Синусоидалы токтың тізбектеріндегі энергетикалық процестер. Толық қуат. Ваттметр. Синусоидалы токтың тізбектеріндегі қуаттар
276.00K
Category: electronicselectronics

Синусоидалы токтың тізбектеріндегі энергетикалық процестер. Толық қуат. Ваттметр

1. Синусоидалы токтың тізбектеріндегі энергетикалық процестер. Толық қуат. Ваттметр. Синусоидалы токтың тізбектеріндегі қуаттар

тепе-теңдігі. Синусоидалық
сигналдың әсері кезіндегі қарапайым және күрделі тізбектерді талдау. Топографиялық
диаграмма.
Жалпы жағдайда пассивті екіүштыктың кіре берісінде ток пен кернеу фаза
бойынша бір-бірінен бұрышқа ығысқан. Кернеудің бастапқы фазасын
u 0 деп алайық. Сонда токтың бастапқы фазасы тең . i
Осы
шарт бойынша кернеу мен токтың лездік мәндері тең: u U m sin t u , u 0,
i I m sin t i , u i , i , i I m sin t .
Сондағы лездік қуат тең:
p ui U m sin t I m sin t U m I m sin t sin t
Um Im
cos cos 2 t .
2
Лездік қуат тұрақты және гармоникалық құрама бөліктен тұрады. Период
кезіндегі лездік қуаттың орташа мәні активті қуат деп аталады:
1
P
T
T
pdt UI cos .
P UI cos I 2 Z cos RI 2 GU 2 .
0
Толық қуат әрекеттік ток пен әрекеттікк кернеудің көбейтіндісіне тең:
S UI ,
P UI cos .
Активті қуаттың толық қуатқа қатынасы кернеу мен ток арасындағы фаза
ығысу бұрышының косинусына тең.

2.

Ỉ.
cos
P
S
Бұл қуат коэффициенті деп аталады:
Электр шамдарын және аппараттарын жақсы пайдалану үшін қуат
коэффициенті неғұрлым жоғары болу керек. Ягни, cos 1, болуға тырысу
керек. Кернеудің комплекстік мәні мен комплекстік токқа түйіндес болатын
~
комплекстік көбейтіндісін комплекстік қуат дейміз: S U I
Берілген комплекстік токқа түйіндес токтың модулі осы токтың модулімен
бірдей, ал фазасы қарама-қарсы болып келеді. Егер I I e j I jI
түйіндес ток I I e j I jI . Егер U Ue j болған жағдайда, комплекстік
қуат:
i
u
i
~
S U I I Z I I 2 Z I 2 R jХ I 2 R jI 2 Х P jQ S e j ,
S P2 Q2
arctg
Q
~
~
, P Re S UI cos , Q Im S UI sin .
P
мұндағы
P = Uicos - активті қуат; Q UI sin
- реактивті қуат. Бұдан
комплекстік қуаттың нақты бөлігі активті қуатқа тең, ал жорамал бөлігі
реактивті қуатқа тең. Қуаттар тепе-теңдігі комплекстік түрде: ∑ қор =∑ қаб,
немесе ∑ қор =∑Uқор Ỉқор = ∑Pқор +j∑Qқор , ∑ қаб =∑Uқаб Ỉқаб= ∑Pқаб +j∑Qқаб.

3.

n
Z
k
I
2
k
т
E
л 1
k
n
т
I k U k J k
k
- қоректендіргіштердің комплекстік қуаты,
n
~
E
I
U
J
S
k
k
k k
k ист.
k 1
-комплекстік түрде,
л 1
n
k 1
k 1
n
- қабылдағыштардың комплекстік қуаты.
n
~
Z
I
S
n
2
k k
k 1
k
Тізбектегі барлық қоректендіргіштердің активті қуаттарының алгебралық
қосындысы сол тізбектегі қабылдағыштардың активті қуаттарының
алгебралық қуаттарының қосындысына тең, барлық қоректендіргіштердің
реактивті қуаттарының алгебралық қосындысы сол тізбектегі
қабылдағыштардың реактивті қуаттарының арифметикалық қосындысына
тең:
n
P
k 1
kи .
n
P
k 1
kп.
n
,
Q
k 1
kи .
n
Q
k 1
kп .
Топографиялық диаграммада оның белгілі бір нүктесіне тізбек сұлбасының
белгілі бір нүктесінің комплекстік потенциалы сәйкес келеді. Потенциалы
нөлге тең деп алынған сұлба нүктесі координаталар басына тура келеді.
Топографиялық диаграмма тізбектің кез-келген нүктелерінің арасындағы
кернеуді оңай анықтауға мүмкіндік береді.

4.

Екіұштық бір немесе бірнеше индуктивтіліктен және бір немесе бірнеше
сыйымдылықтан тұрады делік. Мұндай екіұштықтың резонанстық режимі
деп осы екіұштықтың кірістік кедергісі тек активті сипатта болып, реактивті
кедергі және реактивті өткізгіштік нөлге тең болған жағдайды айтамыз.
Басқаша айтқанда, сыртқы тізбекке қатысты екіұштық өзін резонанстық
режимде активті кедергі секілді сезінеді. Сондықтан соның кірісіндегі кернеу
мен токтың фазалары бір-біріне сәйкес келеді. Ал екіұштықтың бұл кездегі
реактивті қуаты нөлге тең болады. Резонанстық режимді екі түрге бөледі:
кернеулер резонансы және токтар резонансы.
Электр тізбегінде кернеулер резонансы болу үшін мынадай екі шарт бір
мезгілде орындалуы қажет:
1) r, L, C - элементтері тізбектей жалғануы керек;
2) индуктивті кедергі xL сыйымдылық кедергіге xC тең болу керек.
Резонанс кезінде:
2
2
z
r
(
x
x
)
r , яғни толық кедергі,
L
C
а) Тізбектің толық кедергісі:
біріншіден, активті кедергіге тең болады, екіншіден, оның мәні минималды
болады;

5.

ә) Тізбектегі ток: I= U/z = U/r, демек токтың мәні максималды болады;
б) Фазалық ығысу: arctg xL xC 0 , яғни қоректендіргіштің кернеуі мен
r
токтың векторлары бір түзудің бойында жатады;
в) Тізбектің элементтеріндегі кернеулер: Ua =Ir=(U/r)r=U, яғни активті
кернеу толық кернеуге тең болады; индуктивті кернеу UL =IxL =(xL /r)U ,
сыйымдылық кернеу UC =IxC =(xC /r)U ; xL =xC болғандықтан UL = UC,,
демек, резонанс кезінде индуктивті кернеу сыйымдылық кернеуге тең
болады, ал реактивті кернеу Up =UL - UC =0; егер xL= xC >>r болса, онда
UL= UC >U, яғни резонанс кезінде реактивті элементтердегі кернеу тізбекке
берілген кернеуден бірнеше есе көп болуы мүмкін. Бұл апаттық жағдай
тудыруы мүмкін;
г) Резонанс кезіндегі токтың және элементтердегі кернеулердің векторларың
өзара орналасуы төмендегі суретте векторлық диаграммада көрсетілген;
д) Резонанстық бұрыштық жиілік: ω0=1/ LC , резонанстық жиілік
ƒ0=1/2π LC
е) Сипаттамалық кедергі деп индуктивті кедергінің xL немесе сиымдылық
кедергінің xC резонанс кезіндегі мәнін айтады
0 L 1/ 0 C L / C

6.

ж) Контурдың сапалылығы: Q / r 0 L / r U L / U a
з) Өшу коэффициенті: d 1 / Q , демек ол сапалылыққа кері шама;
и) Қуаттар: активті қуат P= I2r, индуктивті қуат QL= xLI2, сыйымдылық қуат
QC= xCI2, реактивті қуат Qр= QL - QC=0, яғни резонанс кезінде реактивті қуат
нөлге тең болады.
Сонымен кернеулер резонансы кезінде ток максималды, ал xL= xC, UL= UC,
QL= QC.
U L LI
LU
r 2 ( x L xC ) 2
U
r2
1 2
(
1
)
2 2
2
L
LC
r,L,C элементтері бірізді жалғанған тізбектің жиілік сипаттамалары. Мұндай
тізбектегі ток: I U / r 2 ( L 1 / C ) 2
Егер ω =0 немесе ω = ∞ болса, онда болады.
Ал ω0 = 1/ болса, онда ток I = U/r максималды болады.
Айталық, 0<ω< ∞. Онда индуктивті кернеу:

7.

Егер 0 , онда U L 0 , ал егер болса, онда . U L U
U L -дің қандай жиілікте максималды болатындығын анықтау үшін
бөлшектің бөлімін минимумға зерттейміз. Ол үшін бөлімнен бірінші ретті
туынды алып, оны нөлге теңестіріп, U L -дің максималды болатын жиілігін
табамыз:
L 0 1 /(1 r 2 C / 2 L) 0 1 /(1 1 / 2Q 2 ) > 0
Бұл жиілікте максималды мән U L max U L0 / 1 1/ 2Q 2 >UL0. UL0 – кернеу
резонансы кезіндегі мәні.
I
U
U
UC
C C r 2 ( L 1 / C ) 2
Сыйымдылық элементтегі кернеу
2 C 2 r 2 ( 2 LC 1) 2
Бұл өрнектің бөлімнен бірінші ретті туынды алып, оны нөлге теңестіріп,
UC-дің максималды болатын жиілігін табамыз:
С 1 / LC r 2 / 2 L2 0 1 1 / 2Q 2 <ω .
0
Бұл жиілікте U С -дің максималды мәні U С max U С 0 / 1 1/ 2Q 2 =ULmax.
Егер 0 , онда U C U , ал болса, онда U C 0 . Сонымен UC
максималды болатын жиілік ωС резонанстық

8.

жиіліктен ω0 кіші болады, ал U L -дің максималды болатын жиілігі ωL
резонанстық жиіліктен ω0 үлкен болады. Контурдың сапалылығы Q
неғұрлым үлкен болған сайын, соғұрлым ωС пен ωL мәндері ω0-ден азырақ
ауытқиды және резонанстық қисықтар тігірек, үшкірлеу болады ( сурет).

9.

Токтар резонансы тізбекте мынадай шарттар бір мезгілде пайда болғанда
болады:
а) r, L, C элементтері параллель жалғануы керек (24-сурет);
ә)сыйымдылық өткізгіштік bL индуктивті өткізгіштікке bC тең болуы
керек, яғни bL=bC.
Резонанс кезінде:
а) Тізбектің толық өткізгіштігі , y g 2 (bL bC ) 2 g
яғни толық
өткізгіштік минималды, ал толық кедергі максималды болады;
ә) Тізбектің толық тогы I U g 2 (bL bC ) 2 =Ug, демек ток минималды
болады.
bL bC
arctg
0
б) Фазалық ығысу
g
в) Тізбектің тармақтарындағы токтар: Ia= Ug, IL=UbL,, IC=UbC, , яғни IL=
IC,. Реактивті ток Iр=IL-IC=0. Ал I=Uy=Ug=Ia, демек толық ток активті
токқа тең.
г) суретте диаграммада резонанс кезіндегі
токтардың векторларының өзара орналысуы көрсетілген;
д) резонанстық жиілік ƒ0=1/2π LC ;

10.

е) Қуаттар: активті қуат P= U2g, индуктивті қуат QL= U2bL, сыйымдылық қуат
QC= U2bC, демек QL= QC; Реактивті қуат Qp= QL - QC= 0;
Төмендегі суретте параллель контурдың жиіліктік сипаттамасының
қисықтары көрсетілген. Сыйымдылық элементтегі ток IC =ωCU жиілікке
пропорционал өседі, ал индуктивті элементтегі ток IL=U/ωL жиілікке кері
пропорционал өзгереді. Резистивті элементтегі ток Ir=U/r жиілікке тәуелді
емес. IC мен IL қисықтарының қиылысқан нүктесі токтар резонансына сәйкес
келеді. Бұл жағдайда I=Ir.

11.

Бақылау сұрақтары:
1. Екіұштықтың резонанстық режим кезіндегі жұмыстарына тоқталыңыз.
Резонанстық режим деген қандай режим және оның қандай түрлері бар?
2. Активті және реактивті элементтерді тізбектей қосқанда байқалатын
кернеулер резонансына түсініктеме беріңіз. Кернеулер резонансы
кезінде Тізбекті сипаттайтын электрлік параметрлердің мәндері мен
сипаттары кернеулер резонансы кезінде қандай өзгеріске түседі?
3. Токтар резонансына түсініктеме беріңіз. Резонансы кезіндегі тізбектің
толық өткізгіштігін, тізбек тармақтарындағы токтарды және фазалық
ығысуды сипаттаңыз.
4. Резонанстық жиіліктік сипаттамаға түсініктеме беріңіз
English     Русский Rules