Similar presentations:
Алгебра логики
1. Алгебра логики
2.
Формы мышления и история развитияалгебры логики
История логики насчитывает около двух с
половиной тысячелетий. Первые учения о формах и
способах мышления возникли в Древнем Китае и
Индии. Основоположником формальной логики
является Аристотель (384-322 гг. до н.э.) –
древнегреческий философ, который впервые отделил
логические формы мышления от его содержания.
Алгебра логики – наука об операциях, аналогичных математическим, над
высказываниями или над объектами, которые могут принимать только два
значения – «ИСТИНА» или «ЛОЖЬ».
В 1842 году английский математик Джорж Буль
разработал математическую логику или алгебру
логики, которую впоследствии стали называть
«булевой
алгеброй».
Спустя 100 лет алгебра логики стала основой
теории цифровых вычислительных машин, ее
используют в компьютерной логике, электронике, в
основе всех микропроцессорных операций.
3.
Формы мышления и история развитияалгебры логики
Многие философы и математики развивали отдельные положения
логики и иногда даже намечали контуры современного исчисления
высказываний, но ближе всех к созданию математической логики
подошел уже во второй половине XVII века выдающийся немецкий
ученый Готфрид Вильгельм Лейбниц (1646— 1716), указавший пути для
перевода логики “из словесного царства, полного неопределенностей,
в царство математики, где отношения между объектами или
высказываниями определяются совершенно точно”. Лейбниц надеялся
даже, что в будущем философы, вместо того чтобы бесплодно спорить,
станут брать бумагу и вычислять, кто из них прав. При этом в своих
работах Лейбниц затрагивал и двоичную систему счисления.
Уже в XIX веке стало понятно, что система Буля хорошо подходит
для описания электрических переключательных схем. Ток в цепи
может либо протекать, либо отсутствовать, подобно тому, как
утверждение может быть либо истинным, либо ложным. А еще
несколько десятилетий спустя, уже в XX столетии, ученые
объединили созданный Джорджем Булем математический
аппарат с двоичной системой счисления, заложив тем самым
основы для разработки цифрового электронного компьютера.
4.
Логика – это наука о формах и способах мышления,рассуждений и доказательств.
Мышление осуществляется через
понятия, высказывания и умозаключения.
Понятие – это форма
мышления, выделяющая
существенные и отличительные
признаки объекта.
Умозаключение – это форма
мышления, с помощью которой из
одного или нескольких простых
высказываний (суждений) может
быть получено новое составное
высказывание (суждение).
Высказывание – это формулировка в форме
утверждения или отрицания об объекте и его
свойствах. Высказывание может быть
истинным или ложным.
5. Алгебра высказываний
была разработана длятого, чтобы определять истинность или
ложность составных высказываний, не
вникая в их содержание
6. Высказывание
Высказывание – это форма мышления, в которой что-либоутверждается или отрицается о реальных предметах, их
свойствах и отношениях между ними;
Высказывание может быть либо истинно, либо ложно;
Высказывания могут быть выражены
естественных и формальных языков;
с
Высказывания
могут
быть
выражены
повествовательным предложением.
помощью
только
7.
Примеры высказыванийИстинное высказывание: «Буква «А» - гласная».
Ложное высказывание: «Компьютер был изобретен в середине XIX века».
Какие из предложений являются высказываниями? Какие из
высказываний истинные?
1. Какой длины эта лента?
Не высказывание
2. Прослушайте сообщение.
Не высказывание
3. Делайте утреннюю зарядку!
Не высказывание
4. Назовите устройства ввода информации.
Не высказывание
5. Кто отсутствует?
Не высказывание
Ложное высказывание
6. Париж – столица Англии.
7. Число 11 является простым.
Истинное высказывание
8. 4+5=10
Ложное высказывание
9. Без труда не вытащишь и рыбку из пруда.
Истинное высказывание
10. Сложите числа 2 и 5.
Не высказывание
Истинное высказывание
11. Некоторые медведи живут на Севере.
12. Все медведи – бурые.
Ложное высказывание
Не высказывание
13. Чему равно расстояние от Москвы до Ленинграда?
14. Сумма углов треугольника – 180 градусов.
Истинное высказывание
8.
ВысказыванияПростые
Сложные (составные)
называют повествовательное
предложение, относительно
которого имеет смысл говорить,
истинно оно или ложно.
Получаются из простых с
использованием логических
операций или союзов “и”, “или”,
“не”, “если то”.
Истинность простых
высказываний определяется на
основании здравого смысла.
Истинность составных
высказываний определяется с
помощью алгебры высказываний.
Летом я поеду на дачу.
Москва – столица России.
Число 27 является простым.
Летом я поеду на дачу или буду
отдыхать на море.
Петров — врач и шахматист.
9. Логические выражения
Логическиепеременные
Логические
константы
Логические
операции
10. Логические переменные
– простые высказывания,содержащие только одну мысль.
Обозначаются буквами латинского алфавита:
A, B, C…
Логические переменные могут принимать лишь два
значения: «ИСТИНА» (1) или «ЛОЖЬ» (0)
Например, два простых высказывания:
А = «2 2 = 4» истина
(1)
В = «2 2 = 5» ложь
(0)
являются логическими переменными А и В
11. Логические константы
– принимают 2 значения.1
Истина
True
0
Ложь
False
12.
В алгебре высказываний надлогическими переменными (над
высказываниями) можно
производить определенные
логические операции, в
результате которых получаются
новые высказывания
13. Логические операции
Конъюнкция(логическое умножение, «И»)
Дизъюнкция
(логическое сложение, «ИЛИ»)
Инверсия
(логическое отрицание, «НЕ»)
Импликация
(логическое следование, «Если А, то В»)
Эквивалентность
(логическое равенство (тождество), «А тогда и только
тогда, когда В»)
Строгая дизъюнкция
(исключающее ИЛИ , неравнозначность, сумма по
модулю 2)
14. Конъюнкция
Объединение двух или несколькихвысказываний в одно с помощью союза
«И» называется операцией логического
умножения, или конъюнкцией.
15.
Конъюнкция - логическое умножениеРезультат логического умножения является
истинным тогда и только тогда, когда истинны все
входящие в него простые высказывания.
Таблица истинности функции
логического умножения
A B
И,
F=A*B
0
0
0
0
1
0
1
0
0
1
1
1
, and, &, *, ·
0
От лат. conjunctio связываю
В переводе на естественный язык
«и А, и В»
«как А, так и В»
«А вместе с В»
«А несмотря на В»
«А, в то время как В»
Пример: Даны высказывания
А – «Число 10 – четное» = ИСТИНА
В – «Число 10 – отрицательное» = ЛОЖЬ
С – «Число 10 кратно 2» = ИСТИНА
А и В – «Число 10 – четное и отрицательное» - ЛОЖЬ
А и С – «Число 10 как четное, так и кратно 2» - ИСТИНА
16. Дизъюнкция
Объединение двух или несколькихвысказываний в одно с помощью союза
«ИЛИ» называется операцией логического
сложения, или дизъюнкцией.
17.
Дизъюнкция - логическое сложениеРезультат логического сложения является истинным
тогда, когда истинно хотя бы одно из входящих в
него простых высказываний.
Таблица истинности функции
логического сложения
A B
В переводе на естественный язык
«А или В»
F=A+B
0
0
0
0
1
1
1
0
1
1
1
1
ИЛИ,
От лат. disjunctio –
различаю
, or, +
Пример: Даны высказывания
А – «Число 10 – четное» = ИСТИНА
В – «Число 10 – отрицательное» = ЛОЖЬ
С – «Число 10 - простое» = ЛОЖЬ
А или В – «Число 10 – четное или отрицательное» ИСТИНА
А или С – «Число 10 четное или простое» - ИСТИНА
В или С – «Число 10 отрицательное или простое» ЛОЖЬ
18. Инверсия
Присоединение частицы «НЕ» квысказыванию называется операцией
логического отрицания, или инверсией.
19.
Инверсия - логическое отрицаниеЛогическое отрицание делает истинное
высказывание ложным и, наоборот, ложное –
истинным.
Таблица истинности функции
логического отрицания
От лат. inversio переворачиваю
В переводе на естественный язык
«Не А»
«Неверно, что А»
Пример: Даны высказывания
A
F=А
0
1
В – «Число 10 – отрицательное» = ЛОЖЬ
1
0
С – «Луна – спутник Земли» = ИСТИНА
А – «Число 10 – четное» = ИСТИНА
Не А – «Неверно, что число 10 – четное» = ЛОЖЬ
НЕ, NOT,
¬,
Не В – «Неверно, что число 10 – отрицательное» = ИСТИНА
Не С – «Неверно, что Луна – спутник Земли» = ЛОЖЬ
20. Импликация
Логическое следование (импликация)образуется соединением двух
высказываний в одно с помощью оборота
речи «если …, то …».
21.
Импликация - логическое следованиеРезультат логического следования является ложным
тогда и только тогда, когда из истины следует ложь.
Таблица истинности функции
логического следования
A
B
F=A
0
0
1
0
1
1
B
От лат. implicatio –
тесно связывать
В переводе на естественный язык
«если А, то В»
«В, если А»
«Когда А, тогда В»
«А достаточно для В»
«А только тогда, когда В»
Пример: Даны высказывания
А – «Число 10 – четное» = ИСТИНА
В – «Число 10 – отрицательное» = ЛОЖЬ
1
0
0
1
1
1
→, , , IMP
С – «Число 10 - простое» = ЛОЖЬ
А
В – «Если число 10 – четное, то оно отрицательное» - ЛОЖЬ
А
С – «Число 10 простое, если четное» -ЛОЖЬ
«Если число делится на 10, то оно делится на 5»
ИСТИНА
22. Эквивалентность
Логическое равенство(эквивалентность) образуется
соединением двух высказываний в одно с
помощью оборота речи «… тогда и только
тогда, когда …».
23.
Эквивалентность - логическое равенствоРезультат логического равенства является истинным
тогда и только тогда, когда оба высказывания
одновременно либо истинны, либо ложны.
Таблица истинности функции
логического равенства
A
B F=A
0
0
1
0
1
0
B
От лат. aeguivalens
– равноценное
В переводе на естественный язык
«А эквивалентно В»
«А только тогда и только тогда, когда В»
Пример: Даны высказывания
А – «Число 10 – четное» = ИСТИНА
В – «Число 10 – отрицательное» = ЛОЖЬ
1
0
0
1
1
1
,
, , , EQV
С – «Число 10 - простое» = ЛОЖЬ
А
В – «Число 10 – четное, тогда и только тогда,
когда оно - отрицательное» - ЛОЖЬ
В
С – «Число 10 такое же простое, как и
отрицательное» ИСТИНА
24. Строгая дизъюнкция
- логическаяоперация, по своему применению
максимально приближенная к
грамматической конструкции «либо …
либо …».
25.
Строгая дизъюнкцияРезультат выполнения логической операции будет равен 1 (единице),
если один из битов a или b равен 1 (единице), во всех остальных случаях,
результат равен 0 (нулю).
Таблица истинности функции
исключающее ИЛИ
A B
F=A B
0
0
0
0
1
1
1
1
0
1
, XOR
1
0
Пример: Даны высказывания
А – «Я пойду в кино» = ИСТИНА
В – «Я пойду на каток» = ИСТИНА
С – «Я пойду в школу» = ЛОЖЬ
А В – «Я пойду либо в кино либо на каток» - ЛОЖЬ
А С – «Я пойду либо в кино либо в школу» - ИСТИНА
В С – «Я пойду либо на каток либо в школу» - ИСТИНА
26. Порядок действий
1.2.
3.
4.
5.
Действия в скобках
Отрицание
Конъюнкция
Дизъюнкция /Строгая дизъюнкция
Импликация / Эквивалентность
27.
Упражнения по записи высказываний в виде логическихвыражений
1
«Летом Петя поедет в деревню и, если будет хорошая погода, то он будет рыбачить.»
А
В
F=A * (B
2
С
C)
«Точка Х принадлежит интервалу [A;B]»
(X>=A) * (X<=B)
3
«Точка Х не принадлежит интервалу [A;B]»
(X>=A) * (X<=B)
4
«Неверно, что если дует ветер, то солнце светит только тогда, когда нет дождя.»
D – идет дождь
В
С
В
(С
D)
28.
Упражнения по записи высказываний в виде логическихвыражений
5
«Если урок будет интересным, то никто из школьников – Миша, Вика, Света – не
будет смотреть в окно»
У
Урок будет интересным
М
Миша будет смотреть в окно
У
6
В
Вика будет смотреть в окно
С
Света будет смотреть в окно
М*В*С
«Я пойду гулять тогда и только тогда, когда выучу все уроки.»
С
В
В
С