижней-корпуса,
закрепленного на фундаменте и верхней-штока, установленного с
возможностью перемещения вдоль общей оси и с возможностью
ограничения перемещения за счет деформации корпуса под действием
запорного элемента. В корпусе выполнено центральное отверстие,
сопрягаемое с цилиндрической поверхностью штока, и поперечные
отверстия (перпендикулярные к центральной оси) в которые
устанавливают запирающий элемент-болт. Кроме того в корпусе,
параллельно центральной оси, выполнены два открытых паза, которые
обеспечивают корпусу возможность деформироваться в радиальном
направлении.
В теле штока, вдоль центральной оси, выполнен паз ширина которого
соответствует диаметру запирающего элемента (болта), а длина
соответствует заданному перемещению штока. Запирающий элемент
создает нагрузку в сопряжении шток-отверстие корпуса, а продольные
70

71.

пазы обеспечивают возможность деформации корпуса и «переход»
сопряжения из состояния возможного перемещения в состояние
«запирания» с возможностью перемещения только под сейсмической
нагрузкой.
Сущность предлагаемой конструкции поясняется чертежами, где на
фиг.1 изображен разрез А-А (фиг.2); на фиг.2 изображен поперечный
разрез Б-Б (фиг.1); на фиг.3 изображен разрез В-В (фиг.1); на фиг.4
изображен выносной элемент 1 (фиг.2) в увеличенном масштабе.
Опора сейсмостойкая состоит из корпуса 1 в котором выполнено
вертикальное отверстие диаметром «D», которое охватывает
цилиндрическую поверхность штока 2 предварительно по подвижной
посадке, например H7/f7.
В стенке корпуса перпендикулярно его оси, выполнено два отверстия в
которых установлен запирающий элемент-калиброванный болт 3. Кроме
того, вдоль оси отверстия корпуса, выполнены два паза шириной «Z» и
длиной «l». В теле штока вдоль оси выполнен продольный глухой паз
длиной «h» (допустмый ход штока) соответствующий по ширине
диаметру калиброванного болта, проходящего через этот паз. В нижней
части корпуса 1 выполнен фланец с отверстиями для крепления на
фундаменте, а в верхней части штока 2 выполнен фланец для сопряжения
с защищаемым объектом. Сборка опоры заключается в том, что шток 2
сопрягается с отверстием «D» корпуса по подвижной посадке. Паз штока
совмещают с поперечными отверстиями корпуса и соединяют
калиброванным болтом 3, с шайбами 4, на с предварительным усилием
(вручную) навинчивают гайку 5, скрепляя шток и корпус в положении
при котором нижняя поверхность паза штока контактирует с
поверхностью болта (высота опоры максимальна).
После этого гайку 5 затягивают тарировочным ключом до заданного
усилия. Увеличение усилия затяжки гайки (болта) приводит к
деформации корпуса и уменьшению зазоров от «Z» до «Z1» в корпусе,
что в свою очередь приводит к увеличению допустимого усилия сдвига
(усилия трения) в сопряжении отверстие корпуса – цилиндр штока.
Величина усилия трения в сопряжении корпус-шток зависит от величины
усилия затяжки гайки (болта) и для каждой конкретной конструкции
(компоновки, габаритов, материалов, шероховатости поверхностей,
направления нагрузок и др.) определяется экспериментально. При
воздействии сейсмических нагрузок превышающих силы трения в
сопряжении корпус-шток, происходит сдвиг штока, в пределах длины
паза выполненного в теле штока, без разрушения конструкции.
71

72.

Формула (черновик) Е04Н9
19.12.15
Опора сейсмостойкая, содержащая корпус и сопряженный с ним
подвижный узел (…) закрепленный запорным элементом
отличающийся тем, что в корпусе выполнено центральное
вертикальное отверстие, сопряженное с цилиндрической
поверхностью штока, при этом шток зафиксирован запорным
элементом, выполненным в виде калиброванного болта, проходящего
через поперечные отверстия корпуса и через вертикальный паз,
выполненный в теле штока и закрепленный гайкой с заданным
усилием, кроме того в корпусе, параллельно центральной оси,
выполнено два открытых паза длина которых, от торца корпуса,
больше расстояния до нижней точки паза штока.
72

73.

73

74.

74

75.

75

76.

76

77.

77

78.

78

79.

79

80.

80

81.

81

82.

82

83.

83

84.

84

85.

85

86.

86

87.

87

88.

88

89.

89

90.

90

91.

91

92.

92

93.

93

94.

94

95.

95

96.

96

97.

97

98.

98

99.

99

100.

ЭЛЕМЕНТЫ ТЕОРИИ ТРЕНИЯ,
РАСЧЕТ И ТЕХНОЛОГИЯ ПРИМЕНЕНИЯ
ФРИКЦИОННО-ПОДВИЖНЫХ СОЕДИНЕНИЙ
УЗДИН А.М., ЕЛИСЕЕВ О.Н., , НИКИТИН А.А., ПАВЛОВ В.Е., СИМКИН А.Ю.,
КУЗНЕЦОВА И.О.
ЭЛЕМЕНТЫ ТЕОРИИ ТРЕНИЯ,
РАСЧЕТ И ТЕХНОЛОГИЯ ПРИМЕНЕНИЯ
ФРИКЦИОННО-ПОДВИЖНЫХ СОЕДИНЕНИЙ
100

101.

101

102.

102

103.

103

104.

104

105.

105

106.

106

107.

107

108.

108

109.

109

110.

110

111.

111

112.

112

113.

113

114.

114

115.

115

116.

Выписка отзыв из НТС Госстроя РОССИИ МИНИСТЕРСТВО СТРОИТЕЛЬСТВА
РОССИЙСКОЙ ФЕДЕРАЦИИ НАУЧНО ТЕХНИЧЕСКИЙ СОВЕТ ВЫПИСКА ИЗ ПРОТОКОЛА
116

117.

заседания Секции научно-исследовательских и проектно изыскательских работ,
стандартизации и технического нормирования Научно-технического совета Минстроя России
г. Москва 4 • .1 N 23-13/3 15 ноября ■1994 т.
ЦНИСК им. Кучеренко от ЦНИИпромзданий
Присутствовали: от Минстроя России от
Вострокнутоз КХ Г. , Абарыкоз Е. П. , Гофман Г. Н. , Сергеев Д. А. , Гринберг И. Е. , Денисов Б.
И. , Ширя-ез Б. А. , Бобров Ф. В. , Казарян Ю. А. Задарено к А. Б. , Барсуков В. П. , Родина И. В.
, Головакцев Е. М. , Сорокин А. Ы. , Се кика В. С. Айзенберг Я. М / Адексеенков Д. А. , Кулыгин
Ю. С. , Смирнов В. И. , Чиг-ркн С. И. , Ойзерман В. И. , Дорофеев В. М. , Сухов Ю. П. ,
Дашезский М. А. Гиндоян А. П. , Иванова В. И. , Болтухов А. А. , Нейман А. И. , Ма лин И. С.
от ПКИИИС
от КФХ"Крестьянская усадьба" Севоетьянов 3. В, Коваленко А.И.
от ШШОСП им. Герсезанова от АО. ЩИИС
от КБ по железобетону им. Якушева
от Объединенного института физики земли РАН
от ПромтрансНИИпроекта
от Научно-инженерного и координационного сейсмо¬логического центра РАН
от ЦНИИпроектстальконструкция ИМЦ "Стройизыскания" Ассоциация "Югстройпроект"
от УКС Минобороны России (г. Санкт-Петербург) Ставницер М -Р. Шестоперов Г. С.
Афанасьев П. Г. Уломов В. И. , Штейнберг В. В. Федотов Б. Г. Фролова Е И. Бородин Л. С.
Баулин Ю. И. Малик А. Н. Беляев В. С.
2. О сейсмоизоляции существующих жилых домов, как способ повышения сейсмостойкости
малоэтажных жилых зданий. Рабочие чертежи серии • 1.010.-2с-94с. Фундаменты
сейсмостойкие с использованием сейсмоизолирущего скользящего пояса для строительства
малоэтажных зданий в районах сейсмичностью 7,8,9 баллов
1. Заслушав сообщение А. И. Коваленко, отметить, что по договору N 4.2-09-133/94 с
Минстроем России КФК "Крестьянская усадьба" выполняет за работу "Фундаменты
сейсмостойкие с использованием сейсмоизолируюшего пояса для строительства малоэтажных
зданий в районах сейсмичностью 7, з и 9 баллов". В основу работы положен принцип создания в
цокольной части здания сейсмоизолируюшего пояса, поглощающего энергию как
горизонтальных, так и-вертикальных нагрузок от сейсмических воздействий при помощи резино
-щебеночных амортизаторов и ограничителей перемещений.
К настоящему времени завершен первый этап работы - подготовлены материалы для
проектирования фундаментов для вновь строящихся зданий. Второй этап работы,
направленный на повышение сейсмостойкости существующих зданий, не завершен. Материалы
работы по второму этапу предложены к промежуточному рассмотрению на заседании Секции.
Представленные материалы рассмотрены НТС ЦНИИСК им. Кучеренко ( Головной научноисследовательской организацией министерства по проблеме сейсмостойкости зданий и
сооружений) и не содержат принципиально Д технических решений и методов производства
работ.
Решили:
1. Принять к сведению сообщение А.И.Коваленко по указанному вопросу .
2. Рекомендовать Главпроекту при принятии законченной разработки "проектно-сметной
документации сейсмостойкого Фундамента с использованием скользящего пояса (Типовые
проектные решения) учесть сообщение А. И. Коваленко и заключение НТС ЦНИИСК,
117

118.

на котором были рассмотрены предложения сейсмоустойчивости инженерных систем
жизнеобеспечения ( водоснабжения, теплоснабжения, канализации и газораспределения) .
Зам. председателя Секции научно-исследовательских и проектно-изыскательских работ,
стандартизации и технического нормировав ' Ю. Г. Вострокнутов
В. С. Сенина
Ученый секретарь Секции научно-исследовательских и проектно-изыскательских работ,
стандартизации и технического нормирование
МИНИСТЕРСТВО СТРОИТЕЛЬСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ МИНСТРОЙ РОССИИ
117937 ГСП 1 Москва ул. Строителей 3 корп. 2 П. М ■ 7 У № 3-3-1
На № О рассмотрении проектной документации
Директору крестьянского (фермерского) хозяйства "Крестьянская усадьба" А.И
КОВАЛЕНКО
197371, Санкт-Петербург пр.Королева, 30-1-135 Директору ГП ЦПП В.Н.КАЛИНИНУ
Главное управление проектирования и инженерных изысканий рассмотрело проектную
документацию шифр 1010-2с.94 "Фундаменты сейсмостойкие с использованием
сейсмоизолирующего скользящего пояса для строительства малоэтажных зданий а районах
сейсмичностью 7, 8 и 9 баллов. Выпуск 0-1. Фундаменты для существующих зданий. Материалы
для проектирования", выполненную КФХ "Крестьянская усадьба" по договору с Минстроем
России от 26 апреля 1994 г. N 4.2-09-133/94 (этап 2 "Разработка конструкторской
документации сейсмостойкого фундамента с. использованием сейсмоизолирующего скользящего
пояса для существующих зданий").
Разработанная документация была направлена на экспертизу в Центр проектной продукции
массового применения (ГП ЦПП; экспертное заключение N 260/94), Камчатский Научнотехнический Центр по сейсмостойкому строительству и инженерной защите от стихийных
бедствий (КамЦентр; экспертное заключение N 10-57/94), работа рассмотрена на заседании
секции "Сейсмостойкость сооружений" НТС ЦНИИСКа им.Кучеренко, а также заслушана на
НТС Минстроя России. Результаты экспертиз и рассмотрений показали, что без проведения
разработчиком документации экспериментальной проверки предлагаемых решений и
последующего рассмотрения результатов этой проверки в установленном порядке использование
работы в массовом строительстве нецелесообразно.
В связи с изложенным Главпроект считает работу по договору N 4.2-09-133/94 законченной и, с
целью осуществления авторами контроля за распространением документации, во изменение
письма от 21 сентября 1994 г. N 9-3-1/130, поручает ГП ЦПП вернуть КФХ "Крестьянская
усадьба" кальки чертежей шифр 1010-2с.94, выпуск 0-2. Главпроект обращает внимание'
руководства КФХ "Крестьянская усадьба" и разработчиков документации на ответственность
за результаты применения в практике проектирования и строительства сейсмоизолирующего
скользящего пояса по чертежам шифр 1010-2с.94, выпуски 0-1 и 0-2. Приложение: экспертное
заключение КамЦентра на 6 л.
Зам.начальника Главпроекта Барсуков 930 54 87 .А.Сергеев
118

119.

119

120.

120

121.

121

122.

Изобретение заявка номер Е 04 Н9 02
Опора сейсмоизолирующая гармошка
2018129421 20 047400 от 29 08 18
Заявка на изобретение полезная модель Опора
сейсмоизолирующая гармошка
Коваленко Александр Иванович
Е04Н9/02
Опора сейсмоизолирующая "гармошка"
Предлагаемое техническое решение предназначено для сейсмозащиты ,
мостов, магистральных трубопроводов, зданий , сооружений, объектов
и оборудования от сейсмических воздействий за счет использования
упругопластических деформаций , как "пластический шарнир" в самой
маятниковой, подвижной
опоре . Известны фрикционные
соединения для защиты объектов от динамических воздействий.
Известно, например Болтовое соединение плоских деталей встык по
Патенту RU 2208098 E04 B 1/18"Узел соединения колонны с ригелем
каркаса сейсмостойкого здания (варианты), "Опора
сейсмоизолирующая маятниковая" заявка на полезную модель
изобретение патент RU 2016119967 /20 (031416) от 21.07.2016
Опора "гармошка" содержит металлические листы, накладки и
прокладки. Опора имеет коробчатый вид на фрикционно-подвижных
соединениях, выполненных в овальные отверстия, через которые
пропущены болты.
С увеличением нагрузки происходит энергопоглощение и смятие медных
листов -вставка , ослабленных пропилом - в шахматном порядке из
тонких медных обожженных многослойных листов - прокладок
относительно линии нагрузки с меньшими пропилами (ослаблением) и
креплением подвижной опоры на фрикционно-подвижных соединений
(ФПС) обеспечивая более "полный" маятниковый эффект- шарнир в
самой подвижной опоре , создавая упруго-пластичную работу опоры (
122

123.

см. изобретение № 2382151 "Узел соединения" и " 2208098 "Узел
соединения колонный с ригелем каркаса сейсмостойкого здания
(варианты) ) и согласно изобретениям №№ 1143895 F16 B5/02, 1168755
F16, 1174616 F16 B5/02, 1154506 Е04В 1/92, 154506 Е04 B1/92, 165076
Е04Н 9/02, 2010136746 Е04С2/00, СН 471-75, НП-031-01, СП
12.13130.2009, заявка на изобретение № 2016119967/20( 031416) E04H
9/02 "Опора сейсмоизолирующая маятниковая", № 2018105803/
20(008844) F16L 23/02 "Антисейсмическое фланцевое фрикционноподвижное соединение для трубопроводов" серийный выпуск,
закрепленные на основании фундамента с помощью фрикционноподвижных соединений (ФПС), выполненных согласно изобретениям №№
1143895,1174616, 1168755 SU, 4094111 US, TW201400676,RU 2010136746,
RU 165076, заявка на изобретение № 2018105803/ 20(008844) от
27.02.2018 "Антисейсмическое фланцевое фрикционно-подвижное
соединение для трубопроводов"
Изобретение направлено на увеличение энергопоглощающей способности
и сохраняемости подвижной опоры, узлов в сейсмостойких
существующих и находящихся в аварийном состоянии железнодорожных
мостов, сооружений, трубопроводов, зданий, без привлечения
дополнительных ограничителей перемещений , обеспечивающих
несущую способность моста, трубопровода, сооружения, здания . с
использованием демпфера , описанного в изобретении № 167977
"Устройство для гашения ударных и вибрационных воздействий"
Взаимное смещение упруго пластическая работа, медных обожженных
многослойных листов , происходит до упора болтов в края длинных
овальных отверстий, после чего соединения при импульсных
растягивающих нагрузках при многокаскадном демпфировании
начинают работать энергопоглощающие медные упругопластичные,
ослабленные в шахматном порядке опора- "гормошка".
Недостатками известного являются: ограничение демпфирования по
направлению воздействия только по горизонтали и вдоль овальных
отверстий; а также неопределенности при расчетах из-за разброса по
энергопоглощению и упругопластическая работа, опоры типа
"гармошка" .
123

124.

Известно также Устройство для фрикционного демпфирования
антиветровых и антисейсмических воздействий по Патенту
TW201400676(A)-2014-01-01. Restraint anti-wind and anti-seismic friction
damping device, E04B1/98, F16F15/10.
Устройство содержит базовое основание, поддерживающее
защищаемый объект, нескольких сегментов ( вставка многослойная
медная - гармошка) и многослойная вставка из одной или двух
"гармошек" . В сегментах выполнены продольные пазы.
Энергопоголощение создается между пластинами и наружными
поверхностями опоры . Перпендикулярно вертикальной поверхности
сегментов, через пазы, проходят запирающие болтами , которые
фиксируют подвижную опору, друг относительно друга. Кроме того,
запирающие элементы проходят через подвижную опору с одной или
двумя пластинами -"гармошками", через паз сегмента.
Таким образом получаем конструкцию подвижной, сейсмоизолирующие
опору -"гармошку", которая выдерживает сейсмические нагрузки но,
при возникновении динамических , импульсных растягивающих нагрузок,
взрывных, и сейсмических нагрузок, превышающих расчетные силы
энергопоглощения и смятия в шахматном порядке пропилов, которые
смещается от своего начального положения, при этом сохраняет
конструкцию опоры подвижной , без разрушения.
Недостатками Японской опоры, типа: Netis registration number kt
070026 a ( см (http://www.kawakinct.co.jp/english/bridges/b_d02.html,
Японской фирмы kawakinct.co.jp по применению маятниковых
сейсмоизолирующих опор типа, марки NETIS Registration number KT070026-A Vibration Control Shear Panel Stopper for Seismic Response
Control по названию в интернете
ob ispolzovanii opita yaponskoy firmi kawakinct.co.jp po primineniyu
mayatnikovikh seismoizoliruyuschikh opor prezident Shinkichi Suzuki 78
str,
https://www.youtube.com/watch?v=VRTV59EfbS4
https://rutube.ru/video/ceb7da9cb57860929c605509ca26cf27/
https://www.youtube.com/watch?v=IExrAQcmiTM
ob ispolzovanii opita yaponskoy firmi kawakinct.co.jp po primineniyu
mayatnikovikh seismoizoliruyuschikh opor prezident Shinkichi Suzuki 78 str
https://cloud.mail.ru/home/ob_ispolzovanii_opita_yaponskoy_firmi_%20kawak
inct.co.jp_%20po_primineniyu_mayatnikovikh_seismoizoliruyuschikh_opor_pr
124

125.

ezident_Shinkichi_Suzuki_78_str.doc
https://cloud.mail.ru/home/ob_ispolzovanii_opita_yaponskoy_firmi_%20kawak
inct.co.jp_%20po_primineniyu_mayatnikovikh_seismoizoliruyuschikh_opor_pr
ezident_Shinkichi_Suzuki_78_str.docx https://yadi.sk/i/Brdt_7u-3YyaV6
https://yadi.sk/i/Vr0fPFkx3YyaVB
Ссылка для скачивания файла: http://fayloobmennik.cloud/729385 Ссылка
для скачивания файла: http://fayloobmennik.cloud/7293854
Ссылка для скачивания файла: http://fayloobmennik.cloud/7293855
Вы загрузили файл ob_ispolzovanii_opita_yaponskoy_firmi_ kawakinct.co.jp_
po_primineniyu_mayatnikovikh_seismoizoliruyuschikh_opor_prezident_Shinki
chi_Suzuki_78_str.doc на сервис www.fayloobmennik.net!
https://cloud.mail.ru/home/ob_ispolzovanii_opita_yaponskoy_firmi_%20kawak
inct.co.jp_%20po_primineniyu_mayatnikovikh_seismoizoliruyuschikh_opor_pr
ezident_Shinkichi_Suzuki_78_str.doc
https://cloud.mail.ru/home/ob_ispolzovanii_opita_yaponskoy_firmi_%20kawak
inct.co.jp_%20po_primineniyu_mayatnikovikh_seismoizoliruyuschikh_opor_pr
ezident_Shinkichi_Suzuki_78_str.docx
https://yadi.sk/i/Brdt_7u-3YyaV6 https://yadi.sk/i/Vr0fPFkx3YyaVB
Ссылка для скачивания файла: http://fayloobmennik.cloud/729385
Ссылка для скачивания файла: http://fayloobmennik.cloud/7293854
Ссылка для скачивания файла: http://fayloobmennik.cloud/7293855
Вы загрузили файл ob_ispolzovanii_opita_yaponskoy_firmi_ kawakinct.co.jp_
po_primineniyu_mayatnikovikh_seismoizoliruyuschikh_opor_prezident_Shinki
chi_Suzuki_78_str.doc на сервис www.fayloobmennik.net!
Сохраните данное письмо, если желаете в дальнейшем управлять
загруженным файлом.
Вы загрузили файл ob_ispolzovanii_opita_yaponskoy_firmi_ kawakinct.co.jp_
po_primineniyu_mayatnikovikh_seismoizoliruyuschikh_opor_prezident_Shinki
chi_Suzuki_78_str.doc на сервис www.fayloobmennik.net!
Сохраните данное письмо, если желаете в дальнейшем управлять
загруженным файлом.
Ссылка для скачивания Файла:http://fayloobmennik.cloud/7293852
http://www.kawakinct.co.jp/english/bridges/b_d02.html
что являются: сложность конструкции и сложность расчетов из-за не
использования фрикционно-подвижных соединений и фрикци-болты, на
которых "зависает" опора
125

126.

Целью предлагаемого решения является упрощение конструкции, а
также повышение сейсмостойкости , вибрастойкости,
взрывостойкости при использования ослабленных сечений, и
платического шарнира в опоре "гармошке" на фрикци- болтовых
демпфирующих податливых креплений. для квадратных маятниковых.
Для "подвешивания" подвижных сейсмоизолирующих опор на
обожженных медных клиньях, для создания эффекта "качения", за счет
смятия медных клиньев , забитых в пропиленный паз латунной шпильки .
Сущность предлагаемого решения заключается в том, что
сейсмоизолирующая подвижная опора сейсмостойкая выполнена как
этажерка, причем, нижней-корпуса, закрепленного на фундаменте с
помощью подвижного смянаемого фрикци –болта с пропиленным
пазом в который забит медный обожженный клин с бронзовой втулкой
( гильзой) и свинцовой шайбой и верхней и нижней, для установленной
возможности перемещаться, и качаться, по линии нагрузки с
возможностью ограничения перемещения, за счет деформации
"гармошки" до этого ослабленных центрально или двух П -образных
"гармошек" для "тяжелых" пролетных строений
В корпусе опоры , вставлены две или одна или многослойной
обожженная медной "гармошки" вставлена по линии нагрузки для
упругопластичной работы с запирающий элемент стопорный фрикциболт в нижней части опоры, а сам опора укладывается на свинцовый
тонки лист с верху и снизу сейсмоизолирующего пояса, с болтами с
контролируемым натяжением с забитым медным смянаемым клином в
пропиленный паз латунной шпильки и бронзовой или латунной втулкой (
гильзой) с тонкой свинцовой шайбой с низу для ремонта существующих
пролетных строений аварийных мостов, магистральных
газотрубопроводов .
Кроме того в коробчато- квадратной, подвижной опоры , параллельно
центральной оси, устанавливаются выполнены восемь или десяти
латунных шпилек со сямянаемым медным обожженным клином - ,
которые обеспечивает опоре "гармошке" возможность
деформироваться за счет протяжных соединения с фрикциболтовыми демпфирующими креплениями в направлении нагрузки ( фиг
6, фиг 7) .
126

127.

В подвижной опоры , установленной на фрикци- болтах , которая
соответствует заданному перемещению квадратной опоры.
Продольные протяжные пазы с контролируемым натяжением фрикциболта с забитым медным клином в пропиленный паз стальной шпильки ,
которые обеспечивают возможность деформации опоры корпуса и
«переход» сопряжения из состояния возможного перемещения, в
состояние «гармошки» с возможностью перемещения только под
сейсмической по линии нагрузкой, вибрационной, взрывной и от ударной
воздушной волны.
Сущность предлагаемой конструкции поясняется чертежами, где
на фиг.1 изображен общий вид, сейсмоизолирующей подвижная
квадратная опора, типа: "гармошка" деформирующая по линии нагрузки
с одной вставкой "гармошки" и обожженным медным ослабленным
подпилов в шахматном порядке вставке деформируемой по линии
нагрузки
на фиг.2 изображена сейсмоизолирующая , подвижная с центральной
упругополатичной вставкой в аксонометрии со вставкой в центре
опоры из многослойных медных ослабленных и обожженных платин ,
демпфирующих или энергопоглощающих по линии нагрузки
; на фиг.3 изображены квадратная сейсмоизолирующая подвижная (
маятниковая) опора на фрикционных соединениях с устройствами для
гашения ударных и вибрационных воздействий по изобретению №
167971 " или " 165076 "Опора сейсмостойкая" (телескопическая )
;на фиг.4 изображены квадратная сейсмоизолирующая подвижная (
маятниковая) опора с пластическим шарниром ( см № 2208098"Узел
соединеия колонны сс ригелем каркаса сейсмостойкого здания
(варианты ) на фрикционных соединениях с устройствами для гашения
ударных и вибрационных воздействий по изобретению № 167971 со
сдвинутой энергопоглощающей вставкой типа "гармошка"
на фиг.5 изображен вид с боку , сейсмоизолирующей подвижная
квадратная опора, типа: "гармошка" по линии нагрузки с одной
127

128.

вставкой "гармошки" и обожженных медных пластин ослабленных
подпилов в шахматном порядке
на фиг. 6 изображен чертеж квадратной опоры -"гармошка" вид с
верху с длинными овальными отверстиями для протяжных соединений
; ослаблением, с 8 овальными отверстиями , для фрикуи -болта
на фиг 7 изображена усиленная (тяжелая) квадратная опора
сейсмоизолирующая маятниковая ( вид с верху) с двумя
энергопоглощающими по линии нагрузки упругоплатичными
"гармошками" на протяжных фрикционно -подвижных соединениях ; с
десятью овальными отверстиями , для установки на фрикци-болтах ,
как "избушка" на "курьих" смянаемых ножках
фиг 8 изображен чертеж квадратной "легкой" опоры -"гармошка"
сейсмоизолирующая маятниковая (вид с боку) закрепленная с фрикци болтом с забитым медным обожженным клином , с пропиленным пазом
в латунной шпильке, уложенным на свинцовый "скользящий" лист на
фрикционно-подвижных соединениях; со скользящим свинцовым
основанием на восьми медных смянаемых клиньев , для маленьких мостов
фиг 9 изображена квадратная сейсмоизолирующая подвижная маятниковая опора с одной энергопоглощающей упругопластичной
медной вставкой, на фрикционно- подвижных креплением, с фрикциболтами с контрольным натяжением -разрез с боку ; на 4 -х медных
смянаемых латунных"ножках"
фиг 10 изображена уже с перемещением (сдвинутая) квадратная
опора -"гармошка" сейсмоизолирующая маятниковая установленная на
свинцовый тонкий лист с закрепленными устройствами для гашения
ударных и вибрационных воздействий по изобретению № 167977 –вид с
боку ; или с помощью телескопической опоры -стопора " 165076
"Опора сейсмостойкая"
, фиг 11 изображена квадратная опора -этажерка
сейсмоизолирующая маятниковая на свинцовом листе, с
фрикционными соединениями с установленными устройствами для
гашения ударных и вибрационных воздействий с двух сторон по
изобретению № 167971, вид с боку , без пермещаения .
128

129.

Опора сейсмостойкая состоит из квадратного стального корпуса этажерки, с подвижной вставкой из упругопластиных тонких,
многослойных обожженных медных платин , ослабленных с помощью
пропила пазов, в шахматном порядке , а так же с контролируемым
натяжением фрикци-болта с пропиленным пазом в стальной шпильке.
И, с предварительно забитым, в пропиленный паз латунной шпильки демпфирующая стойка.
Сейсмоизолирующая опора установленная на свинцовом листе с верху и
снизу закреплена на фланцево –фрикционо подвижном соединениях
(ФПС) к нижнему и верхнему поясу оборудования, сооружению, зданию,
мосту , которая начинает поглощать сейсмическую, вибрационную,
взрывную, энергию фрикционно- подвижными соединениями, и состоит
из демпферов сухого трения, с энергопоглощающей гофрой и
свинцовыми (возможен вариант использования латунной втулки,
свинцовых шайб ) поглотителями сейсмической и взрывной энергии за
счет "гармошки" , которые обеспечивают смещение опорных частей
фрикционных соединений на расчетную величину при превышении
горизонтальных сейсмических нагрузок от сейсмических воздействий
или величин, определяемых расчетом на основные сочетания расчетных
нагрузок, а сама опора раскачиваться, за счет вылезания или смянания
обожженным медных клиньев , которые предварительно забиты в
пропиленный паз латунной шпильки-ножки , для легкой опоры 8 , для
тяжелой -усиленной по десять латунных "ножек" -шпилек.
Податливые энергопоглощающие , упругоплатичные демпферы "гармошки" ( одна или две с двух сторон -усиленная) представляют
собой ослабленные в шахматном порядке, со стабильным коэффициент
смянаемости, которые создают "пастический шарнир" в опоре
"гармошке", за счет ослабления , выполненного , в шахматном порядке,
пропилов болгаркой в медной обожженной, многослойной , спрессованной
на специальной смазке , и работающей как фрикционно -подвижное
соединение ( см статью НАПРАВЛЕНИЯ РАЗВИТИЯ
ФРИКЦИОННЫХ СОЕДИНЕНИЙ НА ВЫСОКОПРОЧНЫХ БОЛТАХ
д.т.н. Кабанов Е.Б., к.т.н. Агеев В.С., инж. Дерновой А.Н., Паушева Л.Ю.,
Шурыгина М.П. (Научно-производственный центр мостов, г. СанктПетербург) http://www.npcmostov.ru/downloads/summa.pdf
129

130.

Сама составная опора выполнена квадратной (состоит из двух Побразных и смянаемых пластин, упругоплатичного типа,
энергопоглощающих с ослабленных и смянаемых "гаромошек" с
ослаблением на фрикционно - подвижных соединениях ( Файбишенко
В.К металлические конструкции . М .Стройиздат , 1984, с 75, рис 52в)
Сжимающее усилие создается медными обожженными многослойными
листами и шпильками с вбитым обожженным медным клином в
пропиленный паз стальной шпильки внизу , натягиваемыми
динамометрическими ключами или гайковертами на расчетное усилие
фрикционным соединением с контрольным натяжением при креплении
опоры к основанию моста и пролетному строению или верхнему
сейсмоизолирующему поясу магистрального трубопровода, сооружения
.
Количество болтов определяется с учетом воздействия собственного
веса ( массы) оборудования, сооружения, здания, моста и расчетные
усилия рассчитываются по СП 16.13330.2011 ( СНиП II -23-81* )
Стальные конструкции п. 14.4, Москва, 2011, ТКТ 45-5.04-274-2012
(02250), «Стальные конструкции» Правила расчет, Минск, 2013. п.
10.3.2
Медная обожженная многослойная энергопоглощающая , ослабленная с
подпилом болгаркой , в шахматном порядке , платина является
энергопоглотителем пиковых ускорений (ЭПУ), с помощью которого,
поглощается взрывная, ветровая, сейсмическая, вибрационная
энергию самой опорой и пролетными пазами для смятия "гармошки" и
медных обожженных клиньев , забитых в пропиленные пазы латунной
шпильки .
Фрикци-болт, которым крепится сам опора сейсмоизолирующая
подвижная , снижает на 2-3 балла нагрузка, за счет импульсных
растягивающих напряжений, при землетрясений и взрывной ударной
воздушной волны. Фрикци –болт повышает надежность работы опоры
сейсмоизолируюшей подвижной , маятниковой типа "гармошка",
сохраняет пролетное строение, железнодорожного моста, ЛЭП,
магистральные трубопроводы, за счет уменьшения пиковых ускорений,
и за счет эергопоглощения за счет протяжных фрикционных
соединений, работающие на растяжением на фрикци- ботах,
130

131.

установленные в длинные овальных отверстиях, с контролируемым
натяжением в протяжных соединениях. ( ТКП 45-5.04-274-2012 (02250)
п. 10.3.2 стр. 74 , Минск, 2013, СП 16.13330.2011,СНиП II-23-81* п. 14.315.2).
Втулка (гильза) фрикци-болта, нагреваясь до температуры плавления за
счет трения, а свинцовая шайба расплавляется, поглощает пиковые
ускорения взрывной, сейсмической энергии, и исключает разрушения
ЛЭП, опор электропередач, мостов, разрушении теплотрасс горячего
водоснабжения от тяжелого автотранспорта и вибрации на ж/д
транспорте. Надежность опоры сейсмоизолирующей подвижной маятниковой типа "гармошка" с friction-bolt на опорах
сейсмоизолирующих маятниковых, достигается, путем обеспечения
многокаскадного демпфирования, при динамических нагрузках,
преимущественно при импульсных растягивающих нагрузках на мост,
сооружение, оборудование, здание, которое устанавливается на
маятниковых сейсмоизолирующих опорах, на фланцево-фрикционноподвижных соединениях (ФПС) по изобретению "Опора
сейсмостойкая" изобретение г. № 165076 Авт. Андреев. Б.А. Коваленко
А.И, проф ПГУПС дтн Уздин А.М №№ 1143895, 1174616, 1168755
В основе сейсмоизолирующей подвижной опоры на фрикционно подвижных о соединениях , основана на поглощении сейсмической
энергии, лежит принцип который, на научном языке называется
"рассеивание", "поглощение" сейсмической, взрывной, вибрационной
энергии упругоплатичными материалами.
Использования
фрикционно - подвижных соединений (ФПС), с фрикциболтом в протяжных соединениях с демпфирующими узлами
крепления (ДУК с тросовым зажимом), имеет пару структурных
элементов, соединяющей эти структурные элементы со скольжением
энергопоглащиющихся соединение, разной шероховатостью
поверхностей, обладающие значительными фрикционными
характеристики, с многокаскадным рассеиванием сейсмической,
взрывной, вибрационной энергии. Совместное скольжение, включает
зажимные средства на основе friktion-bolt ( аналог американского Hollo
Bolt ), заставляющие указанные поверхности, проскальзывать, при
применении силы, стремящейся вызвать такую, чтобы движение
большой величины.
131

132.

Устройство опора "гармошка", для гашения ударных и вибрационных
воздействий работает следующим образом. Устройство размещается
между источником ударных и вибрационных воздействий и защищаемой
конструкцией, к которым жестко прикрепляются многослойная
ослабленная медная ослабленная пластина, как "пластический" шарнир
, по изобртению № 2208098
Благодаря наличию пропиленных пазов в шахматном порядке , гасится
вибрационные и ударные, воздействия ориентированы по линии нагрузки
моста, трубопровода, сооружения.Если воздействия имеют двухосное
направление, так как энергопоглотитель работает как "гармошка" с
боковыми демпферами по изобртению: № 167977 "Устройство для
гашения ударных и вибрационных воздействий"
При внешних воздействиях, различных по величине в противоположных
направлениях, медная обожженная многослойная "гармошка" , может
иметь различную жесткость и ослабления за счет распила и
ослабления болгаркой по линии нагрузки.
Работа рамного узла опоры происходит следующим образом. В момент
сейсмического толчка опора стремится повернуться по отношению к
пролетному строению , чему препятствуют фрикционное соединения .
В одной из части опоры , возникают существенные сжимающие
напряжения, которые на участке опоры- "гормошки" , вызывают
потерю местной устойчивости с проявлением пластических
деформаций, поглощающих энергию колебаний, самой опоры .
Пластические деформации проявляются, вне зоны концентраторов
напряжений, чем достигается увеличение энергопоглощающей
способности и сохраняемости опоры . Отсоединение "гармошки" от
стенки опоры, не приводит к снижению его несущей способности при
изгибе в горизонтальной плоскости, по линии нагрузки и потому не
требует введения в сейсмоизолирующею опору дополнительных
распорок.
В результате взрыва, вибрации при землетрясении, происходит
сминаемость "гармошки", сейсмоизолирующей маятниковой опоры
(фрагменты опоры) со скольжением по свинцовому листу, продольному
132

133.

длинным овальном отверстиям, нижней сейсмоизолирующей опоры,
что повышает надежность опоры -"гармошка" так как в Японской
опоре
( и фирмы kawakinct.co.jp по применению маятниковых
сейсмоизолирующих опор типа NETIS Registration number KT-070026-A
Vibration Control Shear Panel Stopper for Seismic Response Control )
отсутствует фрикци- соединения, спрессованных многослойных медных
ослабленных демпфирующих платин и медные -"ножки", смянаемые
медные обожженные клинья, которые забиваются в пропиленный паз
болгаркой , латунные шпильки, позволяющие раскачиваться как маятник
опоре, до начала работы "пластического" шарнира в самой опоре "гармошка".
Происходит поглощение энергии, за счет сжатия и расжатия
"гармошки" от сейсмической, ветровой, взрывной нагрузки, что
позволяет перемещаться и раскачиваться сейсмоизолирующей
маятниковой , подвижной , опоре с оборудованием, зданием, мостом,
сооружением на расчетное допустимое перемещение.
Сейсмоизолирующая опора рассчитана на одну, два землетрясения или
взрывные, вибрационные нагрузки, либо на одну взрывную нагрузку от
ударной взрывной волны.
Податливые демпферы опоры- "гармошка" , представляют собой
ослабленные подпилом в шахматном порядке , обожженной ,
многослойной энергопоглощающей упругопластичной медной
"гармошки" с одной или двумя вставками, имеющую стабильный
коэффициент энергопоглащения , установленный на свинцовом листу в
нижней и верхней части сейсмоизолирующих поясов и вставкой
свинцовой шайбы и латунной гильзой в работе с фрикци-болтами
соединением для создания энергопоглощения и создание "пластического"
шарнира в самой опоре "гармошка"
После взрывной или сейсмической нагрузки, необходимо заменить
смятую , энергопоглощающеюся медную , многослойную "гармошку" и
заменить свинцовые смятые шайбы, в паз шпильки демпфирующего узла
крепления забивается внизу, новые стопорные обожженные медные
клинья, с помощью домкрата поднять и выровнять опору моста ,
оборудование, сооружение, здание, и затянуть болты на проектное
133

134.

натяжение, фрикционное соединение, работающие как "пластический
шарнир" на растяжение как "пластичным" шарниром на протяжных о
соединениях.
В результате взрыва, вибрации при землетрясении происходит
перемещение (скольжение) фрагментов фрикционно-подвижного
соединения (ФПС) опора -"гармошка" (фрагменты опоры скользят по
продольному овальному отверстию опоры), происходит поглощение
энергии, за счет смятия "гармошки" сейсмической, ветровой, взрывной
нагрузки, что позволяет перемещаться сейсмоизолирующей опоре с
оборудованием на расчетное перемещение.
Сейсмоизолирующая опора рассчитана на одну сейсмическую нагрузку
дол 9 баллов и более, либо на одну взрывную нагрузку. После взрывной или
сейсмической нагрузки необходимо заменить и выбить смятую
"гармошку", в паз шпильки демпфирующего узла крепления забить новую
"гармошку" и новые стопорные медные клинья, с помощью домкрата
поднять опору и затянуть болты на проектное натяжение и заменить
свинцовые листы, свинцовые шайбы в латунной шпильке и заменить
смятые медные расплющенные гильзы - втулки с латунной шпильки.
При воздействии сейсмических, вибрационных, взрывных нагрузок
превышающих силы трения в сопряжении в квадратной маятниковой
сейсмоизолирующей опоре , происходит смятие "гармошки" , в пределах
квадратной опоры , по линии нагрузки с перемещением квадратной
опоры , без разрушения конструкции моста, трубопровода,
сооружения .
Формула
Опора сейсмоизолирующая маятниковая , содержащая квадратный
корпус -опору и сопряженный с ним подвижный узел состоящий из
упругопластичной "гармошки" , закрепленными запорными элементом
в виде протяжных фрикционно-подвижных соединений , отличающийся
тем, что в квадратном корпусе-опоре, выполнено из квадратного
замкнутого по периметру стальной опоры и верхнего составного
внутреннего из двух или четырех частей, забитой энергопоглощающим
медным обожженным и ослабленной вставкой, с подпилом в
шахматном порядке о ослабленной , при этом верхняя составная
134

135.

квадратная фрикционно-подвижная часть опоры зафиксирована
фрикционо-подвижными соединениями ,в виде демпфирующего фрикци –
болта с забитым в пропиленный паз шпильки с обожженным медным
клином , выполненным в виде калиброванного латунного болта
фрикционного соединения работающего на растяжением с
фрикционным соединением с контрольным натяжением , забитого
через поперечные длинные овальные отверстия квадратной опоры,
через вертикальный паз, выполненный в теле квадратной , опоры и
закрепленный гайкой контролируемым с заданным усилием
натяжением, работающим на растяжением. Кроме того в корпусе,
параллельно центральной оси , выполнены две или одна
энергопоглощающие -вставки: типа "гармошки" которые поглощают
сейсмическую , вибрационную, взрывную энергию и работают , как
"пластический шарнир" , за счет ослабления "упругоплатичного
соединения" и меющих расположение в виде шахматного порядке
прорези.
Сжимающее усилие поглощаются вбитым обожженным медной
энергопоглощаюей вставкой в виде: "гармошкой" с пропиленными
пазами в шахматном порядка
Толщина энергопоглощающей медной обожженной "гармошки",
определяется с учетом воздействия собственного веса ( массы) моста,
трубопровода , оборудования, сооружения, здания, расчетные усилия
рассчитываются по СП 16.13330.2011 ( СНиП II -23-81* ) Стальные
конструкции п. 14.4, Москва, 2011, ТКТ 45-5.04-274-2012 (02250),
«Стальные конструкции» Правила расчет, Минск, 2013. п. 10.3.2, а
размеры подвижной маятниковой опоры , принимаются согасно
типвого проекта № 3.501-35 "Литы опоры части под металлические
пролетные строения железнодорожных мостов . взамен типового
проекта инв № 7250 . Рабочие чертежи Гипротрансмост , Москва 1975
г https://dwg.ru/dnl/9949
135

136.

Фиг 1 Опора сейсмоизолирующая подвижная
Фиг 2 Опора сейсмоизолирующая подвижная
Фиг 3 Опора сейсмоизолирующая подвижная
Фиг 4 Опора сейсмоизолирующая подвижная
136

137.

Фиг 5 Опора сейсмоизолирующая подвижная
Фиг 6 Опора сейсмоизолирующая подвижная
Фиг 7 Опора сейсмоизолирующая подвижная
Фиг 8 Опора сейсмоизолирующая подвижная
137

138.

Фиг 9 Опора сейсмоизолирующая подвижная
Фиг 10 Опора сейсмоизолирующая подвижная
Фиг11 Опора сейсмоизолирующая подвижная
РЕФЕРАТ
Опора сейсмоизолирующая подвижная ( маятниковая ) "гармошка"
предназначена для защиты железнодорожных мостов , сооружений,
объектов, зданий от сейсмических, взрывных, вибрационных ,
неравномерных воздействий за счет использования упругоплатичной
работы , "пластического шарнира" в виде "гармошки" ых фланцевых фрикционно податливых соединений с целью повышения надежности
соединения путем, за счет обеспечения многокаскадного
138

139.

демпфирования, при динамических, вибрационных, сейсмических,
взрывных нагрузках при импульсных растягивающихся нагрузках .
Опора сейсмоизолирующая подвижная , содержащая квадратный
корпус -опору и энергопоглощающеюся вставку в виде одной или двух
упругопластичных "гармошек" с ослабенными в шахматном порядке
пропилов в медной обожженной упругопластичной вставкой или
вставками, сопряженный с ним подвижный узел крепится на
фланцево- фрикционно-подвижными соединениями закрепленный
запорным элементом в виде протяжного соединения отличающийся
тем, что, в квадратном корпусе-опоре выполнено их квадратного
энергопоглощающегося замкнутого по периметру стальной опоры "гармошка", верхнего составного внутреннего из двух или четырех
частей, при этом верхняя составная, квадратная фрикционноподвижная часть , крепится к основанию в виде демпфирующего
фрикци –болта с забитым в пропиленный паз шпильки с обожженным
медным клином , выполненным в виде калиброванного латунного болта
фрикционного соединения работающего на растяжением с
фрикционным соединением с контрольным натяжением , проходящего
через поперечные длинные овальные отверстия корпуса, квадратной
опоры, через вертикальный паз, квадратной опоры - "гармошка" и
закрепленный гайкой контролируемым с заданным усилием
натяжением, работающим на растяжением.
Податливые демпферы - "гармошка" представляют собой и имеющую
стабильный коэффициент трения по свинцовому листу в нижней и
верхней части сейсмоизолирующих поясов и вставкой свинцовой шайбы и
латунной гильзой в работу с фрикци-болтовым соединением для
создания упругоплатичных деформаций .
Сжимающее усилие при креплении опоры "гармошки" к основанию, на
свинцовой прокладке, создается высокопрочными шпильками с вбитым
обожженным медным клином в пропиленный паз стальной шпильки ,
натягиваемыми динамометрическими ключами или гайковертами на
расчетное усилие
фрикционным соединением с контрольным натяжением . Количество
болтов определяется с учетом воздействия собственного веса моста (
массы)
139

140.

трубопроводов, оборудования, сооружения, здания, моста и расчетные
усилия рассчитываются по СП 16.13330.2011 ( СНиП II -23-81* )
Стальные
конструкции п. 14.4, Москва, 2011, ТКТ 45-5.04-274-2012 (02250),
«Стальные конструкции» Правила расчет, Минск, 2013. п. 10.3.2
Сама
подвижная многослойная "гармошка" вставка для опора,
сейсмоизолирующей маятниковой , выполнена с прорезями
(ослаблениями) в шахматном
порядке , на фрикционно - подвижными соединениях с обмазкой медных
ослабленных платин мягким цинкнаполненным полимером с
использовании
несъемных фрикционно-защитных покрытий (грунтовка ЦВЭС - (1)
-грунтовка INTERZINK 22 - (2), -грунтовка HEMPEL GALVOSIL 15700 (3)
(НАПРАВЛЕНИЯ РАЗВИТИЯ ФРИКЦИОННЫХ СОЕДИНЕНИЙ НА
ВЫСОКОПРОЧНЫХ БОЛТАХ
д.т.н. Кабанов Е.Б., к.т.н. Агеев В.С., инж. Дерновой А.Н., Паушева Л.Ю.,
Шурыгина М.П.
(Научно-производственный центр мостов, г. Санкт-Петербург)
Сама подвижная многослойная "гармошка" вставка для опора,
сейсмоизолирующей маятниковой , выполнена с прорезями
(ослаблениями) в
шахматном порядке , на фрикционно - подвижными соединениях с
обмазкой медных ослабленных платин мягким цинкнаполненным
полимером с
использовании несъемных фрикционно-защитных покрытий (грунтовка
ЦВЭС - (1)
-грунтовка INTERZINK 22 - (2)
-грунтовка HEMPEL GALVOSIL 15700 - (3)
Энергопоглащающаяся "гармошка" , это энергопоглотитель пиковых
ускорений (ЭПУ), с помощью которого, поглощается взрывная,
ветровая, сейсмическая, вибрационная энергию. Фрикци-болт снижает
на 2-3 балла импульсные, растягивающие нагрузки при землетрясений
и от ударной воздушной взрывной волны.
140

141.

Фрикци –болт повышает надежность работы оборудования, сохраняет
каркас здания, мосты, ЛЭП, магистральные трубопроводы, за счет
упругопластичной работы, "гармошки" и создание платического
шарнира , работающие на маятниковое качение, на фрикци- ботах,
установленные в длинные овальных отверстиях, с контролируемым
натяжением с забитым медным обожженным смянаемым клином, в
пропиленный паз, латунной шпильки . ( ТКП 45-5.04-274-2012 (02250) п.
10.3.2 стр. 74 , Минск, 2013, СП 16.13330.2011,СНиП II-23-81* п. 14.315.2).
ob ispolzovanii opita yaponskoy firmi kawakinct.co.jp po primineniyu
mayatnikovikh seismoizoliruyuschikh opor prezident Shinkichi Suzuki 78 str
https://cloud.mail.ru/home/ob_ispolzovanii_opita_yaponskoy_firmi_%20kawak
inct.co.jp_%20po_primineniyu_mayatnikovikh_seismoizoliruyuschikh_opor_pr
ezident_Shinkichi_Suzuki_78_str.doc
https://cloud.mail.ru/home/ob_ispolzovanii_opita_yaponskoy_firmi_%20kawak
inct.co.jp_%20po_primineniyu_mayatnikovikh_seismoizoliruyuschikh_opor_pr
ezident_Shinkichi_Suzuki_78_str.docx
https://yadi.sk/i/Brdt_7u-3YyaV6 https://yadi.sk/i/Vr0fPFkx3YyaVB
Ссылка для скачивания файла: http://fayloobmennik.cloud/729385
Ссылка для скачивания файла: http://fayloobmennik.cloud/7293854
Ссылка для скачивания файла: http://fayloobmennik.cloud/7293855
ob_ispolzovanii_opita_yaponskoy_firmi_ kawakinct.co.jp_
po_primineniyu_mayatnikovikh_seismoizoliruyuschikh_opor_prezident_Shinki
chi_Suzuki_78_str.doc на сервис www.fayloobmennik.net!
Ссылка для скачивания файла: http://fayloobmennik.cloud/7293852
http://depositfiles.com/files/k3zmmm9ld
http://depositfiles.com/files/nfr4q6mk8 https://drive.google.com/drive/mydrive?ths=true
https://drive.google.com/file/d/1PFs8XsBE9LBRwZmqWUxg7U711bY8Y96r/vi
ew?ths=true
РОССИЙСКАЯ
ФЕДЕРАЦИЯ
(19)
RU
(11)
141

142.

ФЕДЕРАЛЬНАЯ СЛУЖБА
2018 129 421
(13)
ПО
ИНТЕЛЛЕКТУАЛЬНОЙ
СОБСТВЕННОСТИ
U
(12) ДЕЛОПРОИЗВОДСТВО ПО ЗАЯВКЕ НА ПОЛЕЗНУЮ МОДЕЛЬ
Состояние делопроизводства: Формальная экспертиза (последнее изменение статуса:
05.12.2018)
(21) Заявка: 2018129421
(30) Конвенционный приоритет:;
.. RU
Делопроизводство
Исходящая
корреспонденция
Письмо о
пошлине
04.12.2018
Письмо
произвольной
формы
04.12.2018
Письмо
произвольной
формы
02.11.2018
Запрос
формальной
экспертизы о
необходимости
уплаты
патентной
пошлине
29.08.2018
Уведомление о
поступлении
документов
заявки
Входящая корреспонденция
Платежный
документ
26.11.2018
Платежный
документ
10.08.2018
Платежный
документ
26.11.2018
Платежный
документ
10.08.2018
Платежный
документ
10.08.2018
Платежный
документ
10.08.2018
14.08.2018
142

143.

143

144.

144

145.

145

146.

146

147.

147

148.

148

149.

149

150.

150

151.

151

152.

152

153.

153

154.

154

155.

УТВЕРЖДАЮ
Генеральный директор
АО «НИЦ «Строительство»
_________________ А.В. Кузьмин
« »____________2016г
ПРОЕКТ ПЕРЕСМОТРЕННОГО СП 14.13330.2014
«СНИП II-7-81* СТРОИТЕЛЬСТВО В СЕЙСМИЧЕСКИХ РАЙОНАХ»
СВОДКА ОТВЕТОВ НА ЗАМЕЧАНИЯ И КОММЕНТАРИЕВ К ПРЕДЛОЖЕНИЯМ,
ПОСТУПИВШИМ В ПРОЦЕССЕ ОБЩЕСТВЕННОГО ОБСУЖДЕНИЯ ПЕРВОЙ РЕДАКЦИИ
ДОКУМЕНТА.
Москва 2016г.
155

156.

1.
П. 2.
Исключить п.2 Приложений к таблице 1,
стр. 11, поскольку он противоречит п.1
Параметры
грунта
и
категория
определяются средними значениями
30-метровой толщи.
Алешин
А.С. ИФЗ
РАН
Принципиально согласны, однако скорости
даны справочно, определяются они при
изысканиях не всегда, в случае отсутствия
материалов геофизических исследований,
применяется п. 2. На усмотрение РГ.
Принята
редакция
разработчика
2
Таблица 11.
Таблица 11, стр.60 осталась прежней, как в
нормах СНиП, 1982, хотя аналогичная
таблица 1 уже менялась 2 раза. В таблице
11, в частности, нет IV категории грунта с
разжижаемыми грунтами, нет
инструментально определяемых параметров
- сейсмической жесткости, скоростей
продольных и поперечных волн и т.д.
Алешин
А.С. ИФЗ
РАН
Принято. Следует принять решение о
изъятии из СП раздела 8 или его
корректировке.
Принято
решение
оставить в
неизменном
виде разделы
7 и 8.
Заменить
справочные
приложения В
и Г.
3
Таблица 12
Таблица 13
5
Приложение Г.
Алешин
А.С. ИФЗ
РАН
Алешин
А.С. ИФЗ
РАН
Алешин
А.С. ИФЗ
РАН
Беляев В.С
Белаш Т.А.
Уздин А.М.
Принято. Следует принять решение о
изъятии из СП раздела 8 или его
корректировке.
Принято. Следует принять решение о
изъятии из СП раздела 8 или его
корректировке.
Принято. Следует принять решение о
изъятии из СП Приложения Г или его
корректировке.
То же
4
Таблица 12. Введены промежуточные
категории грунта I - II, II - III, которые нигде
и никак не определены.
То же относится к таблице 13 и рис.3,
стр.67.
Заглавие Приложения Г* стр.116
неправильное, и его следует поменять.
6
1 Область применения
Настоящий
свод
правил
устанавливает требования по расчету
с учетом сейсмических нагрузок, по
объемно-планировочным решениям
и конструированию элементов и их
соединений, зданий и сооружений,
обеспечивающие
их
сейсмостойкость.
Настоящий
свод
правил
распространяется
на
область
проектирования
на
площадках
сейсмичностью 7, 8 и 9 баллов
1 Область применения
1.1
Настоящий
свод
правил
устанавливает требования по расчету с
учетом сейсмических нагрузок, по объемнопланировочным
решениям
и
конструированию
элементов
и
их
соединений,
зданий
и
сооружений,
обеспечивающие их сейсмостойкость.
1.2
Настоящий
свод
правил
распространяется
на
область
проектирования
на
площадках
сейсмичностью 7, 8 и 9 баллов зданий и
сооружений. На площадках, сейсмичность
156
Предлагается в редакции:
1 Область применения
1.1
Настоящий
свод
правил
устанавливает требования по расчету с
учетом
сейсмических
нагрузок,
по
объемно-планировочным
решениям
и
конструированию
элементов
и
их
соединений,
зданий
и
сооружений,
обеспечивающие их сейсмостойкость.
1.2
Настоящий
свод
правил
распространяется
на
область
То же
То же
Принята
редакция
разработчика

157.

зданий и сооружений.
На площадках, сейсмичность
которых
превышает
9 баллов,
возводить здания и сооружения, как
правило,
не
допускается.
Проектирование и строительство
здания или сооружения на таких
площадках
осуществляются
в
порядке,
установленном
уполномоченным
федеральным
органом исполнительной власти.
П р и м е ч а н и е – Разделы
4, 5 и 6 относятся к проектированию
жилых,
общественных,
производственных
зданий
и
сооружений,
раздел
7 распространяется на транспортные
сооружения,
раздел
8 на
гидротехнические
сооружения,
раздел 9 на все объекты, при
проектировании которых следует
предусматривать
меры
противопожарной защиты.
которых превышает 9 баллов, возводить
здания и сооружения, как правило, не
допускается.
Проектирование
и
строительство здания или сооружения на
таких площадках осуществляются
в
порядке, установленном уполномоченным
федеральным органом исполнительной
власти.
1.3 Антисейсмические мероприятия
для зданий и сооружений включают:
- специальные проектные требования при
разработке строительных конструкций,
оборудования, инженерных коммуникаций,
минимизирующие возможности отказа
(разрушения)
элементов
зданий
и
сооружений или их систем;
- выбор объемно-планировочного решения
зданий и сооружений для снижения
требуемой
расчетной
сейсмостойкости
конструкций и оборудования;
- инженерно-строительные мероприятия,
предусматривающие применение систем
сейсмоизоляции, систем динамического
демпфирования, динамических гасителей
колебаний для регулирования сейсмической
реакции конструкций;
- раскрепление оборудования, ограничение
деформации инженерных коммуникаций,
изменение свойств прилегающей грунтовой
среды для трансформации сейсмического
воздействия.
Целесообразность
использования
конкретных
мероприятий
или
их
комбинаций определяется на основе
технико-экономического анализа;
контроль
состояния
строительных
конструкций, оборудования и инженерных
коммуникаций.
П р и м е ч а н и е – Разделы 4, 5 и
6 относятся к проектированию жилых,
157
проектирования на площадках с расчетной
сейсмичностью 7, 8 и 9 баллов зданий и
сооружений.
Проектирование
и
строительство здания или сооружения на
площадках,
сейсмичность
которых
превышает 9 баллов осуществляются в
порядке, установленном уполномоченным
федеральным органом исполнительной
власти.
По п. 1.3. Не рекомендуем к
включению в СП. Пункт не содержит
требований в виде, возможном для
контроля
его
исполнения
в
установленном порядке.
П р и м е ч а н и е – Разделы 4, 5 и
6 относятся к проектированию жилых,
общественных, производственных зданий и
сооружений, раздел 7 распространяется на
транспортные сооружения, раздел 8 на
гидротехнические сооружения, раздел 9 на
все объекты, при проектировании которых
следует предусматривать меры
противопожарной защиты.

158.

7
новый
8
Новый
9
Новый
10
3.23 нелинейный временной
динамический
анализ
(нелинейный
динамический
анализ): Временной динамический
анализ, при котором учитывают
зависимость
механических
характеристик
материалов
общественных, производственных зданий и
сооружений, раздел 7 распространяется на
транспортные сооружения, раздел 8 на
гидротехнические сооружения, раздел 9 на
все объекты, при проектировании которых
следует
предусматривать
меры
противопожарной защиты.
3.5
активная
система
сейсмоизоляции:
Система,
осуществляющая антисейсмическую защиту
сооружений с помощью дополнительных
источников
энергии,
генерирующих
воздействия, уменьшающие эффекты от
сейсмических воздействий и базирующаяся
на компьютерном управлении процессом
колебаний сооружения при землетрясении.
3.20 коэффициент надежности по
ответственности
сооружений:
Коэффициент, учитывающий надежность
сооружений в зависимости от уровня
ответственности,
характеризуемой
социальными,
экологическими
и
экономическими последствиями.
3.21 коэффициент условий работы:
Коэффициент, используемый при
проектировании для снижения расчетных
усилий, полученных в результате линейного
анализа, с целью учета нелинейного
поведения сооружения, обусловленного
особенностями материала, конструктивной
системы и принятой методики
проектирования.
3.27 нелинейный
временной
динамический
анализ
(нелинейный
динамический
анализ):
Временной
динамический
анализ,
при
котором
учитывают
зависимость
механических
характеристик материалов сооружения и
грунтов основания от уровня напряжений и
158
Беляев В.С
Белаш Т.А.
Уздин А.М.
Предлагается принять
Принята
редакция
разработчика
Беляев В.С
Белаш Т.А.
Уздин А.М.
Не рекомендуется принять. Есть ФЗ-384 и
ГОСТ 27751-2014, определяющие данный
коэффициент.
Принята
редакция
разработчика
Беляев В.С
Белаш Т.А.
Уздин А.М.
Не рекомендуется принять. Есть ГОСТ
27751-2014, определяющий данный
коэффициент.
Принята
редакция
разработчика
Беляев В.С
Белаш Т.А.
Уздин А.М.
предлагаем принять предложенную
редакцию
Принята
редакция
разработчика

159.

характера динамического воздействий.
Также возможно учесть геометрическую и
конструктивную нелинейности в поведении
системы «сооружение–основание».
3.33 осциллятор:
Одномассовая
линейно-упругая динамическая система,
состоящая из массы, пружины и вязкого
демпфера.
3.28 ненесущий элемент: Архитектурный,
механический или электрический элемент,
система или конструкция, которые из-за
своей недостаточной прочности или из-за
способа соединения с сооружением не
рассматриваются при проектировании в
качестве элемента, воспринимающего
сейсмическую нагрузку.
Беляев В.С
Белаш Т.А.
Уздин А.М.
Не рекомендуем к корректировке, демпфер
м.б вязко-упругий, вязкий, упругопластический и т.д.
Принята
редакция
разработчика
12
сооружения и грунтов основания от
уровня напряжений и характера
динамического воздействий, а также
возможны
геометрическая
и
конструктивная нелинейность в
поведении
системы
«сооружение–основание».
3.27 осциллятор:
Одномассовая
линейно-упругая
динамическая система, состоящая из
массы, пружины и демпфера.
новый
Беляев В.С
Белаш Т.А.
Уздин А.М.
Принята
редакция
разработчика
13
Новый
3.31 нормированный спектр отклика:
Спектр отклика ускорений упругой
системы, максимальные амплитудные
составляющие которого поделены на
максимальную амплитуду данной
акселерограммы (нормированы по
максимальному значению).
Беляев В.С
Белаш Т.А.
Уздин А.М.
14
3.32 прямой динамический метод
расчета сейсмостойкости (ПДМ):
Метод численного интегрирования
уравнений движения, применяемый
для анализа вынужденных колебаний
конструкций при сейсмическом
воздействии, заданном
акселерограммами землетрясений.
3.41 прямой динамический метод расчета
сейсмостойкости (ПДМ): Метод
численного интегрирования уравнений
движения, применяемый для анализа
вынужденных колебаний конструкций при
сейсмическом воздействии, заданном
акселерограммами землетрясений. При
ПДМ матрицы жесткости и масс системы
используются в исходном виде, без
модальных преобразований.
Беляев В.С
Белаш Т.А.
Уздин А.М.
Рекомендуем принять следующую
редакцию:
3.28 ненесущий элемент: элемент сетей,
коммуникаций, ограждения, отделки,
система или конструкция, которые ввиду
своей недостаточной прочности или
способа соединения с несущим каркасом
здания или сооружения не рассматриваются
при проектировании в качестве элемента,
воспринимающего сейсмическую нагрузку.
Рекомендуем принять следующую
редакцию:
3.50 спектр отклика нормированный:
Спектр отклика упругой системы,
максимальные амплитудные составляющие
которого поделены на максимальную
амплитуду данной акселерограммы
(нормированы по максимальному
значению).
Рекомендуем принять предложенную
редакцию
11
159
Принята
редакция
разработчика
Принята
редакция
разработчика

160.

15
Новый
3.35 пассивная система сейсмоизоляции:
Система, параметры которой зависят
только от свойств образующих ее
сейсмоизолирующих элементов,
обеспечивающих снижение механической
энергии, передающейся конструктивной
системе при землетрясении, без
использования дополнительных
источников энергии.
3.38 полная сейсмоизоляция сооружения:
Часть здания считается полностью
сейсмоизолированной, если при
сейсмической расчетной ситуации она
работает в области упругих деформаций. В
противном случае, часть здания считается
частично сейсмоизолированной.
3.39 Предельное состояние по ограничению
ущерба: Состояние, связанное с
повреждениями конструкций, при котором
выполняется требование эксплуатационной
пригодности и/или сохранения окружающей
среды.
Беляев В.С
Белаш Т.А.
Уздин А.М.
Рекомендуем принять предложенную
редакцию
Принята
редакция
разработчика
16
Новый
Беляев В.С
Белаш Т.А.
Уздин А.М.
Рекомендуем принять предложенную
редакцию
Принята
редакция
разработчика
17
Новый
Беляев В.С
Белаш Т.А.
Уздин А.М.
Принята
редакция
разработчика
Новый
3.48 сейсмическая изоляция: Изоляция
сооружений от сейсмических колебаний
грунта.
Беляев В.С
Белаш Т.А.
Уздин А.М.
19
Новый
3.49 сейсмически изолированное
сооружение: Сооружение, оснащенное
системой сейсмоизоляции.
Беляев В.С
Белаш Т.А.
Уздин А.М.
20
3.49 спектр отклика
однокомпонентной
акселерограммы: Функция,
связывающая между собой
максимальное по модулю ускорение
3.62 спектр отклика однокомпонентной
акселерограммы: Функция, связывающая
между собой максимальное по модулю
ускорение осциллятора и соответствующий
этому ускорению период (либо частоту)
Беляев В.С
Белаш Т.А.
Уздин А.М.
Рекомендуем принять следующую
редакцию
3.39 Предельное состояние по ограничению
ущерба: Состояние сейсмоизолированного
здания или сооружения, при котором
выполняется требование эксплуатационной
пригодности и/или сохранения
окружающей среды.
Предлагаемая редакция
3.48 сейсмическая изоляция: Изменение
сейсмической реакции здания или
сооружения от сейсмических колебаний
грунта достигаемое за счет снижения их
взаимодействия и повышения затухания
колебаний изолированного сооружения.
Не рекомендуем к принятию, сооружение с
системой СИ в части здания, с системой СИ
в верхних уровнях не является сейсмически
изолированным зданием.
Предлагаемая редакция 3.62 спектр
отклика однокомпонентной
акселерограммы: Функция, связывающая
между собой максимальное по модулю
ускорение осциллятора и соответствующий
18
160
Принята
редакция
разработчика
Принята
редакция
разработчика
Принята
редакция
разработчика

161.

одномассового линейного
осциллятора и соответствующий
этому ускорению период (либо
частоту) собственных колебаний
того же осциллятора, основание
которого движется по закону,
определенному данной
акселерограммой.
собственных колебаний того же
осциллятора, основание которого движется
по закону, определенному данной
акселерограммой. Кроме периода (частоты)
спектр отклика зависит также от
демпфирования осциллятора.
161
этому ускорению период (либо частоту)
собственных колебаний того же
осциллятора, основание которого движется
по закону, определенному данной
акселерограммой. Зависит также от
величины затухания осциллятора.

162.

6.17 Здания и сооружения с сейсмоизоляцией
6.17.1 При проектировании сооружений с системой сейсмоизоляции следует
обеспечить:
- снижение сейсмических воздействий на сейсмоизолированную часть сооружения, в
том числе его расчетную сейсмичность при ограничении взаимных перемещений
сейсмоизолированной и несейсмоизолированной частей сооружения;
- восприятие расчетных вертикальных нагрузок при высокой горизонтальной
податливости и контролируемой вертикальной жесткости сейсмоизолирующего слоя;
- непрерывность конструктивной системы сейсмоизолированной части сооружения по
высоте;
- необходимое вязкое и/или гистерезисное затухание энергии;
- необходимый уровень первых собственных
частот
(периодов) сооружения
относительно частотного состава исходного сейсмического воздействия;
- ограничение горизонтальных перемещений, возникающих в процессе эксплуатации
сооружений при несейсмических воздействиях (например, ветровых);
- возвращение
сейсмоизолированной части сооружения в исходное положение
устойчивого равновесия за счет постоянно действующей восстанавливающей силы после
прекращения действия сейсмических сил с возможностью восприятия возможных
афтершоков;
- наличие экспериментально подтвержденных характеристик жесткости и демпфирования,
полученных на натурных образцах элементов системы сейсмоизоляции;
- удобство монтажа, замены изолирующих элементов и возможность центрирования
сейсмоизолированной части сооружения в пространстве;
- стабильность жесткостных и демпфирующих свойств при длительной эксплуатации и
повторных циклических нагружениях при заданных проектом уровнях и колебаниях
температуры и влажности;
- защиту системы в случае пожара и других, предусмотренных проектом, природных и
техногенных воздействиях.
П р и м е ч а н и е — Свойства сейсмоизолирующих элементов в процессе эксплуатации и
повторных циклических нагружениях могут изменяться и находиться в диапазоне заранее
определенных допускаемых значений, заданном в проектной документации.
6.17.2 В проектируемых сооружениях допускается применять пассивные системы
сейсмоизоляции одного или нескольких типов, в том числе сейсмоизолирующие устройства,
представленные в Приложении Д.
6.17.3 Повышенная надежность сейсмоизолирующих устройств обеспечивается путем
умножения:
а) расчетных
горизонтальных
сейсмических
перемещений
каждого
сейсмоизолирующего элемента на коэффициент надежности по прочности γх = 1,2;
б) расчетных вертикальных сейсмических сил в каждом сейсмоизолирующем
элементе от гравитационных и сейсмических воздействий на коэффициент надежности по
прочности γz = 1,3.
6.17.4 Между сейсмоизолированной частью сооружения и окружающим грунтом или
сооружениями, следует предусматривать зазоры, достаточные для перемещений
сейсмоизолированной части во всех направлениях при расчетных сейсмических
воздействиях наряду с другими необходимыми мероприятиями, обеспечивающими
возможность размещения, осмотра, технического обслуживания, центрирования и замены
сейсмоизолирующих устройств в течение срока службы сооружения.
6.17.5 Сейсмоизолирующие устройства должны быть надежно закреплены к
конструкциям сейсмоизолированной и несейсмоизолированной частей сооружения.
6.17.6 Для минимизации разного поведения сейсмоизолирующих устройств и более
равномерного распределения нагрузок на сейсмоизолированную и несейсмоизолированную
части сооружения сжимающие напряжения, вызываемые в них постоянной нагрузкой,
162

163.

должны быть как можно более близкими.
6.17.7 Система сейсмоизоляции должна быть запроектирована так, чтобы возможные
чрезмерные смещения
и
крутильные колебания ограничивались конструктивными
мероприятиями. Для этого следует использовать соответствующие устройства (упоры,
сейсмогасители, демпферы, амортизаторы и т.п.).
6.17.8 Сейсмоизолирующие устройства должны быть защищены от потенциально
возможных воздействий, таких как резкий перепад температур и влажности при
эксплуатации, пожар, обводнение, химическое или биологическое воздействие в случае
необходимости (ГОСТ 2.13130).
6.17.9 Фундаменты сооружений должны быть спроектированы в соответствии с
требованиями норм на проектирование оснований и фундаментов (СП 22.13330,
СП 24.13330).
6.17.10 Фундаменты под сейсмическими изоляторами могут быть ленточными,
отдельно стоящими столбчатыми, плитными, сваями с ростверком и т.п. Отдельно стоящие
столбчатые фундаменты должны быть соединены между собой жесткими связями. Не
следует использовать разные типы фундаментов в одном сооружении.
6.17.11 Конструктивные элементы, расположенные выше и ниже сейсмоизолирующего
слоя, должны быть жесткими в горизонтальном и вертикальном направлениях для того,
чтобы минимизировать влияние точечного приложение нагрузки от сейсмоизолирующих
устройств и влияние неравномерных сейсмических колебаний грунта.
6.17.12 Сооружение должно проектироваться с учетом положений пп.6.1-6.16
настоящего СП, при этом сейсмоизолированная часть сооружения должна проектироваться
при пониженном системой сейсмоизоляции сейсмическом воздействии.
6.17.13 При МРЗ расчет и конструирование сооружения должно обеспечить
устойчивость его сейсмоизолированной части против опрокидывания и неконтролируемого
скольжения.
6.17.13.1 Необходимо выполнить расчет элементов фундамента и грунтового основания
на усилия, возникающие в результате реакции надземной части сооружения, с анализом
допускаемых остаточных деформаций. При определении реакции необходимо учесть
фактическое сопротивление, которое может развить передающий воздействие элемент
конструкции.
6.17.13.2 Поведение ненесущих элементов не должно представлять опасность для
людей и оказывать отрицательное влияние на реакцию несущих элементов сооружения.
6.17.13.3 Усилия в сейсмоизолирующих устройствах могут быть равными или ниже
расчетной предельной несущей способности, в то время как сейсмоизолированная и
несейсмоизолированная части сооружения должны оставаться в области упругих
деформаций.
Для зданий нормального уровня ответственности допускается проектировать
сейсмоизолированную часть сооружения с коэффициентом условий работы К1 не менее 0,7,
учитывающим возможность развития неупругих деформаций в конструкциях сооружения.
6.17.13.4 Предельная несущая способность по показателям проектной документации не
должна быть превышена при соответствующих коэффициентах надежности по прочности в
6.17.3.
6.17.13.5 Газопроводы, распределительные системы и другие коммуникации,
пересекающие стыки между надземной частью и окружающим грунтом или сооружениями,
должны
рассчитываться
на
безопасное
относительное
перемещение
между
сейсмоизолированной частью сооружения и окружающим грунтом или сооружениями с
учетом коэффициента γх в 6.17.3.
6.17.14 При ПЗ конструктивная система должна бать проверена расчетом, чтобы
гарантировать прочность и жесткость, достаточные для сохранения функций объектов.
Величина коэффициента условий работы должна приниматься равной К1 = 1.
6.17.14.1 Междуэтажные перекосы по вертикали должны быть ограничены в
163

164.

сейсмоизолированной и не сейсмоизолированной частях сооружения.
6.17.14.2 Если производится линейный расчет, средние горизонтальные перемещения
dei в верхней и нижней частей данного этажа, получаемые в результате действия расчетной
сейсмической силы, необходимо вычислять на основе упругого деформирования
конструктивной системы и расчетного спектра отклика ускорений.
6.17.14.3 При определении перемещений dei необходимо учитывать эффекты кручения
при сейсмическом воздействии.
6.17.14.4 Необходимо соблюдать следующие ограничения междуэтажного перекоса по
вертикали:
a)
сооружения с ненесущими элементами из хрупких материалов, имеющих
соединения с несущими конструкциями:
d
r 0,005h
K1
(11)
б)
сооружения, имеющие пластически деформируемые ненесущие элементы,
соединенные с несущими конструкциями:
d
r 0,0075h
K1
(12)
в)
сооружения, имеющие ненесущие элементы, не влияющие на деформации
несущих конструкций, или без ненесущих элементов:
d
r 0,01h
K1
(13)
где
dr – расчетный междуэтажный перекос, определяемый как разница средних
горизонтальных перемещений dei в верхней и нижней частей данного этажа;
h – высота этажа;
K1 – коэффициент, принимаемый согласно примечанию к таблице 1.
6.17.14.5 Для статических и динамических нелинейных расчетов на сейсмические
воздействия принимаются перемещения, полученные непосредственно на основе
выполненных расчетов.
6.17.14.6 Все жизненно важные коммуникации, пересекающие швы в пределах
сейсмически изолированного сооружения должны оставаться в области упругого
деформирования, а соединения и распределительные системы, связывающие
сейсмоизолированную и несейсмоизолированную части сооружения, должны сохранять свою
целостность.
6.17.15 С целью обеспечения максимально высокого рассеивания энергии колебаний
необходимо исключить хрупкое разрушение элементов либо преждевременное
формирование неустойчивых механизмов. С этой целью необходимо применить процедуру
проектирования по несущей способности, которая используется для получения иерархии
сопротивлений различных элементов сооружения и последовательности разрушения,
необходимых для обеспечения оптимального пластического механизма и минимизации
условий для хрупкого разрушения.
6.17.16 Как правило, сооружение должно иметь простые архитектурно-планировочные
решения в плане и по высоте. Указанные требования реализуются при разделении
сооружения антисейсмическими швами на динамически независимые блоки.
Не запрещено проектирование сейсмоизолированных сооружений со сложной
планировкой.
6.17.17 Сооружения с сейсмоизоляцией следует характеризовать как сооружения
регулярного или нерегулярного типа на основе конфигурации конструкций над
сейсмоизолирующим слоем.
П р и м е ч а н и е — Для сооружений, состоящих из более, чем одного динамически
независимого блока, классификация и соответствующие признаки относятся к одному
164

165.

отдельному динамически независимому блоку. Под «отдельным динамическим независимым
блоком» подразумевается «сооружение».
6.17.18 Сейсмоизолированная часть должна быть симметрична в плане с равномерно
распределенными жесткостями и массами в двух ортогональных направлениях.
6.17.18.1 Конфигурация плана должна быть компактной, т.е., каждое перекрытие
должно быть разграничено многоугольной выпуклой линией. Если имеются выступы в плане
перекрытия (входящие углы или разрывы по периметру), то регулярность в плане следует
считать удовлетворительной при условии, что эти нерегулярности не оказывают влияние на
жесткость перекрытия в плане и что разница в площадях, полученных с учетом каждой
нерегулярности фактического очертания перекрытия и выпуклой многоугольной линией,
окружающей площадь перекрытия, не превышает 5 %.
6.17.18.2 Жесткость перекрытий в плане должна быть большой в сравнении с
поперечной жесткостью вертикальных несущих элементов сооружения, поскольку
деформации перекрытий не должны влиять на распределение сил между вертикальными
несущими элементами. Особое внимание должно быть уделено сооружениям, имеющим в
плане Г, C, H, I и X-образные формы. Жесткость конструкций по контуру сооружения
должна быть сопоставима с жесткостью конструкций центральной части.
6.17.18.3 Вытянутость сооружения в плане λ = Lmax/Lmin должна быть не более 4, где Lmax
и Lmin соответственно больший и меньший размеры сооружения в плане, измеренные в
ортогональных направлениях.
6.17.18.4 При расчете сооружения эксцентриситет и радиус кручения на каждом уровне
и для каждого из направлений Х и У должны соответствовать двум условиям (выражения
приведены для расчета по оси у):
eox ≤ 0,30rx,
(14)
rx ≥ ls,
(15)
где
eox – расстояние между центром масс и центром жесткостей по оси Х, нормальное к
анализируемому направлению;
rx - квадратный корень из отношения значений крутильной жесткости к горизонтальной
жесткости в направлении оси У (радиус кручения);
ls - радиус вращения массы перекрытия в плане (корень квадратный отношения
полярного момента инерции массы перекрытия в плане относительно центра масс
перекрытия к массе перекрытия).
В одноэтажном сооружении центр жесткости определяется как центр жесткости всех
основных элементов, воспринимающих сейсмическое воздействие. Радиус кручения r
определяется как корень квадратный отношения общей жесткости при кручении
относительно центра горизонтальной жесткости к общей горизонтальной жесткости по
одному из направлений, принимая во внимание все основные элементы, воспринимающие
сейсмическое воздействие в этом направлении.
В многоэтажном сооружении возможно только приблизительно определить центр
жесткости и радиус кручения. Упрощенное определение этих понятий для классификации
регулярности сооружения в плане и приближенного анализа крутильных эффектов в частных
случаях определяется, если выполняются следующие два условия:
а)
все несущие элементы, такие как диафрагмы, стены, рамы (каркасы),
воспринимающие горизонтальную нагрузку непрерывны по всей высоте сооружения от
фундамента до крыши;
б)
формы деформирования отдельных систем при горизонтальных нагрузках
отличаются незначительно. Это условие выполняется в случае каркасных или стеновых
систем. Для каркасно-стеновых систем это условие в общем случае не выполняется.
В каркасных и стеновых системах, в которых преобладают изгибные деформации,
положение центров жесткостей и радиусов кручения всех этажей сооружения следует
вычислять так же, как и положения моментов инерции горизонтальных сечений
165

166.

вертикальных элементов. Если наравне с изгибными деформациями возникают
существенные деформации сдвига, то их следует учесть с помощью эквивалентного момента
инерции поперечного сечения.
6.17.19 Несущие элементы, такие как ядра жесткости, стеновые системы или рамы,
воспринимающие горизонтальную нагрузку, должны быть непрерывными по всей высоте
сооружения от фундамента до покрытия.
6.17.19.1 Поперечную жесткость и массы отдельных этажей допускается изменять
постепенно, без резких изменений по высоте сооружения.
6.17.19.2 В каркасных зданиях отношение фактической несущей способности одного
этажа к требуемой несущей способности, полученной расчетным путем, не должно меняться
между соседними этажами.
6.17.19.3 При наличии выступов необходимо выполнить следующие дополнительные
условия:
a)
при выступах, расположенных симметрично относительно оси, выступ на
любом этаже не должен превышать 20% предыдущего размера в плане в направлении
выступа (рисунки 2,а и 2,б);
б)
для отдельных выступов при высоте менее 15 % от общей высоты основной
конструктивной системы выступ должен быть не больше 50 % основного размера в плане
(рисунок 2,в). В этом случае, конструкция зоны основания в пределах периметра в
вертикальной проекции верхних этажей должна быть запроектирована в расчете на
восприятие не менее 75 % горизонтальной силы, которая может возникнуть в этой зоне в
подобном сооружении без увеличения основания;
в)
если выступы на каждом фасаде расположены несимметрично, то сумма
поверхности выступов на всех этажах должна быть не больше 30 % размера в плане на
первом этаже над фундаментом или над верхней частью жесткого основания, а отдельные
выступы не должны превышать 10 % предыдущего размера в плане (рисунок 2,г).
Рисунок 2 - Критерии регулярности по высоте
6.17.20 Ненесущие конструкции (выступающие части) сооружений (например,
парапеты, фронтоны, антенны, механическое оборудование, перегородки, перемычки,
балюстрада), которые в случае обрушения могут представлять риск для людей или оказать
влияние на основные конструкции сооружения или функционирование опасных сооружений,
166

167.

должны проверяться вместе с их опиранием на восприятие расчетного сейсмического
воздействия.
П р и м е ч а н и е – Необходимо учитывать местную передачу воздействий и их
влияние на поведение сооружения, закрепляя ненесущие элементы.
6.17.20.1 Для ненесущих конструкций с высокой степенью ответственности или для
особо ответственных элементов сейсмический анализ должен основываться на реальной
модели соответствующих сооружений и на использовании соответствующих спектров
реакции, которые получены, используя реакции несущих конструктивных элементов
основной системы, воспринимающей сейсмическое воздействие.
6.17.20.2 Во всех остальных случаях разрешается использовать упрощенные
процедуры, соответствующим образом обоснованные.
6.17.20.3 Коэффициент надежности по материалу для ненесущих элементов во всех
случаях может быть принят равным 1,0.
6.17.21 Коммуникации между сейсмоизолированной и несейсмоизолированной частями
сооружения не должны препятствовать относительным перемещениям этих частей.
Следует убедиться, что податливость таких коммуникаций достаточно велика по
сравнению с податливостью системы сейсмоизоляции и что суммарная реакция
коммуникаций не будет вносить заметных возмущений в движение сейсмоизолированной
части здания.
При необходимости в коммуникации следует включать гибкие соединения и
компенсаторы в уровне сейсмоизолирующего слоя.
6.17.22 Устройства сопротивления ветровой нагрузке, установленные в
сейсмоизолирующем слое, должны быть расположены по периметру здания симметрично и
равномерно.
6.17.23 Степень огнестойкости системы сейсмоизоляции должна соответствовать
требованиям норм по пожарной безопасности зданий – ГОСТ 30247.0, ГОСТ 30403,
ГОСТ Р 53292, ГОСТ Р 53295, СП 2.13130.
6.17.24 Для сооружений с сейсмоизоляцией должна быть разработана инструкция для
периодического мониторинга, контроля и эксплуатации системы сейсмоизоляции, которая
должна храниться.
Приложение Д
(справочное)
Сейсмоизолирующие элементы
Д.1 Общие положения
Д.1.1 Способность сейсмоизолирующих систем снижать и ограничивать реакцию
сооружений на сейсмические воздействия зависит от свойств сейсмоизолирующих
элементов, образующих эти системы.
Д.1.2 В приложении рассматриваются только апробированные системы
сейсмоизоляции, получившие признание в мировой практике сейсмостойкого строительства.
Д.1.3 Наиболее широкое распространение в мировой практике сейсмостойкого
строительства получили системы сейсмоизоляции, образованные сейсмоизолирующими
элементами в виде:
а)
эластомерных опор;
б)
эластомерных опор со свинцовыми сердечниками;
в)
опор фрикционно-подвижного типа с плоскими горизонтальными
поверхностями скольжения;
г) кинематических систем с качающимися опорами (как правило, из железобетона).
д)
опор фрикционно-подвижного типа со сферическими поверхностями
скольжения;
167

168.

е) трехкомпонентная пружинно-демпферная система (ТПДС), состоящая из упругих
витых пружин и параллельно установленных многокомпонентных (3D) вязкоупругих
демпферов (ВД).
Д.1.4 Сейсмоизолирующие опоры, указанные в:
а) Д.1.3,а, Д.1.3,б, и Д.1.3,г применяются в сейсмоизолирующих системах первого типа:
системы сейсмоизоляции, уменьшающие величины горизонтальных сейсмических нагрузок
на сейсмоизолированную часть здания за счет изменения частотного спектра ее собственных
колебаний – увеличения периодов колебаний сейсмоизолированной части сооружения по
основному тону;
б) Д.1.3,в и Д.1.3,д применяются в сейсмоизолирующих системах второго типа:
системы сейсмоизоляции, ограничивающие уровень горизонтальных сейсмических нагрузок,
действующих на сейсмоизолированную часть здания;
в) Д.1.3,в применяются в сейсмоизолирующих системах третьего типа: системы
сейсмоизоляции, сочетающие способность изменять частотный спектр собственных
колебаний сейсмоизолированной части сооружения со способностью ограничивать уровень
горизонтальных сейсмических нагрузок, воздействующих на сейсмоизолированную часть
сооружения.
г) Д.1.3,е) применяются в сейсмоизолирующих системах четвертого типа: системы
сейсмоизоляции, сочетающие способность изменять частотный состав собственных
колебаний сейсмоизолированной части сооружения со способностью ограничивать уровень
как горизонтальных, так и вертикальных сейсмических нагрузок, воздействующих на
сейсмоизолированную часть сооружения.
Д.1.5 Определенное распространение в практике сейсмостойкого строительства
получили комбинированные системы сейсмоизоляции, сочетающие сейсмоизолирующие
элементы разных типов (например, указанные в Д.1.3,а и Д.1.3,в или в Д.1.3,в и Д.1.3,д).
Д.2 Эластомерные опоры
Д.2.1 Эластомерные опоры, применяемые для защиты сооружений от сейсмических
воздействий, представляют собой слоистые конструкции из поочередно уложенных друг на
друга листов натуральной или искусственной резины толщиной 5-20 мм, и листов металла
толщиной 1,5-5,0 мм. Сверху и снизу устанавливают фланцевые пластины толщиной 20-40
мм. Листы резины и металла соединены между собой путем вулканизации или с помощью
специальных связующих материалов. По торцам эластомерных опор предусмотрены
опорные стальные пластины, через которые опоры крепятся к конструкциям
несейсмоизолированных и сейсмоизолированных частей сооружения сооружения.
Д.2.2 Общий вид одного из возможных вариантов конструктивных решений
эластомерных опор (иначе их называют резинометаллическими) показан на
рисунке Д.1.
1 – опорные пластины, закрепляемые к несейсмоизолированной и и сейсмоизолированной
частям сооружения; 2 – листы резины; 3 – стальные пластины, расположенные между
листами резины;
4 – резиновая оболочка, защищающая внутренние слои резины и металла;
168

169.

5 – отверстия под анкерные болты, необходимые для закрепления опоры к
несейсмоизолированной и сейсмоизолированной частям сооружения
Рисунок Д.1 – Эластомерная сейсмоизолирующая опора
Д.2.3 Физико-механические свойства резины и металла, а также толщины и размеры в
плане листов, выполненных из этих материалов, принимаются в зависимости от требований,
предъявляемых к эластомерным опорам в части: диссипативных свойств, прочности,
вертикальной и горизонтальной жесткости, долговечности и ряда других эксплуатационных
показателей.
Д.2.4 Стальные листы в эластомерных опорах препятствуют выпучиванию резиновых
листов при действии вертикальных нагрузок и обеспечивают вертикальную жесткость и
прочность опор. Резиновые листы, обладающие низкой сдвиговой жесткостью, обеспечивают
горизонтальную податливость эластомерных опор.
Д.2.5 Эластомерные опоры, благодаря их низкой сдвиговой жесткости, изменяют
частотный спектр собственных горизонтальных колебаний сейсмоизолированной части
сооружения, а восстанавливающие силы, возникающие при деформациях опор, стремятся
возвратить сейсмоизолированную часть сооружения в исходное положение.
Примечания
1 Эластомерные опоры могут воспринимать усилия сжатия, растяжения,
сдвига и кручения при циклических перемещениях в горизонтальном и
вертикальном направлениях.
2 При расчетных гравитационных нагрузках вертикальные деформации
эластомерных опор, как правило, не превышают нескольких миллиметров. При
горизонтальных нагрузках опоры могут деформироваться на несколько сот
миллиметров (рисунок Д.2).
Д.2.6 Эластомерные опоры, в зависимости от своих диссипативных свойств,
подразделяются на два вида:
– опоры с низкой способностью к диссипации энергии;
– опоры с высокой способностью к диссипации энергии.
Рисунок Д.2 – Деформации эластомерных опор при вертикальных и горизонтальных
нагрузках
Д.2.7 Эластомерными опорами с низкой способностью к диссипации энергии являются
опоры, диссипативные свойства которых характеризуются коэффициентом вязкого
демпфирования ξ, значения которого не превышают 5 % от критического значения.
Д.2.8 Производят эластомерные опоры с низкой способностью к диссипации энергии из
пластин натуральной или искусственной резины, изготовленной по технологиям, не
предусматривающим повышения ее демпфирующих свойств.
П р и м е ч а н и е -- Значения коэффициента ξ, характеризующего
диссипативные свойства эластомерных опор с низкой способностью к
диссипации энергии, зависят от сил внутреннего трения, возникающих в
деформирующихся опорах и, как правило, составляют 2-3 %.
169

170.

Д.2.9 Эластомерные опоры с низкой способностью к диссипации энергии просты в
изготовлении, малочувствительны к скоростям и истории нагружения, а также к температуре
и старению. Для них типично линейное поведение при деформациях сдвига до 100 % и более.
Д.2.10 Эластомерные опоры с низкой способностью к диссипации энергии применяют,
как правило, совместно со специальными демпферами вязкого или гистерезисного типа
(рисунок А.3), позволяющими компенсировать низкую способность эластомерных опор к
диссипации энергии сейсмических колебаний.
1 – эластомерная сейсмоизолирующая опора; 2 – демпфер; 3 – несейсмоизолированная часть
сооружения;
4 – сейсмоизолированная часть сооружения
Рисунок А.3 – Фрагмент сейсмоизолирующей системы, состоящей из эластомерной опоры с
низкой способностью к диссипации энергии и демпфера
Д.2.11 Эластомерными опорами с высокой способностью к диссипации энергии
являются опоры, диссипативные свойства которых характеризуются коэффициентом вязкого
демпфирования ξ со значениями не менее 10 % и не более 20 %.
П р и м е ч а н и е -- Диссипативные свойства таких опор зависят в
основном от гистерезисных процессов в резине (затрат энергии на ее
пластические и нелинейно-упругие деформации) и, как правило,
характеризуются значениями ξ в пределах 10-20 %.
Д.2.12 Эластомерные опоры с высокой способностью к диссипации энергии состоят из
пластин резины, изготовленной по специальным технологиям, обеспечивающим повышение
ее демпфирующих свойств до требуемого уровня.
Д.2.13 Эластомерные опоры с высокой способностью к диссипации энергии обладают
способностью к горизонтальным сдвиговым деформациям до 200-350 %. Их
эксплуатационные, жесткостные, диссипативные характеристики зависят от скоростей и
истории нагружения, температуры окружающей среды и старения.
Д.2.14 Для эластомерных опор с высокой способностью к диссипации энергии типично
нелинейное поведение.
Д.3 Эластомерные опоры со свинцовыми сердечниками
Д.3.1 Эластомерные опоры со свинцовыми сердечниками, как правило, изготавливают
из пластин резины, обладающей низкими диссипативными свойствами. Свинцовый
сердечник располагают в заранее сформированных отверстиях в центре или по периметру
опоры и имеет суммарный диаметр от 15 % до 33 % от внешнего диаметра опоры.
Общий вид одного из возможных вариантов конструктивных решений эластомерных
опор со свинцовыми сердечниками показан на рисунке А.4.
Д.3.2 Благодаря комбинации резиновых и металлических слоев в опоре со свинцовыми
сердечниками, обеспечивающими гистерезисную диссипацию энергии при горизонтальных
деформациях, они обладают:
– высокой вертикальной жесткостью при эксплуатационных нагрузках;
– высокой горизонтальной жесткостью при действии горизонтальных нагрузок низкого
уровня;
– низкой горизонтальной жесткостью при действии горизонтальных нагрузок высокого
уровня;
170

171.

– высокой способностью к диссипации энергии.
1 – опорные пластины, закрепляемые к несейсмоизолированной и и сейсмоизолированной
частям сооружения;
2 – фланцевые стальные пластины; 3 – стальные пластины, расположенные между
пластинами резины; 4 – пластины резины; 5 – резиновая оболочка, защищающая
внутренние слои резины и металла; 6 – отверстия под анкерные болты, необходимые для
закрепления опоры к несейсмоизолированной и и сейсмоизолированной частям сооружения;
7 – отверстия под шпонки;
8 – свинцовый сердечник
Рисунок А.4 – Эластомерная опора со свинцовым сердечником
Д.3.3 Диссипативные свойства эластомерных опор со свинцовыми сердечниками
зависят от величин их горизонтальных сдвиговых деформаций и характеризуются
коэффициентом эффективного вязкого демпфирования ξ в пределах от 15 до 35 %.
Д.3.4 Эластомерные опоры со свинцовыми сердечниками способны иметь
горизонтальные сдвиговые деформации величиной до 400 %. При этом их параметры менее
чувствительны к величинам вертикальных нагрузок, скоростям и истории нагружения,
температуре окружающей среды и старению, чем параметры опор в Д.2.
Д.3.5 При низких уровнях горизонтальных воздействий (например, при ветровых или
слабых сейсмических воздействиях) эластомерные опоры со свинцовыми сердечниками
работают в горизонтальных и вертикальном направлениях как жесткие элементы, а при
высоких уровнях горизонтальных воздействий – как элементы податливые в горизонтальных
направлениях и жесткие в вертикальном.
Д.3.6 Перечисленные выше свойства делают эластомерные опоры со свинцовыми
сердечниками часто применяемым типом сейсмоизолирующих элементов в зонах с высокой
в горизональном направлении сейсмичностью.
Д.4 Опоры фрикционно-подвижного типа с плоскими горизонтальными
поверхностями скольжения
Д.4.1 Сейсмоизолирующие опоры фрикционно-подвижного типа с плоскими
горизонтальными поверхностями скольжения (или плоские скользящие опоры) выполняются
в виде верхних и нижних жестких элементов, примыкающие горизонтальные поверхности
которых имеют покрытия из слоя синтетического материала с низким значением
коэффициента трения скольжения (например, фторопласта или металлофторопласта в паре с
нержавеющей сталью).
Общий вид двух вариантов конструктивных решений плоских скользящих опор показан
на рисунке Д.5.
171

172.

1 – опорные стальные пластины, закрепляемые к несейсмоизолированной и и
сейсмоизолированной частям сооружения;
2 – пластины резины; 3 – внутренние стальные пластины; 4 – покрытие (например, из
фторопласта) нижней части скользящей опоры; 5 – стальная пластина (например, из
нержавеющей стали), по которой происходит скольжение; 6 – отверстия под анкерные
болты, необходимые для закрепления опоры к несейсмоизолированной и и
сейсмоизолированной частям сооружения
Рисунок Д.5 – Плоские скользящие опоры
Д.4.2 Плоские скользящие опоры имеют довольно низкий порог срабатывания и
обеспечивают намного бóльшее рассеивание энергии, чем эластомерные опоры со
свинцовым
сердечником
(ξ=63,7 %). Однако,
из-за
отсутствия
в
опорах
восстанавливающих сил, при интенсивных сейсмических воздействиях сейсмоизолированная
часть сооружения может иметь допускаемые односторонние перемещения в пределах
нижней опорной пластины после прекращения действия сейсмических нагрузок. Эти
перемещения не влияют на напряженно деформированное состояние сейсмоизолированной
части сооружения и субструктуры.
Д.4.3 Для ограничения чрезмерных односторонних горизонтальных перемещений
сейсмоизолированной части сооружения относительно субструктуры в сейсмоизолирующую
систему, образованную плоскими скользящими опорами, как правило, вводятся
дополнительные упругие элементы-ограничители (амортизаторы).
П р и м е ч а н и е – Величины допускаемых перемещений должны
устанавливаться на основе дополнительного анализа.
Д.4.4 В качестве альтернативных вариантов, обеспечивающих ограничение чрезмерных
односторонних горизонтальных перемещений сейсмоизолированной части сооружения
относительно субструктуры, рекомендуется:
– предусматривать в скользящих поясах конструктивные элементы, обеспечивающие
возможность использования соответствующего силового оборудования, возвращающего
плоские опоры скольжения в исходное положение после прекращения сейсмического
воздействия;
– в состав «скользящих поясов» включать дополнительные сейсмоизолирующие
элементы, способные ограничивать величины перемещений и возвращать плоские опоры
скольжения в исходное положение (рисунок Д.6).
1 – плоская скользящая опора; 2 – эластомерная опора; 3 – нижняя стальная пластина
(например, из нержавеющей стали), по которой происходит скольжение;
4 – пластины из резины; 5 – стальные пластины; 6 - слой из фторопласта
172

173.

Рисунок Д.6 – Фрагмент сейсмоизолирующей системы, образованной плоскими скользящими
опорами и эластомерными опорами
Д.5 Кинематические системы с качающимися опорами
Д.5.1 Качающиеся опоры, применяемые для защиты сооружений от горизонтальных
сейсмических воздействий, представляют собой подвижные стойки, выполненные из
железобетона
и
расположенные
в
зазоре
между
сейсмоизолированной
и
несейсмоизолированной частями сооружения. Опоры имеют сферические торцы, на верхней
и нижней частях каждой опоры (Рис. Д.7.а), либо только на нижней части при закреплении
верхней части опоры с помощью шарнирной связи к конструкциям сейсмоизолированной
части сооружения (Рис. Д.7.б). Шарнирная связь обеспечивает подвижность в
горизонтальной плоскости по всем направлениям.
а) 1 – фундаментная плита; 2 – опорная плита; 3 – опоры в форме стоек со
сферическими торцами;
б) 1 – фундаментная плита; 2 – сферическая опора; 3 – стойка; 4 – шарнирное крепление.
Рисунок Д.7 – Кинематические системы с качающимися опорами
Д.5.2. Кинематические системы с качающимися опорами относятся к гравитационному
типу, в котором горизонтальное сейсмическое воздействие уравновешивается суммой
моментов от веса сейсмоизолированной части сооружения. Значения опрокидывающего и
удерживающего моментов зависят от геометрических параметров, а также от величины
реактивных моментов, связанных с локальными деформациями в областях контакта и теле
опор.
Д.5.3 Геометрические параметры опор при проектировании определяются величиной
передаваемой на кинематическую систему вертикальной нагрузки, прочности используемого
при изготовлении опор материала и расчетного горизонтального перемещения
несейсмоизолированной части сооружения при сейсмическом воздействии.
Д.5.4 Качающиеся опоры применяют, как правило, совместно со специальными
демпферами вязкого или гистерезисного типа.
Д.5.5 Использование кинематической системы сейсмоизоляции с качающимися
опорами может быть рекомендовано, как правило, в зданиях с жесткой конструктивной
схемой.
Д.6 Фрикционно-подвижные опоры со сферическими поверхностями скольжения
173

174.

Д.6.1 Сейсмоизолирующие фрикционно-подвижные опоры со сферическими
поверхностями скольжения (или маятниковые скользящие опоры) – это скользящие опоры, в
которых контактные поверхности скольжения имеют сферическую форму.
Примечания
1 Сейсмоизолирующие фрикционно-подвижные опоры со сферическими
поверхностями скольжения называют маятниковыми скользящими опорами,
так как расположенная на них сейсмоизолированная часть сооружения
совершает при сейсмических воздействиях колебания, подобные движениям
маятника при наличии трения (рисунки Д.7-Д.8).
2 Маятниковые опоры, в которых энергия диссипируется за счет сил
трения качения (шаровые и катковые опоры, кинематические фундаменты и
подобные им сейсмоизолирующие элементы с низкой способностью к
диссипации энергии), в настоящем СП не рассматриваются.
Д.6.2 Конструктивные решения всех видов маятниковых скользящих опор
предусматривают наличие:
– одной или нескольких вогнутых сферических поверхностей скольжения;
– одного или нескольких ползунов;
– ограждающих бортиков, ограничивающих горизонтальные перемещения ползунов.
Элементы маятниковых скользящих опор изготавливаются, как правило, из
нержавеющей стали, а их сферические поверхности имеют покрытия из материалов,
обладающих заданными фрикционными свойствами.
Д.6.3 Маятниковые скользящие опоры, в зависимости от особенностей конструктивных
решений, подразделяются на опоры:
– с одной сферической поверхностью скольжения; далее – одномаятниковые
скользящие опоры;
– с двумя сферическими поверхностями скольжения; далее – двухмаятниковые
скользящие опоры;
– с четырьмя сферическими поверхностями скольжения; далее – трехмаятниковые
скользящие опоры.
Д.6.4 В маятниковых опорах всех типов:
– формы ползунов и плит обеспечивают однородное распределение напряжений в
местах их примыкания и исключают возможность возникновения неблагоприятных
локальных эффектов;
– при перемещениях ползунов по сферическим поверхностям, сейсмоизолированная
часть сооружения приподнимается и составляющая гравитационной силы, параллельная
горизонтальной поверхности, стремится вернуть ее в положение устойчивого равновесия;
– диссипативные свойства взаимосвязаны с фрикционными свойствами материалов,
контактирующих на сопрягаемых сферических поверхностях плит и ползунов; наиболее
часто они характеризуются коэффициентом эффективного вязкого демпфирования ξ со
значениями в пределах от 10 до 30 %.
Д.6.5 Спектр собственных колебаний сейсмоизолированных частей сооружения,
сейсмоизолированных с помощью маятниковых опор всех типов, практически не зависит от
массы сейсмоизолированных частей сооружения.
Д.6.6 Одномаятниковая скользящая опора состоит из двух горизонтальных плит, одна
из которых имеет сферическую вогнутую поверхность, и расположенного между плитами
сферического шарнирного ползуна.
Общий вид и схема поведения одномаятниковой скользящей опоры показаны на
рисунке Д.8, а принцип действия – на рисунке Д.9.
174

175.

Д.6.7 Особенности поведения и сейсмоизолирующие свойства одномаятниковой
скользящей опоры зависят от радиуса кривизны сферической поверхности R и величины
коэффициента трения скольжения μ ползуна по сферической поверхности.
П р и м е ч а н и е -- Спектр собственных колебаний сейсмоизолированной
части сооружения,
сейсмоизолированной с помощью одномаятниковых
скользящих опор, зависит преимущественно от выбранного радиуса кривизны
сферической поверхности в опорной плите сейсмоизолирующей опоры и не
зависит от интенсивности внешнего воздействия, а также амплитуд колебаний
сейсмоизолированной части сооружения.
Д.6.8 Современные сейсмоизолирующие системы с одномаятниковыми скользящими
опорами способны обеспечивать:
– периоды колебаний сейсмоизолированных частей сооружения до 3 с и более;
– взаимные перемещения субструктур и сейсмоизолированных частей сооружения до 1
м и более.
2
d
d
1
R,
d
2
3
d
h
3
1
h
R,
44
1 – нижняя стальная плита со сферической вогнутой поверхностью, по которой
происходит скольжение; 2 – верхняя стальная плита; 3 – сферический шарнирный ползун; 4
– точка поворота
Рисунок Д.8 – Общий вид и схема поведения одномаятниковой опоры
а)
б)
в)
R
N
г)
M
Рисунок Д.9 – Принцип действия одномаятниковой опоры
175
F
R
M

176.

а - колебания гравитационного маятника с одной точкой подвеса; б - колебания
гравитационного маятника с двумя точками подвеса; в - маятниковые колебания при
скольжении сферического ползуна по сферической поверхности; г - сооружение на
маятниковых опорах
Д.6.9 Двухмаятниковая скользящая опора состоит из двух горизонтальных плит,
имеющих сферические вогнутые поверхности, и расположенных между ними двух ползунов.
Общий вид и схема поведения двухмаятниковой скользящей опоры показаны на
рисунке Д.10.
R 2, 2
2
d2
d1
4
d2
d1
3
h2
h1
1
R1 , 1
5
1 – нижняя стальная плита со сферической вогнутой поверхностью; 2 – верхняя стальная
плита со сферической вогнутой поверхностью; 3 – верхний ползун со сферической вогнутой
поверхностью; 4 – нижний ползун со сферической выпуклой поверхностью; 5 – точка
поворота
Рисунок Д.10 – Общий вид и схема поведения двухмаятниковой опоры
Д.6.10 Особенности поведения двухмаятниковой скользящей опоры зависят от
радиусов кривизны верхних и нижних сферических поверхностей R1 и R2, а также величин
коэффициентов трения скольжения μ1 и μ2 ползунов по сферическим поверхностям.
Д.6.11 В двухмаятниковых скользящих опорах радиусы сферических вогнутых
поверхностей и коэффициенты трения могут быть одинаковыми или разными.
Важное достоинство двухмаятниковых скользящих опор – это их более компактные
размеры, чем у одномаятниковых.
176

177.

П р и м е ч а н и е - В двухмаятниковых скользящих опорах реализован
механизм двух маятников, последовательно включающихся в работу в
зависимости от спектрального состава и интенсивности сейсмических
воздействий.
Д.6.12 В двухмаятниковых скользящих опорах движения шарнирных ползунов могут
происходить по верхним и по нижним сферическим поверхностям (см. рисунок Д.10).
Благодаря этому, взаимные смещения двухмаятниковых скользящих опор могут быть в два
раза больше, чем у одномаятниковых скользящих опор с теми же габаритными размерами.
Д.6.13 Возможность использования в двухмаятниковых скользящих опорах верхних и
нижних сферических поверхностей с разными радиусами кривизны и коэффициентами
трения, позволяет увеличить сейсмоизолирующие свойства этих опор.
Д.6.14 Трехмаятниковая скользящая опора состоит их двух плит (верхней и нижней) со
сферическими вогнутыми поверхностями и трех ползунов (верхнего, нижнего и внутреннего)
со сферическими поверхностями. Общий вид и схема поведения трехмаятниковой
скользящей опоры показаны на рисунке Д.10.
Д.6.15 Особенности поведения трехмаятниковой скользящей опоры зависят от радиусов
кривизны верхних и нижних сферических поверхностей R1, R2, R3 и R4, а также величин
коэффициентов трения скольжения μ1, μ2, μ3 и μ4 ползунов по сферическим поверхностям.
Д.6.16 В трехмаятниковых скользящих опорах, как и в двухмаятниковых, радиусы
сферических вогнутых поверхностей и коэффициенты трения могут быть одинаковыми или
разными.
П р и м е ч а н и е - В трехмаятниковой скользящей опоре реализован
механизм трех маятников, последовательно включающихся в работу в
зависимости от спектрального состава и интенсивности сейсмических
воздействий. По мере увеличения перемещений трехмаятниковых опор будут
увеличиваться эффективная длина маятника (увеличиваться период колебаний
сейсмоизолированной части сооружения) и повышаться эффективное
демпфирование.
Д.6.17 Комбинируя значения радиусов кривизны сферических поверхностей и коэффициентов
трения скольжения можно запроектировать трехмаятниковые скользящие опоры, способные
эффективно снижать сейсмические нагрузки на сейсмоизолированную часть сооружения при
землетрясениях с очень высокой интенсивностью и со сложным спектральным составом.
177

178.

R 4 , 4
R 4 , 4
2
2
R 3 , 3
R 3 , 3
d4
d4
d1
d1
4
4
d4
d4
d1
d1
5
5
3
3
1
1
R 1 , 1
R 1 , 1
d3
d3
6
6
h
h3 h 4 4
h3
h2
h
h2
h1 1
d
d22
R 2 , 2
R 2 , 2
1 – нижняя стальная плита со сферической вогнутой поверхностью; 2 – верхняя стальная
плита со сферической вогнутой поверхностью; 3 – нижний ползун со сферической вогнутой
поверхностью; 4 – верхний ползун со сферической вогнутой поверхностью; 5 – внутренний
шарнирный ползун; 6 – точка поворота
Рисунок Д.11 – Общий вид и схема поведения трехмаятниковой опоры
Д.7 Трехкомпонентная пружинно-демпферная система. Упругие витые пружины с
многокомпонентными (3D) вязкоупругими демпферами
Д.7.1 Система ТПДС состоит из упругих витых пружин, несущих статическую и
сейсмическую нагрузку и параллельно включенных многокомпонентных вязкоупругих
демпферов, обеспечивающих в широких пределах необходимое демпфирование для
сейсмоизолированной системы (рисунки Д.12, Д.13).
178

179.

Рисунок Д.12 - Установка ТПДС при параллельном размещении блока витых пружин и
вязкоупругого демпфера
Рисунок Д.13 - Принципиальная схема разрезного фундамента с сейсмоизоляцией ТПДС
Д.7.2 Варьирование параметрами витых пружин позволяет получить необходимые
первые собственные частоты сейсмоизолированной системы в горизонтальном и
вертикальном направлениях относительно доминантной частоты сейсмического воздействия
(рисунок Д.14,а), а демпферы ВД обеспечивают систему необходимым демпфированием во
всех степенях свободы, что позволяет существенно сократить перемещения
сейсмоизолированной системы при сохранении ее высокой изолирующей способности
(рисунок Д.14,б).
Д.7.3 Несущая способность блоков витых пружин находится в диапазоне от 1 кН до
7000 кН.
Блок витых пружин имеет линейную зависимость «сила – перемещение» во всем
диапазоне нагрузок и перемещений в вертикальном и горизонтальном направлениях
(рисунок Д.14,б).
Д.7.4 Максимальные сейсмические перемещения блоков пружин могут достигать 300
мм и более.
а)
б)
Рисунок Д.14 - Блок витых пружин для пространственной 3D изоляции (а); линейная
зависимость «сила-перемещение» для витой пружины (б)
179

180.

Д.7.5 Многокомпонентные вязкоупругие демпферы (рисунок Д.15) имеют нелинейную
частотную демпфирующую характеристику. Их динамическая жесткость состоит из упругой
и неупругой (вязкой) частей и описываются 4-х звенной динамической моделью Максвелла
(рисунок Д.16).
а)
б)
Рисунок Д.15 - Вязкоупругий пространственный 3D демпфер (а); зависимость «силаперемещение» для вязкоупругого демпфера
Рисунок Д.16 - Зависимость вязкоупругой реакции демпфера от частоты нагружения
Предлагаем включить предложения в состав СП.
Сводку замечаний составил:
Зам. руководителя ЦИСС
ЦНИИСК им. В.А. Кучеренко АО «НИЦ «Строительство»
180
Бубис А.А.

181.


21
Текущая редакция СП
табл. 1
22
раздел 3 ―Термины и определения‖
Замечание (предложение)
1. В табл. 1 категория грунтов
принимается в зависимости от скоростей и
их соотношения, т. е. необходимо
выполнить один из видов геофизических
работ. Для небольших объектов (например:
малоэтажные здания со стенами из
кирпича, блочные модульные котельные,
трансформаторные подстанции заводской
готовности,
коровники,
небольшие
пристройки к существующим зданиям при
реконструкции и т. д., а тем более для
объектов
с
финансированием
из
бюджетных средств) стоимость изысканий
и
проектных
работ
может
быть
сопоставима (тем более с учетом 30-ти
метровых скважин) и даже превышать
стоимость строительно-монтажных работ,
что
является
нерациональным
расходованием
бюджетных
средств.
Плачевное состояние бюджета Вы знаете,
тем более бюджета регионов. Необходимо
дополнить документ параметрами зданий и
сооружений
(например:
этажность,
напряжение под подошвой фундаментов,
глубина сжимаемой толщи и т. п.), для
которых категория грунтов может быть
определена по показателю консистенции и
коэффициенту пористости без определения
скоростей волн.
Указания нового СП (по изучению
грунтов на глубину 30 м) противоречат
действующим
документам.
Правила
проведения работ по сейсмическому
микрорайонированию
указаны
в
действующем документе СП 11-105-97
―Инженерно-геологические изыскания для
строительства.
Часть
VI.
Правила
производства
геофизических
исследований‖. Пункт 4.13 СП 11-105-97
указывает на необходимо соблюдения
технических
требований
для
сейсморазведки,
изложенных
в
действующем нормативном документе
РСН 66-87 ― Инженерные изыскания для
строительства. Технические требования к
производству
геофизических
работ.
Сейсморазведка‖.
Пункты 2.5 и 2.6 РСН 66-87
оговаривают
максимальную
глубину
изучения геологического разреза и глубину
горных выработок (до 20 м) для решения
задач
по
сейсмическому
микрорайонированию.
Пункт 3.12 РСН 66-87 оговаривает
мощность расчетной толщи (10 м, считая
от планировочной отметки, либо другой
обоснованной, но не более 20 м) для
оценки приращения бальности.
1. Доработать раздел 3 ―Термины и
181
Автор
А. А. Бешанов
ГАУ КК
―Краснодар
крайгосэкспертиза

Коммент
В Табл. 1
справочн
материал
исследов
Использо
п. 4.3.
Глубина
рассмотр
А. А. Бешанов
Замечани

182.

23
Пункт 6.2.2
24
Табл. 9 п. 3.
25
Пункт 6.19.6
определения‖.
Пункты 3.20 (МРЗ) и 3.31 (ПЗ),
данные понятия определены только для
гидротехнических сооружений. Для других
зданий и сооружений вышеуказанные
термины не определены.
Пункт 3.20 при прочтении двояко
трактуется, т. е. применим как для
объектов
повышенного
уровня
ответственности,
так
и
для
гидротехнических
сооружений.
Рекомендую:
…для
объектов
гидротехнических
сооружений
повышенной ответственности…
Пункт 3.15 определяет только 3
категории, таблица 1 – 4 категории.
В пункте 3.14 (каркасно-каменные
здания) указан только II тип зданий,
упущен I тип, различающиеся по
технологическим особенностям. Каркас I
типа обычно выполняется при применении
сборных
железобетонных
элементов
каркаса (Руководство по проектированию
для сейсмических районов каркасных
зданий
со
стеновым
заполнением.
Кишинев, 1976. Разработан ЦНИИ им. В.
А. Кучеренко).
В терминах везде ошибочно указана
ссылка на комплект карт ОСР-97, в
приложении А указан комплект карт ОСР2015.
Пункт 6.2.2 перед последним абзацем
дополнить следующим: …Уступы в
скальных
грунтах
допускается
не
устраивать…
Вышеуказанный пункт разработан для
столбчатых и ленточных фундаментов,
отсутствуют рекомендации для плитных
фундаментов. Рекомендую: …для плитных
фундаментов, выполненных без уступов,
должно выполняться условие отсутствия
выпора
грунта
из-под
подошвы
фундаментов…
В табл. 9 п. 3. Непонятно, какое отношение
имеет величина выносов карнизов в
примечании к размерам простенков и
проемов.
Предложение. Пункт 6.19.6 дополнить
следующим: …При реконструкции зданий
и сооружений II (нормального) и
III
(пониженного) уровней ответственности
допускается сохранять существующие
конструкции здания, не соответствующие
конструктивным
требованиям
действующих норм, но обладающие
необходимой
расчетной
несущей
способностью с учетом сейсмического
воздействия…
Пояснение. При внесении незначительных
изменений (например: устройство дверного
проема взамен оконного и т. п.) вид работы
182
ГАУ КК
―Краснодар
крайгосэкспертиза

внесены
А. А. Бешанов
ГАУ КК
―Краснодар
крайгосэкспертиза

Замечани
внесены
А. А. Бешанов
ГАУ КК
―Краснодар
крайгосэкспертиза

А. А. Бешанов
ГАУ КК
―Краснодар
крайгосэкспертиза

Замечани
внесены
Предлож
раздела 6

183.

26
3. Термины и определения
27
3.4 «... и/или спектров реальных
землетрясений с учетом местных
сейсмогеологических условий»
28
П. 3.8.
29
П. 3.11, 3.36, 6.11
30
П. 3.15
31
П. 3.20
переходит в реконструкцию и, как
следствие,
ведет
к
необходимости
выполнения сейсмостойких мероприятий
всего
здания,
имеющего
статус
работоспособного
по
результатам
обследования, что ведет к значительным
затратам.
3.2
Согласно
правилам
терминообразования под сейсмограммой
понимается
запись
сейсмических
колебаний
с
любой
частотной
характеристикой. И акселерограмма, и
велосиграмма и узкополосный фильтр-это
все сейсмограммы. Предлагается для
записей смещения использовать по
аналогии термин дисплограмма.
Неверно:
1)
По одному спектру построить
акселерограмму нельзя – необходимо знать
огибающую колебаний.
2)
Непонятно, что понимается под
местными
сейсмогеологическими
условиями. Исходя из текста СП –это
только
грунтовые
условия.
Такие
сейсмогеологические
условия
как
магнитуда землетрясения, расстояние, тип
подвижки в очаге в СП не учитываются.
Следует сказать, что все эти условия
учитываются при ДСР.
В дальнейшем в СП ДСР не упоминается.
В каких случаях проводится ДСР? В СП по
ДСР предлагается проводить этот вид
работ для объектов повышенного уровня
ответственности. Карта ДСР в этих случаях
заменяет карту ОСР. Поскольку для
объектов повышенной ответственности
также обязательно проводится СМР,
оценки сейсмической опасности при ДСР
также дискредитируются с шагом в 0,1
балла.
3.11, 3.36, 6.11 В шкале MSK-64
отсутствуют описания реакций зданий
высотой более 5 этажей, панельные здания,
здания с антисейсмическими усилениями.
Инструментальные
оценки
по
утверждению
автора
шкалы
С.В.
Медведева (1976 г.) занижены примерно в
полтора
раза.
Международным
сообществом шкала отменена. Да и у нас
шкала «отменена без замены» в 1995 г.
Поэтому лучше говорить просто о
сейсмической шкале. Все шкалы прошлого
и будущего строились и будут строиться с
сохранением преемственности оценок.
В дальнейшем упоминается и 4-я категория
(п.4.5, табл. 1). Привести в соответствие.
максимальное расчетное землетрясение
(МРЗ): упомянут не действующий с 2016
г. комплект карт ОСР-97 B и C. Кроме того
указано, что этот термин применим к
183
ИФЗ РАН
Е.А. Рогожин
Ф.Ф. Аптикаев
О.О. Эртелева
Предлага
ИФЗ РАН
Е.А. Рогожин
Ф.Ф. Аптикаев
О.О. Эртелева
1. Имеют
построен
акселеро
может ис
землетря
реализац
2. П. 4.3 у
необходи
исследов
необходи
акселлер
ИФЗ РАН
Е.А. Рогожин
Ф.Ф. Аптикаев
О.О. Эртелева
ДСР отно
частност
ИФЗ РАН
Е.А. Рогожин
Ф.Ф. Аптикаев
О.О. Эртелева
СП постр
балле, ка
количест
определе
64. При и
шкалы, о
невозмож
иной шка
выполни
переопре
сейсмиче
ИФЗ РАН
Е.А. Рогожин
Ф.Ф. Аптикаев
О.О. Эртелева
ИФЗ РАН
Е.А. Рогожин
Ф.Ф. Аптикаев
О.О. Эртелева
Замечани
категори
Замечани
-97.

184.

32
П. 3.25
33
П. 3.31
34
П.п. 3.34 и 3.48
35
П. 3.41
36
4.3
37
4.3 и 5.19
38
5.2
39
Раздел 7 Транспортные сооружения
40
Приложение А
гидротехническим сооружениям, а в
разделе 5 Расчетные нагрузки он
применяется для всех типов сооружений.
нормативная сейсмичность: упомянут не
действующий с 2016 г. комплект карт ОСР97.
проектное землетрясение (ПЗ): указано,
что этот термин применим к
гидротехническим сооружениям, а в
разделе 5 Расчетные нагрузки он
применяется для всех типов сооружений.
Очень схожие определения. Неясно, куда
отнести
здания,
пришедшие
после
землетрясения в аварийное состояние.
Здания с 3-й степенью повреждений могут
как ремонтироваться, так идти под снос.
Предлагается
дать
количественную
характеристику
сейсмостойкости.
Сейсмостойкость здания (сооружения)
категории работоспособного технического
состояния оценивается в баллах, при
которых оно переходит в категорию
ограниченно работоспособного состояния,
Сейсмическая
нагрузка
не
только
инерционная, но и деформационная
Нормативную
интенсивность
сейсмических воздействий в баллах
(фоновую сейсмичность) для района
строительства следует принимать на
основе
комплекта
карт
общего
сейсмического районирования территории
Российской
Федерации
(ОСР),
утвержденных Российской академией наук.
Комментарий: с 2014 г. РАН не
уполномочена утверждать карты ОСР.
Выбор карты осуществляется заказчиком!
Этот выбор должен быть объективным и не
зависеть от желания проектировщика или,
тем более, заказчика.
Должны
существовать
правила,
по
которым определяется выбор карты.
Упоминается
необходимость
учета
вертикальной
компоненты,
но
не
указывается, как это делать.
Раздел 7 Транспортные сооружения
противоречит содержанию трех новых СП
«Транспортные
сооружения
в
сейсмических
районах.
Правила
проектирования», принятых ФАУ ФЦС в
2016 г., разработанных Обществом с
ограниченной
ответственностью
«Проектирование,
обследования,
испытания строительных конструкций»
(ООО «ПОИСК») для транспортных
объектов по заданию Минстроя РФ.
Приложение А (обязательное) Список
населенных
пунктов
Российской
Федерации,
расположенных
в
184
ИФЗ РАН
Е.А. Рогожин
Ф.Ф. Аптикаев
О.О. Эртелева
ИФЗ РАН
Е.А. Рогожин
Ф.Ф. Аптикаев
О.О. Эртелева
Замечани
-97.
ИФЗ РАН
Е.А. Рогожин
Ф.Ф. Аптикаев
О.О. Эртелева
Термины
параметр
соответст
сейсмост
расчетно
устанавл
сейсмичн
возможно
площадке
воздейств
состояни
ИФЗ РАН
Е.А. Рогожин
Ф.Ф. Аптикаев
О.О. Эртелева
ИФЗ РАН
Е.А. Рогожин
Ф.Ф. Аптикаев
О.О. Эртелева
Слово «и
слову «си
отнесено
ИФЗ РАН
Е.А. Рогожин
Ф.Ф. Аптикаев
О.О. Эртелева
Предпола
комплект
разработк
вопросе п
его работ
ИФЗ РАН
Е.А. Рогожин
Ф.Ф. Аптикаев
О.О. Эртелева
По-видим
Порядок
нагрузок
6.14.3
Приведен
редакция
имеются
предложе
указанно
14.13330
ИФЗ РАН
Е.А. Рогожин
Ф.Ф. Аптикаев
О.О. Эртелева
ИФЗ РАН
Е.А. Рогожин
Ф.Ф. Аптикаев
Откоррек
Предлага
«утвержд
порядке»
Авторств
в окончат
документ

185.

41
П. 6.8.11
42
П. 4.1
43
П. 4.2
44
П. 4.3
сейсмических районах, с указанием
расчетной сейсмической интенсивности в
баллах шкалы MSK-64 для средних
грунтовых условий и трех степеней
сейсмической опасности – А (10 %), В
(5 %), С (1 %) в течение 50 лет приведено
без указания авторства этого документа.
Максимальные расстояния между осями
колонн в каждом направлении при
безбалочных плитах и безбалочных плитах
с капителями следует принимать 7,2 м –
при сейсмичности 7 баллов, 6,0 м – при
сейсмичности 8, 9 баллов.
Текст
пункта
дополнить:
Толщину перекрытий (с капителями и
без них) безригельного каркаса следует
принимать не менее 1/30 расстояния
между осями колонн и не менее 180 мм,
класс бетона – не ниже В20.
О.О. Эртелева
ФЦС. В д
усмотрен
31 ГПИИС
Филиал
Военпроект
Предлага
180 мм. В
практиче
проектов
эксперим
4.1 При
проектировании
зданий
и
сооружений надлежит:
применять материалы, конструкции
и конструктивные схемы, обеспечивающие
снижение сейсмических нагрузок;
принимать,
как
правило,
симметричные конструктивные и объемнопланировочные решения с равномерным
распределением нагрузок на перекрытия,
масс и жесткостей конструкций в плане и
по высоте;
предусматривать
условия,
облегчающие развитие в элементах
конструкций
и
их
соединениях
пластических деформаций.
При назначении зон пластических
деформаций и локальных разрушений
следует
принимать
конструктивные
решения,
снижающие
риск
прогрессирующего
разрушения
сооружения или его частей.
4.2 Проектирование зданий высотой более
75 м должно осуществляться при научном
сопровождении
компетентной
организации.
МГСУ
Пункт пр
редакции
МГСУ
Пункт пр
редакции
В картах Общего сейсмического
районирования (ОСР-2012) приводятся
данные об интенсивности землетрясений
на территории Российской Федерации
(таблица 1).
Карта Общего
Период
сейсмического
повторяемости
районирования
, лет
МГСУ
Предпола
2012 не я
документ
применен
ОСР-2012 A
100
ОСР-2012 B
500
ОСР-2012 C
1000
ОСР-2012 D
2500
185

186.

ОСР-2012 E
5000
ОСР-2012 F
10000
Сейсмическими районами считаются
районы, для которых интенсивность
землетрясений по карте ОСР-2012 B не
меньше 7 баллов. Действие данных норм
распространяется на проектирование в
сейсмических районах сейсмичностью до 9
баллов включительно. Проектирование
производится
для
площадок
с
сейсмичностью 7, 8 и 9 баллов.
45
4.4
За
проектное
землетрясение
(ПЗ)
принимается
расчетный
уровень
сейсмических
воздействий
от
землетрясений, вызывающих на площадке
строительства сотрясения максимальной
интенсивности с периодом повторяемости
раз в 100 лет (карта ОСР-2012 A).
МГСУ
46
4.5
МГСУ
47
4.6
48
4.7
49
4.8
50
4.9
За максимальное расчетное землетрясение
(МРЗ) принимается расчетный уровень
сейсмических
воздействий
от
землетрясений, вызывающих на площадке
строительства сотрясение максимальной
интенсивности с периодом повторяемости
раз в 500 лет (карта ОСР-2012 B).
Непосредственно
для
площадки
строительства
следует
производить
уточнение сейсмичности на основании
сейсмического
микрорайонирования
(СМР). При отсутствии карт сейсмического
микрорайонирования,
допускается
уточнять
сейсмичность
площадки
строительства по материалам инженерногеологических
изысканий,
согласно
таблице 2.
Площадки строительства на участках с
крутизной склонов более 15°, с оползнями,
обвалами, осыпями, карстом, селями, а
также участки, сложенные грунтами IV
категорий являются неблагоприятными в
сейсмическом отношении.
При необходимости строительства зданий
и сооружений на таких площадках следует
принимать дополнительные меры по
укреплению их оснований, усилению
конструкций и инженерной защите
территории от опасных геологических
процессов.
Проектирование на данных площадках
186
Предпола
2012 не
документ
применен
действую
ОСР-201
периодом
лет. Кром
достаточ
сейсмоме
последни
объектив
консерва
практиче
превыше
норматив
Предпола
2012 не я
документ
применен
МГСУ
Пункт пр
на рассмо
МГСУ
Пункт пр
на рассмо
МГСУ
Пункт пр
на рассмо
МГСУ
Пункт пр
на рассмо

187.

строительства должно осуществляться при
научном сопровождении компетентной
организации.
51
Таблица 2, категория грунта I
При сейсмичности района 7 баллов
расчетную сейсмичность принять равной 6
баллам.
МГСУ
52
Примечания к табл. 2.
МГСУ
53
П. 5.1
1 Скорости Vp и Vs, а также
величина сейсмической жесткости грунта
являются средневзвешенными значениями
для 30-метровой толщи, считая от
планировочной отметки.
2 В случае многослойного строения
грунтовой толщи, грунтовые условия
участка относят к более неблагоприятной
категории, если в пределах верхней 30метровой толщи (считая от планировочной
отметки) слои, относящиеся к этой
категории, имеют суммарную мощность
более 10 м.
3 При отсутствии данных о
консистенции, влажности, сейсмической
жесткости, скоростях Vp и Vs глинистые и
песчаные грунты при положении уровня
грунтовых вод выше 5 м относятся к III
или IV категории по сейсмическим
свойствам.
4 При прогнозировании подъема
уровня грунтовых вод и обводнения
грунтов (в том числе просадочных)
категорию грунтов следует определять в
зависимости от свойств грунта в
замоченном состоянии.
5
При
строительстве
на
вечномерзлых грунтах по принципу II
грунты основания следует рассматривать
по фактическому их состоянию после
оттаивания.
6
При
определении
сейсмичности
площадок строительства транспортных и
гидротехнических сооружений следует
учитывать дополнительные требования,
изложенные в разделах 7 и 8.
Расчет конструкций и оснований
зданий и сооружений, проектируемых
для строительства в сейсмических
районах,
должен
выполняться
на
основные и особые сочетания нагрузок с
учетом
расчетной
сейсмической
нагрузки.
При расчете зданий и сооружений
на особое сочетание нагрузок значения
расчетных нагрузок следует умножать
на
коэффициенты
сочетаний,
принимаемые по
СП 20.13330.2011.
Нагрузки и воздействия.
Горизонтальные нагрузки от масс на
187
МГСУ
С учетом
чрезмерн
выведени
применен
основани
геологич
необходи
сделать с
Все прим
предложе
В п. 6.3 и
установл
сейсмиче
Следоват
коэффиц
указать в
14.13330
В остальн
в предлож

188.

гибких
подвесках,
температурные
климатические воздействия, ветровые
нагрузки, динамические воздействия от
оборудования и транспорта, тормозные и
боковые усилия от движения кранов при
этом не учитываются.
При
определении
расчетной
вертикальной
сейсмической
нагрузки
следует учитывать массу моста крана,
массу тележки, а также массу груза,
равного грузоподъемности крана, с
коэффициентом 0,3.
Расчетную горизонтальную сейсмическую
нагрузку от массы мостов кранов следует
учитывать
в
направлении,
перпендикулярном к оси подкрановых
балок. Снижение крановых нагрузок,
предусмотренное СП 20.13330.2011, при
этом не учитывается.
54
П. 5.2.
55
П. 5.3
56
П. 5.4
При выполнении расчетов сооружений с
учетом сейсмических воздействий следует
рассматривать две расчетные ситуации.
а) Сейсмические нагрузки соответствуют
уровню ПЗ (проектное землетрясение).
Должно быть обеспечено выполнение
условий первого предельного состояния
(ПС-1) согласно ГОСТ Р 54257-2010.
Надежность строительных конструкций и
оснований. Основные положения и
требования.
Расчеты зданий и сооружений на особые
сочетания нагрузок следует выполнять
линейно-спектральным
методом
на
нагрузки, определяемые в соответствии с
пп. 5.10, 5.12, 5.13.
б)
Сейсмические
нагрузки
соответствуют
уровню
МРЗ
(максимальное
расчетное
землетрясение).
Должно быть обеспечено выполнение
условий особого предельного состояния,
т.е. устойчивость сооружения в целом к
прогрессирующему обрушению при
локальных разрушениях, вызванных
землетрясением
Расчеты по 5.2 (уровень нагрузки,
отвечающий ПЗ и МРЗ) следует
выполнять
для
всех
зданий
и
сооружений.
При выполнении расчетов по уровням
ПЗ и МРЗ должны приниматься карты
сейсмичности района строительства в
соответствие с п. 4.3.
Расчеты, соответствующие МРЗ,
следует выполнять линейно-спектральным
методом с использованием наихудших для
данного сооружения синтезированных
акселерограмм
из
представительного
набора
(приложение
1).
Расчет
производится на акселерограммы по обоим
горизонтальным
направлениям,
188
МГСУ
Следует о
ГОСТ 54
принят Г
пункт нео
актуализи
МГСУ
Предпола
2012 не я
документ
применен
действую
ОСР-201
периодом
лет.
МГСУ
Не вполн
расчета з
с использ
чем отли
Как учест
для высо
ли апроб
подтверж

189.

совпадающим
с
главными
осями
сооружения. Наихудшей следует считать
акселерограмму с доминантной частотой,
наиболее близкой к низшей частоте
поступательной
формы
по
соответствующему
горизонтальному
направлению.
Максимальные амплитуды ускорений в
уровне основания сооружения следует
принимать не менее 0,1g, 0,2g и 0,4g при
сейсмичности площадок строительства 7, 8
и 9 баллов, соответственно. При наличии
акселерограммы,
полученной
для
рассматриваемой
площадки,
следует
принять ее в качестве расчетной.
57
П. 5.5
58
П .5.6
59
П. 5.7
60
5.8
Сейсмостойкость сооружения по критерию
необрушения
(особое
предельное
состояние) обеспечивается выполнением
пп. 5.4-5.7.
61
5.9
Для зданий и сооружений:
с
балками,
арками,
фермами,
пространственными покрытиями пролетами
24 м и более;
При
расчетах
на
уровень
МРЗ
принимаются нормативные нагрузки и
нормативные
значения
прочности
материалов. Расчетную сейсмическую
нагрузку определяют по формуле (1) пп.
5.10, 5.12, 5.13.
При расчетах на уровень МРЗ должно быть
обеспечено выполнение условий первого
предельного состояния (ПС-1) согласно
ГОСТ Р 54257-2010. Сооружение должно
быть устойчиво к лавинообразному
(прогрессирующему)
обрушению
при
возможных
локальных
разрушениях,
вызванных сейсмическим воздействием.
Для
этого
рассматриваются
следующие
сценарии
локальных
сейсмических разрушений:
- разрушение одной наиболее
нагруженной колонны;
разрушение
наиболее
нагруженного пилона или стены длиной
6м;
- разрушение одного наиболее
нагруженного ригеля.
Сценарии
локальных
сейсмических
разрушений выбираются на основе анализа
результатов расчета на уровень МРЗ по п.
5.4.
Расчет на прогрессирующее обрушение
при локальных сейсмических разрушениях
допускается выполнять линейно-упругими
методами по методике, используемой при
расчете
на
устойчивость
к
прогрессирующему
обрушению
при
локальных
разрушениях,
вызванных
аварийными воздействиями.
189
методоло
МГСУ
МГСУ
МГСУ
Следует о
ГОСТ 54
принят Г
пункт нео
актуализи
Хотелось
зависимо
сейсмиче
наиболее
меняются
землетря
распреде
соответст
между эл
ФЗ-384 н
элементо
воздейств
соответст
сечения э
разрушит
воздейств
Также пр
учитывае
знакопер
воздейств
зависимо
реакцией
Методол
прогресс
также ме
определе
является
на проект
МГСУ
МГСУ
Положен
предложе
п. 5.2.2, 5

190.

с горизонтальными и наклонными
консольными конструкциями с вылетом 3 м и
более;
необходимо дополнительно выполнять
расчеты на вертикальную сейсмическую
нагрузку,
соответствующую
расчетным
ситуациям ПЗ и МРЗ.
При этом значение вертикальной
сейсмической нагрузки следует умножать
на 0,75.
62
5.10
63
5.11
64
5.12
При
определении
расчетных
сейсмических нагрузок на здания и
сооружения следует принимать расчетные
динамические модели конструкций (РДМ),
согласованные с расчетными статическими
моделями конструкций и учитывающие
особенности распределения нагрузок, масс и
жесткостей зданий и сооружений в плане и по
высоте, а также пространственный характер
деформирования
конструкций
при
сейсмических воздействиях.
Расчетные сейсмические нагрузки на здания и
сооружения,
имеющие
сложное
конструктивно-планировочное
решение,
следует определять с использованием
пространственных расчетных динамических
моделей зданий и с учетом пространственного
характера сейсмических воздействий по ф-ле
(1).
Значения коэффициента динамичности βi в
зависимости
от
расчетного
периода
собственных колебаний Ti здания или
сооружения по i-й форме при определении
сейсмических нагрузок следует принимать
по формулам (2) и (3) или, согласно,
рисунку 1.
Для зданий и сооружений, рассчитываемых
по пространственной РДМ, значение ikJ
при сейсмическом воздействии следует
определять по формуле
МГСУ
Приводи
п. 5.5.
МГСУ
Приводи
п. 5.6
МГСУ
Приводи
иных пер
МГСУ
Приводи
иных пер
n
ki
X i ( zk ) Q j X i ( z j ) cos X k ,i ,
x0
j 1
(4)
n
Q X
j 1
где
j
2
i
(z j )
X i ( zk ) , X i ( z j ) – перемещения
здания или сооружения при собственных
колебаниях по i-ой форме;
cos X k ,i , x 0 – косинусы углов между
направлениями
перемещения
X k ,i
вектора сейсмического воздействия
65
5.13
и
x 0 .
Расчетные значения внутренних усилий Np в
конструкциях от сейсмической нагрузки при
условии статического действия ее на
сооружение, следует определять по формуле
190

191.

n
N p N i2 ,
i 1
66
5.14
67
Раздел 1 «Область применения»
Настоящий свод правил
распространяется на область
проектирования на площадках
сейсмичностью 7, 8 и 9 баллов зданий и
сооружений
68
Раздел 1 «Область применения»
Проектирование и строительство здания
или сооружения на таких площадках
осуществляются в порядке,
установленном уполномоченным
федеральным органом исполнительной
власти.
69
Раздел 2 «Нормативные ссылки»
ГОСТ 30403-96 «Конструкции
строительные. Метод определения
пожарной опасности»
Раздел 2 «Нормативные ссылки»
ГОСТ 14098-91 «Соединения
сварные арматуры и
закладных изделий
железобетонных конструкций.
Типы, конструкции и
размеры»
Раздел 2 «Нормативные ссылки»
СП 2.13130.2009 «Системы
противопожарной защиты. Обеспечение
огнестойкости объектов защиты»
70
71
(5)
где
Ni – значение внутреннего усилия,
вызываемого сейсмическими нагрузками,
соответствующими i-й форме колебаний;
n – число учитываемых в расчете форм
колебаний.
При определении внутренних усилий,
рассматривается наихудшее сочетание знака
в формуле (5).
При расчете конструкций на прочность и
устойчивость, помимо коэффициентов
условий
работы,
принимаемых
в
соответствии с другими действующими
нормативными
документами,
следует
вводить
дополнительно
коэффициент
условий работы mtr, определяемый по
таблице 5. На коэффициент mtr умножают
расчетное
сопротивление
соответствующего материала конструкции.
Противоречит пункту 4.4
Расчетную сейсмичность площадки
строительства зданий повышенного уровня
ответственности при нормативной
сейсмичности района строительства 6 и
более баллов следует устанавливать по
результатам сейсмического
микрорайонирования (СМР) и пункту 7.1.1
Положения настоящего раздела
распространяются на строительство
железных дорог категорий I–IV,
автомобильных дорог категорий I–IV, IIIп
и IVп, метрополитенов, скоростных
городских дорог и магистральных улиц,
пролегающих в районах с расчетной
сейсмичностью 6–9 баллов.
МГСУ
Приводи
5.15
АО
«Росжелдорпроект
»
Предпола
нет. Смеш
строител
строител
площадка
норматив
баллов, п
она може
этом случ
распрост
Аналогич
С целью уточнения требования
предлагается привести ссылку на
Положение о таком ФОИВ, который в
соответствии с законодательством
уполномочен устанавливать порядок
проектирования и строительства на
площадках строительства более 9 баллов.
АО
«Росжелдорпроект
»
Не действует, заменен с 01.01.2014 г.
Заменить на ГОСТ 30403-2012
«Конструкции строительные. Метод
испытаний на пожарную опасность»
Не действует, заменен с 01.07.2015 г.
Заменить на ГОСТ 14098-2014
«Соединения сварные арматуры и
закладных изделий железобетонных
конструкций. Типы, конструкции и
размеры»
АО
«Росжелдорпроект
»
В настоящ
Минстро
времени
него Госс
Предпола
перегруж
данными
разработч
Замечани
корректи
АО
«Росжелдорпроект
»
Замечани
корректи
Не действует с 16.04.2014 г.
Заменен на СП 2.13130.2012 «Системы
противопожарной защиты. Обеспечение
огнестойкости объектов защиты».
АО
«Росжелдорпроект
»
Замечани
корректи
указанны
разделе 9
191

192.

Учитывая, что рассматриваемый свод
правил распространяется только на
площадки строительства с сейсмичностью
более 6 баллов предлагается общие
требования пожарной безопасности
исключить из нормативных ссылок и по
тексту свода правил. Требования по
обеспечению пожарной безопасности всех
объектов строительства изложены в
федеральном законе от 22.07.2008 № 123ФЗ «Технический регламент о требованиях
пожарной безопасности».
При необходимости обеспечения
дополнительных противопожарных
мероприятий на площадках строительства
сейсмичностью свыше 6 баллов привести в
своде правил конкретные требования.
72
73
3.20,
3.25
Даны ссылки на карты А, В, С ОСР-97,
однако в приложении А к проекту своду
правил содержатся карты ОСР-2015.
4.3 Карта А предназначена для
проектирования объектов нормального и
пониженного уровня ответственности.
Заказчик вправе принять для
проектирования
объектов нормального уровня
ответственности карту B или С при
соответствующем
обосновании.
Решение о выборе карты В или С, для
оценки нормативной сейсмичности
района
при проектировании объекта
повышенного уровня ответственности,
принимается
Заказчиком по представлению
генерального проектировщика, при
необходимости,
основываясь на заключениях
компетентной организации.
Для уточнения сейсмичности района
строительства объектов повышенной
ответственности, перечисленных в
позиции 1 таблицы 3, дополнительно
проводят
специализированные сейсмологические
и сейсмотектонические исследования.
Привести в соответствие текст проекта
свода правил с приложениями.
АО
«Росжелдорпроект
»
Замечани
откоррек
Требованием устанавливается порядок
выбора карты ОСР для проектирования с
оговоркой «при необходимости
привлечения компетентной организации».
С целью установления однозначно
понимаемых проектной организацией,
заказчиком и государственной экспертизой
требований следует определить критерии
такой «необходимости» или привести
методику выбора карты.
АО
«Росжелдорпроект
»
За
Предлож
Ка
для
сейсмичн
проектир
приведен
таблицы
принять
объектов
ответстве
соответст
Ка
для
сейсмичн
проектир
приведен
3. При
нормальн
ответстве
позиции
по пред
проектир
необходи
заключен
организа
карта А О
Ка
для
сейсмичн
проектир
приведен
3. Для
района
повышен
ответстве
позициях
дополнит
специали
сейсмоло
192

193.

74
4.8
Таблица 1, примечание 2
В случае многослойного строения
грунтовой толщи, грунтовые условия
участка относят к более
неблагоприятной категории, если в
пределах верхней 30-метровой толщи
(считая от планировочной отметки)
слои, относящиеся к этой категории,
имеют суммарную мощность более 10 м.
75
6.14.14 Сейсмостойкость каменных стен
здания следует повышать сетками из
арматуры, созданием комплексной
конструкции, предварительным
напряжением кладки или другими
экспериментально обоснованными
методами.
«ДАЛЕЕ ПО ТЕКСТУ»
При проектировании стен комплексной
конструкции из кирпича усиленные
монолитными железобетонными
включениями антисейсмические пояса и
их узлы сопряжения со стойками
должны рассчитываться и
конструироваться как элементы
каркасов с учетом работы заполнения. В
этом случае предусмотренные для
бетонирования стоек пазы должны быть
открытыми не менее чем с двух сторон.
Если стены комплексной конструкции
из кирпича выполняют с
железобетонными
включениями по торцам простенков,
продольная арматура должна быть
надежно соединена хомутами,
уложенными в горизонтальных швах
кладки. «ДАЛЕЕ ПО ТЕКСТУ»
76
77
78
7.1.1,
первый абзац
Положения настоящего раздела
распространяются на строительство
железных дорог категорий I–IV,
автомобильных дорог категорий I–IV,
IIIп и IVп, метрополитенов, скоростных
городских дорог и магистральных улиц,
пролегающих в районах с расчетной
сейсмич-ностью 6–9 баллов, а также
зданий и сооружений речного, морского
и воздушного транспортов.
7.1.1,
второй абзац
На площадках, сейсмичность которых
превышает 9 баллов, возводить
транспортные сооружения, как правило,
не допускается. Проектирование и
сейсмоте
исследов
Предлага
Применение таблицы ограничено
объектами, использующими карту А.
Нормативная глубина бурения для таких
объектов, за редким исключением, не
превышает 15 м, как правило, 5-8 м.
Предлагается ограничить рассматриваемый
интервал 10 метрами, изменив пропорцию
грунтов, или в общей части ввести пункт,
требующий увеличения глубины бурения
на участках с возможным развитием
слабых грунтов.
Пункт 6.14.14 указывает, что при
проектировании стен комплексной
конструкции антисейсмические пояса и
узлы сопряжения их со стойками должны
рассчитываться и конструироваться как
элементы каркасов.
Это противоречит определению
комплексной конструкции из п. 3.16
«Стеновая конструкция из кладки,
выполненной с применением кирпича … и
усиленная железобетонными
включениями, не образующими рамы
(каркас)».
АО
«Росжелдорпроект
»
АО
«Росжелдорпроект
»
Не счита
В п. 6.14.
проектир
конструк
вести по
конструк
этом сам
решения
Не указан вид соединения вертикальных
железобетонных элементов с
антисейсмическими поясами – жесткое или
шарнирное?
Вступает в противоречие с требованиями
СП 119.13330 «Железные дороги колеи
1520 мм» (таблица 4.1 «Категории
железных дорог». Привести в соответствие
требование данного абзаца с СП 119.13330.
АО
«Росжелдорпроект
»
Этот воп
СП, возм
АО
«Росжелдорпроект
»
Предлага
удаления
принять п
актуализа
Дана некорректная ссылка на федеральный
закон от 30.12.2009 № 384-ФЗ
«Технический регламент о безопасности
зданий и сооружений», в соответствии с
которым в Российской Федерации
выполняется проектирование (в том числе
АО
«Росжелдорпроект
»
Предлага
удаления
принять п
актуализа
193

194.

строительство транспортных
сооружений на таких площадках
осуществляются в соответствии с
требованиями [5].
79
80
81
7.1.1
Примечание 1
Даны ссылки на карты А, В, С ОСР-97,
однако в приложении А к проекту своду
правил содержатся карты ОСР-2015.
7.1.1
Примечание 2
В районах сейсмичностью 6 баллов
антисейсмические мероприятия при
проектировании объектов
транспортного строительства
предусматриваются на участках
сейсмичностью 7 и более баллов,
определяемой на основании данных
общих инженерно-геологических
изысканий и геофизических
исследований, выполняемых с учетом
специфики строительства транспортных
сооружений.
7.1.2
Даны ссылки на карты А, В, С ОСР-97,
однако в приложении А к проекту своду
правил содержатся карты ОСР-2015.
изыскания), строительство любых зданий
и сооружений независимо от площадки
строительства.
При этом требование противоречит
разделу 1 «Область применения» проекта
СП.
Привести в соответствие текст проекта
свода правил с приложениями.
АО
«Росжелдорпроект
»
Замечани
откоррек
В пункте отсутствует смысловая часть, что
не позволит обеспечить его соблюдение
при проектировании и проверке
государственной экспертизой.
Требуется пояснение – какой
сейсмичностью должен обладать район
строительства – «6 баллов» или «7 баллов и
выше»?
АО
«Росжелдорпроект
»
Противор
районах 6
с сейсмич
из грунто
Привести в соответствие текст проекта
свода правил с приложениями.
АО
«Росжелдорпроект
»
Замечани
откоррек
82
7.2.1
При изысканиях железных и
автомобильных дорог в условиях
горного и предгорного рельефа на
участках с проявлениями опасных
геологических процессов (скальных
обвалов, оползней, лавин, разжижения
грунта) следует выбирать положение
трассы по результатам техникоэкономического сравнения вариантов
обхода этих участков в плане и в
профиле и варианта возведения
защитных сооружений (тоннелей,
галерей, улавливающих стен и др.).
Исключить или изложить в иной редакции.
В рассматриваемой редакции требование
не относится к сейсмическим площадкам
строительства. Требования, перечисленные
в данном пункте, изложены в СП 47.13330
«Инженерные изыскания для
строительства. Основные положения».
АО
«Росжелдорпроект
»
Предлага
удаления
принять п
актуализа
83
7.2.2
Трассирование железных и
автомобильных дорог вдоль берегов
морей, подверженных затоплению
сейсмическими морскими волнами
(цунами), должно выполняться с учетом
варианта размещения трассы на
безопасном расстоянии от уреза воды и
варианта осуществления мер по защите
транспортных сооружений от цунами.
Предлагается установить ответственность
заказчика строительства за реализацию
данного требования. Изложить в
следующей редакции:
Трассирование железных и автомобильных
дорог вдоль берегов морей, подверженных
затоплению сейсмическими морскими
волнами (цунами), должно определяться
заказчиком по предложению проектной
организации с учетом варианта
размещения трассы на безопасном
расстоянии от уреза воды и варианта
осуществления мер по защите
транспортных сооружений от цунами.
АО
«Росжелдорпроект
»
Предлага
удаления
принять п
актуализа
84
7.2.2
Таблица 10
Уровни ответственности не соответствуют
п.7 статьи 4 ФЗ от 30.12.2009 г. № 384-ФЗ
АО
«Росжелдорпроект
Предлага
удаления
194

195.

Классификация объектов транспортного
комплекса по ответственности
85
7.2.2
Таблица 10
Классификация объектов транспортного
комплекса по ответственности
86
7.3.2
87
7.4.1
В районах сейсмичностью 8 и 9 баллов
железнодорожный путь следует
монтировать из звеньев на щебеночном
балласте с увеличенной нормой
покилометрового запаса рельсов и
других элементов пути.
88
Расчетную сейсмическую нагрузку,
приложенную в точке k и
соответствующую i-му тону
собственных колебаний системы,
определяют по формуле
Sik =K1 mk A i Kψ ik,, (13)
где K1 – коэффициент, учитывающий
влияние на сейсмическую нагрузку
снижения жесткости сооружения и
увеличение рассеяния энергии
колебаний из-за появления трещин и
пластических деформаций в
конструкциях моста,
значения которого следует принимать
равным 0,25; 0,37; 0,50 для мостов
уровней ответственности 1а, 1б, 2
соответственно;
7.5.6 Арочные и рамные
89
и табл. 2 ГОСТ 27751-2014 «Надежность
строительных конструкций и оснований.
Основные положения» (входящей в
перечень стандартов и сводов правил, в
результате применения которых на
обязательной основе обеспечивается
соблюдение требований указанного закона
384-ФЗ.
С целью уточнения уровня
ответственности целого комплекса малых и
средних ИССО предлагается дополнить
пункт уровнем ответственности мостов
длиной менее 500м и с пролетами менее
200м на магистралях с преимущественно
пассажирским движением,
особогрузонапряжѐнных магистралях на
железных дорогах I и II категории.
Исключить слово «цементацией».
Указывается конкретный способ
укрепления грунтов ( но не единственный),
чем нарушается требование
законодательства в области
стандартизации.
Для укрепления грунтов имеются много
других способов кроме цементации.
ИСКЛЮЧИТЬ!
В Российской Федерации успешно
эксплуатируются более 8 тыс. км
бесстыкового железнодорожного пути в
условиях высокой сейсмоактивности.
Эксплуатация одного километра
звеньевого пути на 207,6 тыс. руб. дороже
чем бесстыкового. В случае обеспечения
этого требования необоснованные расходы
только ОАО «РЖД» возрастут на 1,9 млрд.
руб. в год, без учета путей необщего
пользования.
Более того, данное требование не
учитывает требования законодательства
– постановлением Правительства
Российской Федерации от 29.09.2015 г.
№ 1033 данный пункт исключен
из вышеуказанного перечня стандартов
и сводов правил.
В формуле 13 для сооружения с более
высоким уровнем ответственности в
существующей редакции ошибочно
применены более низкие коэффициенты.
»
принять п
актуализа
АО
«Росжелдорпроект
»
Предлага
удаления
принять п
актуализа
АО
«Росжелдорпроект
»
Предлага
удаления
принять п
актуализа
АО
«Росжелдорпроект
»
Предлага
удаления
принять п
актуализа
АО
«Росжелдорпроект
»
Предлага
удаления
принять п
актуализа
Для данного пункта требуется указать
АО
Предлага
195

196.

90
91
92
93
94
железобетонные бесшарнирные мосты
допускается применять только при
наличии скального основания. Пяты
сводов, арок и стоек рам следует
опирать на массивные опоры и
располагать на возможно более низком
уровне. Надарочное строение следует
проектировать сквозным.
7.5.7 При расчетной сейсмичности 7 и
более баллов арочные своды мостов и
путепроводов, собираемые из
металлических гофрированных листов,
должны проверять на прочность и
устойчивость при землетрясении. Грунт
насыпей подходов и засыпки сводов
должен подбираться по
гранулометрическому составу и
уплотняться
таким образом, чтобы не терять
устойчивость (не разжижаться) и
сохранять требуемые по расчету
деформационные свойства при
сейсмическом воздействии. При
необходимости грунт должен
армироваться геосинтетическим
материалом.
7.5.16 При расчетной сейсмичности 9
баллов в проектах мостов с балочными
разрезными пролетными строениями
длиной более 18 м следует
предусматривать сцепные антисейсмические устройства для
предотвращения падения пролетных
строений с опор.
7.7.1 При расчетной сейсмичности более
8 баллов следует преимущественно
применять железобетонные
фундаментные трубы со звеньями
замкнутого контура, полукруглые
арочные трубы из сборных
металлических гофрированных листов с
высотой свода до 1,5 м и с фундаментом
в виде железобетонной плиты,
уложенной на уплотненный слой
крупнообломочного грунта или другое
малосжимаемое основание, а также
бесфундаментные круглые трубы
диаметром до 1,5 м, собираемые из
металлических гофрированных листов.
7.7.4 Устойчивость металлических
оболочек гофрированных труб должна
быть обеспечена уплотнением грунта
насыпи, выбором необходимого
сортамента
гофрированных листов, армированием
при необходимости насыпного грунта
геосинтетическим материалом.
7.7.6 При замене малого моста трубой не
допускается снижение расчетного
расхода воды водопропускным
сооружением.
расчетную сейсмичность площадки
строительства.
«Росжелдорпроект
»
удаления
принять п
актуализа
Пункт не содержит конкретных требований
к гранулометрическому составу насыпи,
что не позволит обеспечить данное
требование при проектировании.
АО
«Росжелдорпроект
»
Предлага
удаления
принять п
актуализа
Исключить.
Дублирует п.7.5.9 (в части применения
антисейсмических устройств) и п.7.5.11 (в
части применения сейсмостойких опорных
частей)
АО
«Росжелдорпроект
»
Предлага
удаления
принять п
актуализа
Исключить.
Данное требование не может быть
реализовано для железнодорожного
земляного полотна.
Противоречит требованиям документов по
стандартизации в области
железнодорожного строительства.
АО
«Росжелдорпроект
»
Предлага
удаления
принять п
актуализа
Исключить.
Данное требование не может быть
реализовано для железнодорожного
земляного полотна.
Противоречит требованиям документов по
стандартизации в области
железнодорожного строительства.
АО
«Росжелдорпроект
»
Предлага
удаления
принять п
актуализа
Привести методику расчета, в соответствии
с которой выполняется требование данного
пункта по замене моста трубой.
АО
«Росжелдорпроект
»
Предлага
удаления
принять п
актуализа
196

197.

7.7.7 В сейсмических районах не
допускается увеличивать вероятность
превышения расчетных расходов воды
трубами под насыпями и малыми
мостами за счет учета развитости сети
автомобильных дорог.
7.9.7 Транспортные и пешеходные
тоннели в дорожных насыпях
допускается сооружать из
металлических гофрированных
оболочек открытого или замкнутого
контура поперечного сечения с
опиранием их на малосжимаемый грунт,
фундаменты мелкого или глубокого
заложения. Прочность и устойчивость
оболочек должны быть проверены
расчетом, обеспечивая необходимые
характеристики грунта насыпи,
уплотняя и армируя геосинтетическим
материалом. Прочность и устойчивость
оболочек обеспечивают подбором
соответствующего сортамента
гофрированых листов, а также
усилением свода стальными элементами
или бетонным покрытием.
Уточнить, что данное требование
распространяется только на автодороги.
АО
«Росжелдорпроект
»
Предлага
удаления
принять п
актуализа
Уточнить, что данное требование
распространяется только на автодороги.
АО
«Росжелдорпроект
»
Предлага
удаления
принять п
актуализа
97
8.2.1 Даны ссылки на карты А, В, С
ОСР-97, однако в приложении А к
проекту своду правил содержатся карты
ОСР-2015.
Привести в соответствие текст проекта
свода правил с приложениями.
АО
«Росжелдорпроект
»
Замечани
Откоррек
98
8.2.4 Даны ссылки на карты А, В, С
ОСР-97, однако в приложении А к
проекту своду правил содержатся карты
ОСР-2015.
Привести в соответствие текст проекта
свода правил с приложениями.
АО
«Росжелдорпроект
»
Замечани
Откоррек
99
8.2.5 Даны ссылки на карты А, В, С
ОСР-97, однако в приложении А к
проекту своду правил содержатся карты
ОСР-2015.
Привести в соответствие текст проекта
свода правил с приложениями.
АО
«Росжелдорпроект
»
Замечани
Откоррек
100
Приложение Г,
пункт Г.1.4* Мероприятия защиты от
землетрясений объектов нормальной и
повышенной сейсмостойкости
разрабатывают по указаниям настоящих
правил на основе предварительной
оценки сейсмической опасности по
картам общего сейсмического
районирования ОСР-2015-А и ОСР2015-В с уточнением исходной
сейсмичности по результатам научноисследовательских работ, фондовым и
справочным материалам, а также
применением данных сейсморазведки и
корреляционных уравнений инженерной
сейсмологии для учета влияния местных
инженерно-геологических и
геоморфологических условий на
сейсмичность участков строительства
наземных объектов (инженерногеологических условий и глубины
Исключить требование о необходимости
проведения научно-исследовательских
работ. Уточнение исходной сейсмичности
выполняется в соответствии с
требованиями действующих нормативных
технических документов.
Привести, при необходимости, методику
уточнения исходной сейсмичности.
АО
«Росжелдорпроект
»
Замечани
Откоррек
удалено.
95
96
197

198.

заложения выработок на сейсмичность
участков строительства тоннелей).
101
102
103
104
105
Приложение Г,
пункт Г.2.3* Исходные амплитудные
характеристики колебаний среднего по
сейсмическим свойствам грунта
корректируют с применением
результатов научно-исследовательских
работ по актуализации карт ОСР-2015,
фондовых и справочных материалов с
уточнением силы землетрясения в
районе строительства до десятых долей
целого балла.
Приложение Г,
пункт Г.2.4* Уточненная сила
землетрясения в районе (пункте)
строительства может отличаться от
сейсмичности района, указанной на
выбранной карте ОСР-2015, на
положительное или отрицательное
значение δI. В любом случае для
дальнейшего расчета принимают, что
модуль поправки δI не должен
превышать 1,0.
Библиография
[6] Технический регламент о
безопасности инфраструктуры
железнодорожного
транспорта (утв. постановлением
Правительства РФ от 15 июля 2010 г. №
525)
Библиография
[7]
Технический регламент о безопасности
высокоскоростного железнодорожного
транспорта (утв. постановлением
Правительства РФ от 15 июля 2010 г. №
533)
Исключить требование по корректировке
характеристик с применением результатов
НИР. Указанные в пункте «результаты
научно-исследовательских работ по
актуализации карт ОСР-2015» должны
быть включены в рассматриваемый свод
правил в виде Изменения в случае такой
актуализации.
АО
«Росжелдорпроект
»
Замечани
Откоррек
удалено.
У проектировщиков, не являющихся
специалистами в области МСР создаѐтся
впечатление, что по результатам МСР
возможно изменение сейсмичности
площадки только на 1 балл. Полезно
подчеркнуть, что речь идѐт именно об
исходной сейсмичности, к которой
добавится ещѐ и поправка по результатам
МСР.
АО
«Росжелдорпроект
»
Замечани
Откоррек
удалено.
Исключить.
Постановлением Правительства РФ от
19.09.2013 № 827 "О признании
утратившими силу некоторых актов
Правительства Российской Федерации"
данный технический регламент отменен.
В Российской Федерации действует
регламент Таможенного союза «О
безопасности инфраструктуры
железнодорожного транспорта» 003/2011
(утв. Решением Комиссии Таможенного
союза от 15.07.2011 г. № 710).
Исключить.
Постановлением Правительства РФ от
19.09.2013 № 827 "О признании
утратившими силу некоторых актов
Правительства Российской Федерации"
данный технический регламент отменен.
В Российской Федерации действует
регламент Таможенного союза «О
безопасности высокоскоростного
железнодорожного транспорта» 002/2011
(утв. Решением Комиссии Таможенного
союза от 15.07.2011 г. № 710).
Указания нового СП (по изучению грунтов
на глубину 30 м) противоречат
действующим документам. Правила
проведения работ по сейсмическому
микрорайонированию указаны в
действующем документе СП 11-105-97
―Инженерно-геологические изыскания для
строительства. Часть VI. Правила
производства геофизических
исследований‖. Пункт 4.13 СП 11-105-97
указывает на необходимо соблюдения
технических требований для
сейсморазведки, изложенных в
АО
«Росжелдорпроект
»
Замечани
Откоррек
АО
«Росжелдорпроект
»
Замечани
Откоррек
удалено.
ЗАО «СиСофт
Девелопмент»
Захлестин С.Ю.
Дементьева Ю.Ю.
Предлага
198

199.

106
Раздел 3, п. 3.14
107
Раздел 3, п. 3.15
108
Раздел 3, п. 3.20, 3.31
109
Раздел 3
110
Пункт 5.2 "б"
111
Пункт 6.2.2
действующем нормативном документе
РСН 66-87 ― Инженерные изыскания для
строительства. Технические требования к
производству геофизических работ.
Сейсморазведка‖. Пункты 2.5 и 2.6 РСН
66-87 оговаривают максимальную глубину
изучения геологического разреза и глубину
горных выработок (до 20 м) для решения
задач по сейсмическому
микрорайонированию. Пункт 3.12 РСН 6687 оговаривает мощность расчетной толщи
(10 м, считая от планировочной отметки,
либо другой обоснованной, но не более 20
м) для оценки приращения бальности.
В пункте 3.14 (каркасно-каменные здания)
указан только II тип зданий, упущен I тип,
различающиеся по технологическим
особенностям. Каркас I типа обычно
выполняется при применении сборных
железобетонных элементов каркаса
(Руководство по проектированию для
сейсмических районов каркасных зданий
со стеновым заполнением. Кишинев, 1976.
Разработан ЦНИИ им. В. А. Кучеренко).
Пункт 3.15 определяет только 3 категории,
таблица 1 – 4 категории.
Пункты 3.20 (МРЗ) и 3.31 (ПЗ), данные
понятия определены только для
гидротехнических сооружений. Для других
зданий и сооружений вышеуказанные
термины не определены. Пункт 3.20 при
прочтении двояко трактуется, т. е.
применим как для объектов повышенного
уровня ответственности, так и для
гидротехнических сооружений.
Дополнить: …для объектов
гидротехнических сооружений
повышенной ответственности…
В терминах везде ошибочно указана
ссылка на комплект карт ОСР-97, в
приложении А указан комплект карт ОСР2015.
До включения в СП требований к
задаваемым в
расчете характеристикам материалов, в том
числе к порядку учета нелинейных свойств
материалов и узлов соединения элементов
здания и сооружений, к нагрузкам и их
сочетаниям, а так же появления
соответствующих программных
комплексов, отвечающих требованиям СП,
и позволяющим проводить полноценный
анализ результатов расчетов по критериям,
которые тоже должны быть указаны в СП,
пункт 5.2 "б" необходимо исключить или
исключить обязательность его выполнения.
Пункт 6.2.2 перед последним абзацем
дополнить следующим: …Уступы в
скальных грунтах допускается не
устраивать…Вышеуказанный пункт
199
ЗАО «СиСофт
Девелопмент»
Захлестин С.Ю.
Дементьева Ю.Ю.
Приведен
упомянут
Технолог
замечани
данном э
ЗАО «СиСофт
Девелопмент»
Захлестин С.Ю.
Дементьева Ю.Ю.
ЗАО «СиСофт
Девелопмент»
Захлестин С.Ю.
Дементьева Ю.Ю.
Замечани
откоррек
ЗАО «СиСофт
Девелопмент»
Захлестин С.Ю.
Дементьева Ю.Ю.
ЗАО «СиСофт
Девелопмент»
Захлестин С.Ю.
Дементьева Ю.Ю.
Замечани
ЗАО «СиСофт
Девелопмент»
Захлестин С.Ю.
Дементьева Ю.Ю.
Замечани
корректи
Замечани
Предлага
удаления
принять п
актуализа
СП являе
документ
требован
соответст
требован
рамках м
При этом
способов
п. 5.2.2. С
нелинейн
различаю

200.

112
Пункт 6.19.6
113
Таблица 1
114
Таблица 7
разработан для столбчатых и ленточных
фундаментов, отсутствуют рекомендации
для плитных фундаментов.
Дополнить: …для плитных фундаментов,
выполненных без уступов, должно
выполняться условие отсутствия выпора
грунта из-под подошвы фундаментов…
При внесении незначительных изменений
(например: устройство дверного проема
взамен оконного и т. п.) вид работы
переходит в реконструкцию и, как
следствие, ведет к необходимости
выполнения сейсмостойких мероприятий
всего здания, имеющего статус
работоспособного по результатам
обследования, что ведет к значительным
затратам.
Дополнить следующим: …При
реконструкции зданий и сооружений II
(нормального) и III (пониженного) уровней
ответственности допускается сохранять
существующие конструкции здания, не
соответствующие конструктивным
требованиям действующих норм, но
обладающие необходимой расчетной
несущей способностью с учетом
сейсмического воздействия…
В табл. 1 категория грунтов принимается в
зависимости от скоростей и их
соотношения, т. е. необходимо выполнить
один из видов геофизических работ. Для
небольших объектов (например:
малоэтажные здания со стенами из
кирпича, блочные модульные котельные,
трансформаторные подстанции заводской
готовности, коровники, небольшие
пристройки к существующим зданиям при
реконструкции и т. д., а тем более для
объектов с финансированием из
бюджетных средств) стоимость изысканий
и проектных работ может быть
сопоставима (тем более с учетом 30-ти
метровых скважин) и даже превышать
стоимость строительно-монтажных работ,
что является нерациональным
расходованием бюджетных средств.
Необходимо дополнить документ
параметрами зданий и сооружений.
Например: этажность, напряжение под
подошвой фундаментов, глубина
сжимаемой толщи и т. п., для которых
категория грунтов может быть определена
по показателю консистенции и
коэффициенту пористости без определения
скоростей волн.
Оставить ограничения только по высоте
зданий. Ограничения по этажности,
указанные в скобках и как бы носящие
приближенно-справочный характер, но
постоянно используемые как обязательный
параметр ограничения, из таблицы
необходимо убрать.
200
ЗАО «СиСофт
Девелопмент»
Захлестин С.Ю.
Дементьева Ю.Ю.
Раздел су
внесен на
ЗАО «СиСофт
Девелопмент»
Захлестин С.Ю.
Дементьева Ю.Ю.
Положен
назначен
сейсмичн
таблицы
нормальн
уровня от
скорости
грунте яв
характер
учесть ва
грунтов в
ЗАО «СиСофт
Девелопмент»
Захлестин С.Ю.
Дементьева Ю.Ю.
В соответ
оба парам
Остальны
характер
главе 6.

201.

115
116
Таблица 9, п. 3
Проект СП в целом
Если в таблице нет таких параметров
зданий как: шаг вертикальных несущих
конструкций, пролеты, интенсивность
нагрузки на перекрытия, - то вводить
ограничения по количеству этажей при
наличии ограничения по высоте в метрах
не нужно.
Неясно, какое отношение имеет величина
выносов карнизов в примечании к
размерам простенков и проемов.
Многие требования разделов 4
«Основные положения», 5 «Расчетные
нагрузки» и 7 «Транспортные сооружения»
не обоснованы инженерным анализом
последствий землетрясений,
данными
экспериментальных
и
теоретических
исследований, не обеспечивают в целом
безопасность населения и приемлемые
затраты на антисейсмические мероприятия,
не учитывают опыт и практически
невыполнимы
в
транспортном
строительстве.
Для
разработки
норм
строительства в сейсмических районах на
современном уровне необходим переход к
модульной технологии стандартизации,
рассматривающей здания и различные по
назначению
виды
сооружений
(транспортные, гидротехнические и др.)
как отдельные объекты стандартизации.
Разработка норм проектирования этих
объектов должна поручаться специалистам,
имеющим практический опыт работы в
соответствующих областях строительства.
Модульная технология позволяет
регламентировать
антисейсмические
мероприятия с учетом специфики объектов
нормирования, предотвращать включение в
нормы ошибочных или необоснованных
положений, оперативно вносить в нормы
необходимые изменения и дополнения.
В
связи
с
изложенным
предлагается:
1. Исключить при пересмотре СП
14.13330 раздел 7 «Транспортные
сооружения», а также справочное
приложение
Г
«Уточнение
исходной
сейсмичности»,
относящееся
к
транспортным
сооружениям
(соответствующие
СП подготовлены ООО «ПОИСК»
по плану работ Минстроя на 2016
г.);
2. Внести
необходимые
исправления в разделы 1, 2, 3, 4 и 5
СП 14.13330.2014, исходя из
недопустимости дублирования или
искажения
специальных
требований
к
транспортным
сооружениям
как
отдельным
объектам стандартизации.
В
порядке
обоснования
201
ЗАО «СиСофт
Девелопмент»
Захлестин С.Ю.
Дементьева Ю.Ю.
ООО «ПОИСК»
Шестоперов Г.С.
Замечани
откоррек
Предлага
удаления
принять п
актуализа

202.

117
Раздел 4 Основные положения.
Пункт 4.1
приведенных
выше
предложений
рассмотрим
некоторые,
наиболее
существенные недостатки обязательных к
применению разделов 4, 5 и 7 проекта
пересматриваемого СП 14.13330.2014
(первая редакция).
В п.4.1 проекта приведены
основные положения, которыми следует
руководствоваться при проектировании
зданий и сооружений, включая следующие
требования:
принимать,
как
правило,
симметричные конструктивные и
объемно-планировочные решения
с равномерным распределением
нагрузок на перекрытия, масс и
жесткостей конструкций в плане и
по высоте;
не
следует
применять
конструктивные
решения,
допускающие
обрушение
сооружения в случае разрушения
или
недопустимого
деформирования одного несущего
элемента.
Невозможно
выполнить
упомянутые
требования
при
проектировании
транспортных
сооружений. В самом деле, планировочные
решения
наземных
транспортных
сооружений в горах диктуются рельефом
местности, в городах – существующей
застройкой. В связи с этим искусственные
сооружения (транспортные развязки), а
также насыпи подходов к ним обычно
сооружаются на кривых в плане участках
пути (дорог) или имеют различную высоту
по длине моста, т.е. не являются
симметричными сооружениями.
Массы
насыпей
и
мостов
практически всегда распределены по
высоте сооружения неравномерно. Масса
пролетных
строений
(особенно
неразрезных), присоединенная к опорам,
также неравномерно распределена по
длине сооружения. Поэтому требование
равномерности распределения масс не
может быть выполнено.
Требование
не
применять
конструктивные решения, допускающие
отказ сооружения в случае разрушения
одного
несущего
элемента,
не
соответствует опыту эксплуатации мостов,
в том числе мостовых опор с телом ниже
ригеля в виде одной стойки, заделанной в
плиту
фундамента.
Опоры
такой
конструкции, выполняемые из бетона
(железобетона) сплошного (коробчатого)
поперечного
сечения,
широко
применяются в сейсмических районах при
соответствующих нагрузкам размерах
сечений,
прочности
материалов,
202
ООО «ПОИСК»
Шестоперов Г.С.
Следует з
применен
1, не расп
глав 4, 5,
сооружен
Предлага
добровол
4.1 (реко
Его выпо
исключит
использо
методов
Также пр
вопрос уд
8 или при
актуализа

203.

118
Раздел 4 Основные положения.
Пункт 4.3
армировании.
В этом пункте устанавливается
порядок выбора карт ОСР (А, В, С) при
проектировании. В частности, указывается,
что заказчик имеет право принять для
объектов
нормального
уровня
ответственности любую из комплекта карт
А, В или С.
Известно, что выбор карты
является одним из наиболее действенных
инструментов регулирования затрат на
антисейсмические мероприятия и ущерба
от возможных землетрясений.
Для многих населенных пунктов
(Махачкала, Владикавказ, Грозный, Кызыл
и др.) за счет выбора карты С вместо карты
А
можно
увеличить
исходную
сейсмичность на два балла, что приводит к
резкому
повышению
стоимости
антисейсмических мероприятий.
Для других городов (Барнаул,
Красноярск, Чита, Якутск и др.) за счет
выбора карты А можно вообще исключить
мероприятия по антисейсмической защите
сооружений,
что
приведет
к
неприемлемому
материальному
и
социальному ущербу в будущем.
В настоящее время заказчиком
могут
быть
как
государственные
организации федерального, регионального
и муниципального уровня, так и
негосударственные акционерные общества
и
другие
субъекты
хозяйственной
деятельности. В результате делегирования
полномочий федеральных органов власти
по выбору карты ОСР на региональный и
муниципальный уровни, а также передачи
этих
полномочий
негосударственным
организациям сейсмостойкость объектов и
безопасность населения в сейсмоопасных
районах попадают в зависимость от
квалификации и экономических интересов
заказчиков
и
других
участников
строительного производства.
Для обеспечения безопасности
населения в сейсмических районах, что
является функцией и обязанностью
государства, необходимо регламентировать
правила
выбора
карты
ОСР
при
проектировании конкретных объектов в
нормативных документах федерального
уровня.
С
учетом
изложенного
предлагается исключить из текста п.4.3
положение о праве заказчика выбирать для
проектируемых зданий и сооружений одну
из трех действующих карт ОСР (А, В, С).
В заключительном абзаце п.4.3
предлагается:
«Для
уточнения
сейсмичности
района
строительства
объектов повышенной ответственности,
перечисленных в позиции 1 таблицы 3,
дополнительно
проводят
203
ООО «ПОИСК»
Шестоперов Г.С.
Следует з
применен
1, не расп
глав 4, 5,
сооружен
Предлага
удаления
принять п
актуализа

204.

119
Раздел 4
Основные положения. Пункт 4.4
120
Раздел 4 Основные положения.
Пункт 4.8
специализированные сейсмологические и
сейсмотектонические исследования».
В
позиции
1
таблицы
3
транспортные сооружения отсутствуют.
Следовательно, в проекте СП предлагается
исключить работы по уточнению исходной
сейсмичности для любых транспортных
сооружений.
Это
предложение
не
соответствует
сложившейся
практике
изысканий транспортных сооружений,
включающей
выполнение
сейсмологических и сейсмотектонических
исследований с целью уточнения исходной
сейсмичности. В последние годы такие
работы проводились при изысканиях
мостовых переходов через пролив Босфор
Восточный и Керченский пролив, моста
через Волгу в Волгограде и ряде других
объектов. Отказ от этих работ приведет к
существенному снижению надежности
транспортной инфраструктуры.
В
проекте
указано,
что
«Сейсмичность площадки строительства
объектов, использующих карту А, при
отсутствии СМР следует определять по
таблице 1».
Таблица
1
не
учитывает
инженерно-геологические
и
геоморфологические условия, характерные
для участков строительства транспортных
сооружений (большая мощность рыхлых и
слабых отложений в устьях рек, глубина
проходки тоннелей 100 и более метров,
крутые
горные
склоны,
сложные
инженерно-геологические
условия
в
долинах больших рек в зоне вечной
мерзлоты
и
др.).
Поэтому
при
регламентации работ по СМР участки
расположения транспортных сооружений
рассматриваются как особые объекты
нормирования,
на
которые
не
распространяются нормы СМР участков
расположения зданий (РСН 65-87 и др.).
Правила СМР при изысканиях
транспортных сооружений изложены в
проекте СП «Транспортные сооружения в
сейсмических районах. Правила уточнения
исходной сейсмичности и сейсмического
микрорайонирования»,
который
рекомендуется
применять
в
соответствующих случаях.
В этом пункте предлагается
предусматривать
установку
станций
наблюдения за динамическим поведением
конструкций и прилегающих грунтов в
проектах
зданий
и
сооружений,
перечисленных в позиции 1 таблицы 3.
В
позиции
1
таблицы
3
транспортные сооружения отсутствуют.
Следовательно, в проекте СП не
предусмотрено
устройство
станций
наблюдения даже на наиболее крупных
транспортных объектах, что противоречит
204
ООО «ПОИСК»
Шестоперов Г.С.
Следует з
применен
1, не расп
глав 4, 5,
сооружен
рассмотр
СП разде
предложе
ООО «ПОИСК»
Шестоперов Г.С.
Следует з
применен
1, не расп
глав 4, 5,
сооружен

205.

121
Раздел 5 Расчетные нагрузки.
Пункт 5.2, а
122
Раздел 5 Расчетные нагрузки.
Пункт 5.2.1
123
Раздел 5 Расчетные нагрузки.
отечественной и зарубежной практике.
В проекте СП предлагается
выполнять расчет сооружений с целью
предотвращения
частичной
потери
эксплуатационных свойств сооружением.
Применительно к транспортным
сооружениям
установка
на
предотвращение
частичной
потери
эксплуатационных
свойств
означает
недопущение в результате землетрясения
местных и общих деформаций (трещин,
осадок, наклонов опор и др. повреждений)
которые
снижают
долговечность
конструкций, комфортность движения по
дорогам,
ухудшают
внешний
вид
сооружений,
требуют
введения
ограничений на вес и скорость движения,
но не вызывают аварий подвижного
состава и полного прекращения движения.
Анализ состояния транспортных
сооружений показывает, что небольшие
повреждения на дорогах, не требующие
прекращения движения, возникают даже
при 7-балльных толчках. Требование
полного сохранения эксплуатационных
свойств, при землетрясениях не должно
распространяться
на
транспортные
сооружения, как нереалистичное.
Возникающие на дорогах в
результате
землетрясений
небольшие
повреждения
должны
устраняться
ремонтом сооружений. От наступления
предельных состояний первой группы,
включая
чрезмерные
деформации,
приводящие к авариям подвижного
состава, транспортные сооружения должны
быть
защищены
по
расчету
и
конструктивными мероприятиями.
В этом пункте указывается:
«Расчеты по 5.2 б следует применять для
зданий и сооружений, перечисленных в
позициях 1 и 2 таблицы 3». В п.5.2 б
определено, что «Целью расчетов на
воздействие МРЗ является предотвращение
глобального обрушения сооружения или
его
частей,
создающего
угрозу
безопасности людей».
Обращаясь к таблице 3 видим, что
транспортные сооружения не указаны в
позициях 1 и 2 (кроме тоннелей на дорогах
высшей категории и мостовых сооружений
с
пролетами
200
м
и
более).
Следовательно, в проекте СП предлагается
не выполнять расчеты подавляющей части
транспортных сооружений с целью
предотвращения их разрушения при
землетрясениях.
Данное предложение
ЦНИИСК необходимо отклонить как
необоснованное и влекущее за собой
чрезвычайно
тяжелые
социальноэкономические последствия.
Согласно
п.5.2.2
ускорения
205
ООО «ПОИСК»
Шестоперов Г.С.
Следует з
применен
1, не расп
глав 4, 5,
сооружен
ООО «ПОИСК»
Шестоперов Г.С.
Следует з
применен
1, не расп
глав 4, 5,
сооружен
ООО «ПОИСК»
Следует з

206.

Пункт 5.2.2
124
Раздел 5 Расчетные нагрузки.
Пункты 5.5 и 5.6
125
Раздел 5 Расчетные нагрузки.
Пункт 5.10
126
Раздел 7 Транспортные сооружения.
Пункт 7.6.7
колебаний грунта следует умножать на
коэффициент К0 таблицы 3. Для объектов,
перечисленных в позициях 1 и 2 этой
таблицы при расчете на МРЗ величина
коэффициента К0 установлена равной 2,0 и
1,5, соответственно.
Одновременно
с
введением
дополнительного
коэффициента
К0
ответственность зданий и сооружений
должна
учитываться
выбором
соответствующей карты ОСР. Таким
образом, по проекту СП один и тот же
фактор
(ответственность
объекта)
принимается во внимание дважды, что
приводит к завышению сейсмической
нагрузки в 1,5-2 раза.
Следует также отметить, что
принятая в таблице 3 классификация
сооружений противоречит ГОСТ 277512014
«Надежность
строительных
конструкций и оснований. Основные
положения» как по числу выделенных
классов, так и по отнесению сооружений к
разным классам.
В
проекте
СП
приводятся
зависимости
English     Русский Rules