Similar presentations:
Основы телекоммуникаций (Тонких Артём Петрович)
1.
Основы вычислительныхсистем, сетей и
телекоммуникаций
Тонких Артём Петрович
2.
СВОЙСТВА БЕСПРОВОДНОЙ СРЕДЫ ПЕРЕДАЧИ ДАННЫХОсобенности беспроводной среды:
зона покрытия
помехи
безопасность
совместный доступ к средству подключения
3.
ТИПЫ СРЕДСТВ БЕСПРОВОДНОГО ПОДКЛЮЧЕНИЯСтандарты беспроводной передачи данных:
Wi-Fi: стандарт IEEE 802.11
Bluetooth: стандарт IEEE 802.15
WiMAX: стандарт IEEE 802.16
4.
БЕСПРОВОДНАЯ ЛОКАЛЬНАЯ СЕТЬСетевые устройства:
беспроводная точка доступа (AP)
беспроводные сетевые платы
5.
КАНАЛЬНЫЙ УРОВЕНЬУровень приложений
Уровень представлений
Сеансовый уровень
Транспортный уровень
Сетевой уровень
Канальный уровень
Физический уровень
6.
ПОДУРОВНИ КАНАЛЬНОГО УРОВНЯСетевой уровень
Bluetooth
802.15
Физический уровень
Wi-Fi
802.11
Подуровень MAC
802.3
Ethernet
Канальный
уровень
Подуровень LLC
7.
ПРЕДОСТАВЛЕНИЕ ДОСТУПА К СРЕДЕОперации маршрутизатора:
принимает кадр из среды
деинкапсулирует кадр
инкапсулирует пакет в новый кадр
передаёт новый кадр
8.
УПРАВЛЕНИЕ ДОСТУПОМ К СРЕДЕФакторы выбора метода
управления доступом:
топология
совместное использование
средства подключения
9.
РАСПРОСТРАНЁННЫЕ ФИЗИЧЕСКИЕ ТОПОЛОГИИ WANФакторы выбора метода управления доступом:
«точка-точка» (Point-to-Point)
«звездообразная» (hub and spoke)
ячеистая (mesh)
10.
ФИЗИЧЕСКИЕ ТОПОЛОГИИ ЛОКАЛЬНЫХ СЕТЕЙЗвезда (star)
Расширенная звезда (extended star)
Шина (bus)
Кольцо (ring)
11.
МЕТОДЫ УПРАВЛЕНИЯ ДОСТУПОМ К СРЕДЕ ПЕРЕДАЧИКонкурентный доступ
Управляемый доступ
12.
КОНКУРЕНТНЫЙ ДОСТУП CSMA/CDPC1: Эта среда передачи данных доступна, поэтому я отправлю
кадр Ethernet на PC3
PC2: У меня есть кадр для отправки, но я должен дождаться
окончания получения кадра
PC2: Этот кадр предназначен не для меня, поэтому я
игнорирую его
PC3: Этот кадр предназначен для меня, поэтому я скопирую
кадр полностью
13.
КОНКУРЕНТНЫЙ ДОСТУП CSMA/CAPC1: Я получаю кадр данных беспроводной сети
PC2: В кадре данных беспроводной сети я вижу, что канал
будет недоступен определённое время, поэтому я не могу
отправить
PC3: В кадре данных беспроводной сети я вижу, что канал
будет недоступен определённое время, поэтому я не могу
отправить
14.
КАДРКомпоненты:
заголовок
данные
концевик
Заголовок
Пакет (данные)
Концевик
15.
ПОЛЯ КАДРАЗаголовок
Начало
кадра
Адресация Тип Управление
Пакет
(данные)
Концевик
Данные
Обнаружение Конец
ошибок
кадра
Передающий узел путем логической обработки содержимого кадра
создает циклический избыточный код (cyclic redundancy check, CRC)
Значение этого кода помещается в поле контрольной
последовательности кадра (Frame Check Sequence, FCS) и предоставляет
информацию
о содержимом кадра
Поле FCS в концевике кадра Ethernet позволяет принимающему узлу
проверять кадр на наличие ошибок передачи
16.
АДРЕС УРОВНЯ 2Заголовок L2
Сетевая
Сетевая
интерфейсная интерфейсная
плата места
плата
назначения
источника
IP-пакет L3
IP-адрес
источника
192.168.1.110
IP-адрес
назначения
172.16.1.99
17.
КАДРЫ LAN И WANПротоколы канального уровня:
Ethernet
беспроводная сеть 802.11
протокол «точка-точка» (протокол PPP)
HDLC
протокол ретрансляции кадров (протокол Frame Relay)
18.
ИНКАПСУЛЯЦИЯ ETHERNETСетевой уровень
Подуровень LLC
IEEE 802.3z
GigabitEthernet
IEEE 802.3u
FastEthernet
Физический уровень
IEEE 802.3
Ethernet
Подуровень MAC
Ethernet
Канальный
уровень
IEEE 802.2
19.
ПОДУРОВЕНЬ MACИнкапсуляция данных:
разделение кадра
адресация
обнаружение ошибок
Управление доступом к среде передачи данных:
управление процессом размещения кадров внутри и вне
передающей среды
восстановление передающей среды
20.
РАЗВИТИЕ ETHERNETГод
Стандарт
1973
Ethernet
1980
1983
Стандарт DIX IEEE 802.3
Ethernet II
10 BASE-5
1985
IEEE 802.3a
10 BASE-2
Описание
Технология
Ethernet была
изобретена
сотрудником
корпорации
Xerox
Корпорации
DEC, Intel и
Xerox (DIX)
разработали
стандарт 10
Мбит/с для
передачи по
коаксиалу
Ethernet 10
Мбит/с по
тонкому
коаксиально
му кабелю
Ethernet 10
Мбит/с по
толстому
коаксиально
му кабелю
21.
ПОЛЯ КАДРА ETHERNET8 Bytes
6 Bytes
Preamble Destination
Address
6 Bytes
Source
Address
2 Bytes 46 to 1500 Bytes 4 Bytes
Type
Data
Frame Check
Sequence
Поле Type определяет протокол верхнего уровня, инкапсулированный
в кадр Ethernet. Характерные значения – значения
в шестнадцатеричном формате 0x800 для IPv4 и 0x806 для ARP
Поле Data содержит инкапсулированные данные из более высокого
уровня, которые являются универсальной единицей данных
протокола (PDU) уровня 3, или пакетом IPv4
Длина всех кадров – не менее 64 байт
22.
MAC-АДРЕС И ШЕСТНАДЦАТЕРИЧНАЯ СИСТЕМА СЧИСЛЕНИЯДесятичные
0
1
2
3
4
5
6
7
8
9
10
Двоичные
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
Шестнадцатеричные
0
1
2
3
4
5
6
7
8
9
A
23.
MAC-АДРЕС: ИДЕНТИФИКАЦИЯ ETHERNETУникальный идентификатор
организации (OUI)
24 бита
6 шестнадцатеричных цифр
00-60-2F
Cisco
Часть, назначаемая
производителем (сетевая
плата, интерфейсы)
24 бита
6 шестнадцатеричных цифр
3A-07-BC
Конкретное устройство
24.
ПРЕДСТАВЛЕНИЯ MAC-АДРЕСОВ25.
ИНДИВИДУАЛЬНЫЙ И ШИРОКОВЕЩАТЕЛЬНЫЙ MAC-АДРЕСАIP
источника
IP
назначения
Данные
пользователя
00-07-E9-42- 00-07-E9-63192.168.1.5 192.168.1.200
AC-28
CE-53
Кадр Ethernet
IP-пакет
MAC-адрес MAC-адрес
IP
назначения источника
IP назначения
источника
Данные
пользователя
FF-FF-FF-FF- 00-07-E9192.168.1.5
192.168.1.255
FF-FF
63-CE-53
Концевик
MAC-адрес MAC-адрес
назначения источника
Концевик
Кадр Ethernet
IP-пакет
26.
MAC-АДРЕС МНОГОАДРЕСНОЙ РАССЫЛКИMAC-адрес MAC-адрес
назначения источника
01-00-5E00-00-C8
00-07-E963-CE-53
Кадр Ethernet
IP-пакет
IP-адрес
IP-адрес
источника назначения
192.168.1.5
224.0.0.200
Концевик
Данные
пользователя
27.
ОСНОВНАЯ ИНФОРМАЦИЯ О КОММУТАТОРАХPort
MAC Address
1
2
3
4
MAC
00-0A
MAC
00-0B
MAC
00-0C
MAC 000D
28.
ПОЛУЧЕНИЕ ИНФОРМАЦИИ О MAC-АДРЕСАХPort
1
MAC Address
00-0A
1
A
MAC
00-0A
2
B
3
4
C
D
MAC 00- MAC
0B
00-0C
MAC
00-0D
29.
ФИЛЬТРАЦИЯ КАДРОВPort
1
4
MAC Address
00-0A
00-0D
1
2
3
4
A
B
C
D
MAC
00-0A
MAC
00-0B
MAC
00-0C
MAC
00-0D
30.
СПОСОБЫ ПЕРЕАДРЕСАЦИИ КАДРА НА КОММУТАТОРАХКоммутатор с промежуточным хранением получает кадр
целиком и вычисляет CRC. Если CRC допустимо, коммутатор
ищет адрес назначения, который определяет выходной
интерфейс. Затем кадр перенаправляется к правильному порту
Коммутатор со сквозной коммутацией пересылает данный кадр
до его полного получения. Поэтому как минимум адрес
назначения кадра должен быть прочтён раньше, чем кадр
можно будет перенаправить
31.
СКВОЗНАЯ КОММУТАЦИЯ (CUT-THROUGH)Варианты:
коммутация с быстрой пересылкой
коммутация с исключением фрагментов
Некоторые коммутаторы настроены на использование сквозной
коммутации для каждого порта до тех пор, пока не будет
достигнуто указанное пользователем предельное количество
ошибок, после чего автоматически устанавливается коммутация
с промежуточным хранением. После того, как частота
повторения ошибок снизится до установленного предельного
значения, порт автоматически переключится на использование
сквозной коммутации
32.
БУФЕРИЗАЦИЯ ПАМЯТИ НА КОММУТАТОРАХБуферизация памяти на
базе портов
Буферизация совместно
используемой памяти
В процессе буферизации кадры
хранятся в очередях, связанных
с определёнными входящими
и исходящими портами
Все кадры помещаются в буфер,
который является общим для
всех портов коммутатора
33.
НАСТРОЙКА ДУПЛЕКСНОГО РЕЖИМА И СКОРОСТИA
Режим
дуплекс
Порт 1
Полнодуплексный Автоопределение Полнодуплексный
Полудуплексный
Полудуплексный
1000 Мбит/с
Скорость
100 Мбит/с
100 Мбит/с
10 Мбит/с
10 Мбит/с
Режим
дуплекс
Скорость
34.
ФУНКЦИЯ AUTO-MDIXMDIX автоматически определяет необходимый тип
подключения и соответствующим образом настраивает
интерфейс
35.
УСТРОЙСТВО НАЗНАЧЕНИЯ В ТОЙ ЖЕ СЕТИMAC-адрес
назначения
Источник A
192.168.1.110
MAC-адрес
назначения
00-0B
00-0A
MAC-адрес
источника
00-0A
Уровень 2: заголовок кадра
Ethernet
00-0B
IP-адрес
источника
192.168.1.110
IP-адрес
назначения
Файловый
сервер
192.168.1.50
IP-адрес
назначения
192.168.1.50
Уровень 3: IP-пакет
36.
УСТРОЙСТВО НАЗНАЧЕНИЯ В УДАЛЁННОЙ СЕТИIP-адрес
назначения
MAC-адрес
назначения
A
Источник
000A
000C
MAC-адрес
назначения
00-0C
NI
C
R1
MAC-адрес
источника
00-0A
Уровень 2: заголовок кадра
Ethernet
NI
C
NI
C
R2
IP-адрес
источника
192.168.1.110
NI
C
Файловый
сервер
Назначение
IP-адрес
назначения
172.16.1.99
Уровень 3: IP-пакет
37.
ПРОТОКОЛ РАЗРЕШЕНИЯ АДРЕСОВ (ARP)H1: Мне нужно отправить информацию на адрес 192.168.1.7, но у
меня есть только IP-адрес. Я не знаю MAC-адрес устройства,
которому присвоен этот IP-адрес
H1
H3
192.168.1.5
H2
192.168.1.6
192.168.1.8
H4
192.168.1.7
38.
ФУНКЦИИ ARPH1: Мне нужно отправить ARP-запрос, чтобы узнать MAC-адрес
узла с IP-адресом 192.168.1.7
H1
H3
192.168.1.5
192.168.1.8
H2
H4
192.168.1.6
192.168.1.7
39.
ARP-ЗАПРОСЭто не
я
H1
H3
192.168.1.5
192.168.1.8
Это я. Я
вышлю свой
MAC-адрес
Это
не я.
H2
H4
192.168.1.6
192.168.1.7
40.
ARP-ОТВЕТH1
H3
192.168.1.5
192.168.1.8
Это я. Я
вышлю свой
MAC-адрес
H2
H4
192.168.1.6
192.168.1.7
41.
СЕТЕВОЙ УРОВЕНЬОсновные процессы:
адресация оконечных устройств
инкапсуляция
маршрутизация
деинкапсуляция
42.
ИНКАПСУЛЯЦИЯ ПРОТОКОЛА IPИнкапсуляция
транспортного
уровня
Заголовок
сегмента
Данные
Инкапсуляция
сетевого уровня
IP-заголовок
Данные
PDU сетевого уровня
IP-пакет
43.
ПРОТОКОЛ IP. БЕЗ УСТАНОВЛЕНИЯ СОЕДИНЕНИЯОтправитель не знает:
присутствует ли получатель на месте
доставлен ли пакет
прочитает ли его получатель
Получатель не знает:
когда ждать пакет
44.
ПРОТОКОЛ IP. НЕЗАВИСИМОСТЬ ОТ СРЕДЫОптоволоконный
Медный
последовательный
Медный
Ethernet
IP-пакет
IP-пакет
Медный
Ethernet
Беспроводной
доступ
IPпакет
45.
ЗАГОЛОВОК ПАКЕТА IPV4Байт 1
Байт 2
Байт 3
DS
Размер
Версия загоECN
ловка DSCP
Байт 4
Общий размер
Идентификация
Флаг
Смещение фрагмента
Время
Протокол
Контрольная сумма заголовка
существования
IP-адрес источника
IP-адрес назначения
…
20
байт
46.
ПРИМЕР ЗАГОЛОВКОВ IPV4 В ПРОГРАММЕ WIRESHARK47.
ОГРАНИЧЕНИЯ IPV4Основные недостатки IPv4:
нехватка IP-адресов
расширение таблицы интернет-маршрутизации
нехватка сквозных соединений
48.
ОБЩИЕ СВЕДЕНИЯ О ПРОТОКОЛЕ IPV6Название
числа
Научное
представлен
ие
1 миллиард
10^9
1 секстиллион 10^21
1 септиллион
10^24
1 октиллион
10^27
1 нониллион
10^30
1 дециллион
10^33
1 ундециллион 10^36
Количество нулей
1 000 000 000
1 000 000 000 000 000 000 000
1 000 000 000 000 000 000 000 000
1 000 000 000 000 000 000 000 000 000
1 000 000 000 000 000 000 000 000 000 000
1 000 000 000 000 000 000 000 000 000 000 000
1 000 000 000 000 000 000 000 000 000 000 000
000
49.
ЗАГОЛОВОК ПАКЕТА IPV6Байт 1
Версия
Байт 2
Класс
трафика
Байт 3
Байт 4
Метка потока
Следующий
заголовок
IP-адрес источника
Длина полезной нагрузки
IP-адрес назначения
Предел
переходов
40
байт
50.
ПРИМЕР ЗАГОЛОВКОВ IPV6 В ПРОГРАММЕ WIRESHARK51.
РЕШЕНИЕ О ПЕРЕАДРЕСАЦИИ ПАКЕТОВ ХОСТОМТипы узлов назначений:
самому себе
локальный узел
удалённый узел
52.
ШЛЮЗ ПО УМОЛЧАНИЮФункции:
направляет трафик в другие сети
имеет локальный IP-адрес в том же диапазоне адресов, что
и другие хосты в сети
может принимать входные данные и передавать данные
наружу
53.
ТАБЛИЦЫ МАРШРУТИЗАЦИИ УЗЛАКоманды:
route print
netstat -r
Разделы:
список интерфейса
таблица маршрутизации IPv4
таблица маршрутизации IPv6
54.
РЕШЕНИЕ О ПЕРЕАДРЕСАЦИИ ПАКЕТОВ МАРШРУТИЗАТОРАИнформация в таблице маршрутизации:
маршруты с прямым подключением
удалённые маршруты
маршрут по умолчанию
55.
ОБЩИЕ СВЕДЕНИЯ О ТАБЛИЦЕ IPV4-МАРШРУТИЗАЦИИ56.
ТАБЛИЦА МАРШРУТИЗАЦИИ МАРШРУТИЗАТОРА IPV457.
ЗАПИСИ ТАБЛИЦЫ МАРШРУТИЗАЦИИ С ПРЯМЫМПОДКЛЮЧЕНИЕМ И УДАЛЁННОЙ СЕТИ
Источник
маршрута
Источник
маршрута
Сеть
назначения
Сеть
назначения
Исходящий
интерфейс
Административное
расстояние
58.
АДРЕС СЛЕДУЮЩЕГО ПЕРЕХОДАPC
1
PC
2
10.1.1.0/24
192.168.10.0/24
.10
.10
G0/0
.1 209.165.200.224/30
.1
.225
.1
.226 R2 .1
R1 S0/0/0
.10
.10
G0/1
192.168.11.0/24
10.1.2.0/24
59.
МАРШРУТИЗАТОР – ЭТО ВЫЧИСЛИТЕЛЬНАЯ МАШИНАОбласти использования:
филиалы
сети WAN
операторы связи
Компоненты:
ЦП
ОС
память
60.
Таблицамаршрутизации
Таблица ARP
Файл текущей
конфигурации
ОЗУ
Текущая версия IOS
Буфер
пакетов
NVRAM
Флешпамять
Файл
загрузочной
конфигурации
Файлы
IOS
Микропрограммное
обеспечение
управляющей
программы,
записанной в ПЗУ
(ограниченная IOS)
POST
ПАМЯТЬ МАРШРУТИЗАТОРА
ПЗУ
61.
ИНТЕРФЕЙСЫ LAN И WANСпособы доступа к среде интерфейса:
консоль
Secure Shell (SSH)
Telnet
62.
ПРОЦЕСС ЗАГРУЗКИ МАРШРУТИЗАТОРАПЗУ
POST
Выполнение
процедуры POST
ПЗУ
Программа
начального запуска
Загрузка программы
начального запуска
Операционная
система Cisco IOS
Поиск и загрузка
операционной
системы
Конфигурация
Поиск и загрузка
файла конфигурации
или переход в режим
настройки
Флеш
TFTPсервер
NVRAM
TFTPсервер
Консоль
63.
АДРЕСА IPV4192
11000000
.
168
10101000
.
10
00001010
.
10
00001010
Сопоставление IPv4-адреса в десятичном формате с точкойразделителем с IPv4-адресом в двоичном формате
Адрес в десятичном формате с точкой-разделителем: 192.168.10.10 – это
IP-адрес, назначенный компьютеру
Октеты: этот адрес состоит из 4 разных октетов
32-битный адрес: компьютер сохраняет адрес как целый 32-битный
поток данных
64.
ЧАСТИ СЕТИ И ХОСТА. МАСКА ПОДСЕТИIPv4-адрес
Сетевая часть
192
11000000
.
168
10101000
.
10
00001010
.
Узловая
часть
10
00001010
65.
ЛОГИЧЕСКАЯ ОПЕРАЦИЯ ИIP-адрес
.
168
10101000
.
10
00001010
.
Двоичное
192
11000000
10
00001010
Маска
подсети
255
11111111
.
255
11111111
.
255
11111111
.
0
00000000
Результаты
операции И
Сетевой
адрес
11000000
192
10101000
.
168
00001010
.
10
00000000
.
0
66.
ДЛИНА ПРЕФИКСА32-битный адрес
Маска подсети
255.0.0.0
11111111.00000000.00000000.00000000
Длина префикса
/8
255.255.0.0
255.255.255.0
255.255.255.128
11111111.11111111.00000000.00000000
11111111.11111111.11111111.00000000
11111111.11111111.11111111.10000000
/16
/24
/25
255.255.255.192
255.255.255.224
11111111.11111111.11111111.11000000
11111111.11111111.11111111.11100000
/26
/27
255.255.255.240
255.255.255.248
11111111.11111111.11111111.11110000
11111111.11111111.11111111.11111000
/28
/29
255.255.255.252
11111111.11111111.11111111.11111100
/30
67.
СТАТИЧЕСКОЕ И ДИНАМИЧЕСКОЕ НАЗНАЧЕНИЕ IPV4-АДРЕСАУЗЛУ
68.
ОДНОАДРЕСНАЯ ПЕРЕДАЧААдрес источника: 172.16.4.1
Адрес назначения: 172.16.4.253
172.16.4.1
172.16.4.2
172.16.4.3
172.16.4.253
69.
ШИРОКОВЕЩАТЕЛЬНАЯ РАССЫЛКААдрес источника: 172.16.4.1
Адрес назначения: 255.255.255.255
172.16.4.1
172.16.4.2
172.16.4.3
172.16.4.253
70.
МНОГОАДРЕСНАЯ РАССЫЛКААдрес источника: 172.16.4.1
172.16.4.253
172.16.4.1
172.16.4.2
172.16.4.3
224.10.10.5
172.16.4.4
224.10.10.5
71.
ОБЩЕДОСТУПНЫЕ И ЧАСТНЫЕ АДРЕСА IPV4Блоки частных адресов:
10.0.0.0 /8
172.16.0.0 /12
192.168.0.0 /16
72.
IPV4-АДРЕСА СПЕЦИАЛЬНОГО НАЗНАЧЕНИЯадреса loopback (127.0.0.0 /8)
локальные адреса канала (169.254.0.0 /16)
адреса TEST-NET (192.0.2.0 /24)
73.
УСТАРЕВШАЯ КЛАССОВАЯ АДРЕСАЦИЯДиапазоны индивидуальных адресов:
класс A (от 0.0.0.0 /8 до 127.0.0.0 /8)
класс B (от 128.0.0.0 /16 до 191.255.0.0 /16)
класс C (от 192.0.0.0 /24 до 223.255.255.0 /24)
74.
БЕСКЛАССОВАЯ АДРЕСАЦИЯКлассы
DиE
12,5 %
Класс C
12,5 %
Класс B
25 %
Класс A
Всего сетей: 128
Всего хостов в сети: 16 777 214
Класс A
50 %
Класс B
Всего сетей: 16 384
Всего хостов в сети: 65 534
Класс C
Всего сетей: 2 097 152
Всего хостов в сети: 254
75.
СОВМЕСТНОЕ ИСПОЛЬЗОВАНИЕ ПРОТОКОЛОВ IPV4 И IPV6Методы перехода:
двойной стек
туннелирование
преобразование
76.
ПРЕДСТАВЛЕНИЕ IPV6-АДРЕСОВX
:
0000
–
FFFF
X
:
X
:
000
0
–
0000
:
–
FFFF
FFFF
:
X
:
0000
:
–
FFFF
X
:
0000
:
–
FFFF
X
:
0000
:
–
FFFF
X
0000
:
0000
0000
0000
0000
–
–
–
–
1111
1111
1111
1111
4 шестнадцатеричных знака = 16 двоичных знаков
:
X
0000
–
:
–
FFFF
FFFF
77.
ПРАВИЛО 1. ПРАВИЛО 2Предпочитаемый
формат
Без начальных нулей
Сжатый формат
2001:0DB8:0000:1111:0000:0000:0000:0200
2001: DB8:
0:1111:
2001:DB8:0:1111::200
0:
0:
0:200
78.
IPV6-АДРЕСА: ТИПЫиндивидуальный (или одноадресной рассылки, unicast)
групповой (или многоадресной рассылки, multicast)
произвольный (или произвольной рассылки, anycast)
IPv6-адрес источника
IPv6-адрес назначения
2001:DB8:ACAD:1::10
2001:DB8:ACAD:1::8
2001:DB8:ACAD:1::1/64
2001:DB8:ACAD:1::/64
❷
2001:DB8:ACAD:1::10/64
2001:DB8:ACAD:1::9/64
2001:DB8:ACAD:1::8/64
2001:DB8:ACAD:1::20/64
79.
ИНДИВИДУАЛЬНЫЕ IPV6-АДРЕСАТипы:
глобальный индивидуальный адрес
локальный адрес канала
уникальный локальный адрес FC00::/7 – FDFF::/7
адрес Loopback ::1/128
неуказанный адрес ::/128
встроенный IPv4-адрес
80.
ЛОКАЛЬНЫЕ ИНДИВИДУАЛЬНЫЕ IPV6-АДРЕСА КАНАЛАПакет IPv6
IPv6-адрес источника
FE80::AAAA
IPv6-адрес назначения
FE80::DDDD
FE80::1/64
❷
172.16.4.253
172.16.4.1
172.16.4.2
172.16.4.3
224.10.10.5
81.
СТРУКТУРА ГЛОБАЛЬНОГО ИНДИВИДУАЛЬНОГОIPV6-АДРЕСА
Префикс глобальной
маршрутизации
001
Идентификатор Идентификатор
подсети
интерфейса
Диапазон первого гекстета:
0010 0000 0000 0000 (2000)
0011 1111 1111 1111 (3FFF)
82.
ПРЕФИКС ГЛОБАЛЬНОЙ МАРШРУТИЗАЦИИ IPV6 /4848 бит
16 бит
64 бита
Префикс глобальной
маршрутизации
Идентификатор
подсети
Идентификатор
интерфейса
64 бита
Префикс маршрутизации A /48 +
идентификатор подсети 16 бит = префикс /64
83.
ПРИСВОЕННЫЕ ГРУППОВЫЕ АДРЕСА IPV6IPv6-адрес источника
2001:ODB8:ACAD:1::1
IPv6-адрес назначения
FF02::1
❷
❷
❷
❷
2001:DB8:ACAD:1::10/64
2001:DB8:ACAD:1::9/64
2001:DB8:ACAD:1::8/64
2001:DB8:ACAD:1::20/64
84.
СООБЩЕНИЯ ICMPV4 И ICMPV6Подтверждение узла
Узел назначения или сервис недоступны
Превышен интервал ожидания
Переадресация маршрута
85.
ЭХОЗАПРОС НА УДАЛЁННЫЙ ХОСТПримеры кодов сообщений о недоступном узле для ICMPv4:
0 – сеть недоступна
1 – узел недоступен
2 – протокол недоступен
3 – порт недоступен
86.
СООБЩЕНИЯ ICMPV6 RS И RAЯ буду отправлять
сообщения RA
каждые 200 секунд
Сообщение RA ICMPv6
Группе многоадресной рассылки на
все IPv6-устройства
Группе многоадресной рассылки на
все IPv6-маршрутизаторы
Сообщение RS
маршрутизатора ICMPv6
Я перезагрузился,
поэтому отправлю
сообщение RS,
чтобы запросить
ответ RA от
маршрутизатора
87.
ОБМЕН СООБЩЕНИЯМИ МЕЖДУ IPV6-УСТРОЙСТВАМИЯ знаю
ваш IPv6адрес; а
какой у
вас MACадрес?
Группе многоадресной рассылки на
запрошенные узлы
Запрос соседнего узла (NS)
ICMPv6
Отправителю NS
(индивидуальный адрес)
Ответ соседнего узла
(NA) ICMPv6
Вот мой IPv6-адрес.
Вот мой MAC-адрес
88.
ВЫПОЛНЕНИЕ КОМАНДЫ PING.ТЕСТИРОВАНИЕ ЛОКАЛЬНОГО СТЕКА
89.
ВЫПОЛНЕНИЕ КОМАНДЫ PING.ТЕСТИРОВАНИЕ ПОДКЛЮЧЕНИЯ К ЛОКАЛЬНОЙ СЕТИ (LAN)
эхо-запрос
эхо-ответ
10.0.0.1
255.255.255.0
F0/1
10.0.0.254
255.255.255.0
90.
PING НА УДАЛЁННЫЙ УЗЕЛ10.0.0.254
255.255.255.0
F1
10.0.1.254
255.255.255.0
F0
IP Routing Table
F0
10.0.1.0
F1
10.0.0.0
Echo request
Echo reply
10.0.0.1
255.255.255.0
10.0.0.253
255.255.255.0
10.0.0.2
255.255.255.
0
10.0.1.253
255.255.255.0
10.0.1.2
10.0.1.1
255.255.255.0
255.255.255.0
91.
ТРАССИРОВКА МАРШРУТА. ТЕСТИРОВАНИЕ ПУТИ10.0.0.1
255.255.255.0
Traceroute
192.168.1.2
(TTL = 1)
192.168.1.2
255.255.255.0
92.
КОМАНДА TRACEROUTE (TRACERT). ТЕСТИРОВАНИЕ ПУТИTraceroute
192.168.1.2
(TTL = 1)
10.0.0.1
255.255.255.0
ICMP
Время истекло
Traceroute
192.168.1.2
(TTL = 2)
192.168.1.2
255.255.255.0
93.
ДОМЕНЫ ШИРОКОВЕЩАТЕЛЬНОЙ РАССЫЛКИG0/0
Интернет
R1
Широковещательный
домен
94.
ПРОБЛЕМЫ С КРУПНЫМИ ШИРОКОВЕЩАТЕЛЬНЫМИДОМЕНАМИ
G0/0
Интернет
R1
LAN 1: 172.16.0.0/16
(400 пользователей)
LAN 2
95.
ПРИЧИНЫ ДЛЯ РАЗДЕЛЕНИЯ НА ПОДСЕТИИнтернет
Администрация
LAN 1: 10.0.1.0 /24
Студенты
LAN 2: 10.0.2.0 /24
G0/0
Отдел кадров
G0/3 LAN 3: 10.0.3.0 /24
G0/1 R1
G0/2
Бухгалтерия
LAN 4: 10.0.4.0 /24
96.
РАЗДЕЛЕНИЕ НА ПОДСЕТИ НА ГРАНИЦЕ ОКТЕТОВАдрес подсети
(256 возможных
подсетей)
10.0.0.0/16
10.1.0.0/16
10.2.0.0/16
Диапазон узлов
(65 534 возможных узла
в каждой подсети)
10.0.0.1 – 10.0.255.254
10.1.0.1 – 10.1.255.254
10.2.0.1 – 10.2.255.254
Широковещательный
адрес
10.3.0.0/16
10.4.0.0/16
…
10.3.0.1 – 10.3.255.254
10.4.0.1 – 10.4.255.254
…
10.3.255.255
10.4.255.255
…
10.255.0.0/16
10.255.0.1 – 10.255.255.254
10.255.255.255
10.0.255.255
10.1.255.255
10.2.255.255
97.
РАЗДЕЛЕНИЕ НА ПОДСЕТИ С БЕСКЛАССОВОЙ АДРЕСАЦИЕЙ(ПРИМЕР)
Адрес
192.
Сеть 192.168.1.0/24
168.
1.
0000
Маска
255.
255.
255.
Сетевая часть
0000
0000
0000
Узловая часть
98.
СОЗДАНИЕ ДВУХ ПОДСЕТЕЙPC1
192.168.1.0/25
G0/0
G0/1
PC2
192.168.1.128/25
99.
ФОРМУЛЫ РАЗДЕЛЕНИЯ НА ПОДСЕТИФормула расчёта количества подсетей: 2n
n – заимствованные биты
Формула расчёта количества узлов: 2n − 2
n – количество битов, оставшееся в части хоста
100.
СОЗДАНИЕ ПОДСЕТЕЙ С ПРЕФИКСОМ /16Длина
префикса
/17
/18
/19
/20
Маска
подсети
Сетевой адрес (с – сеть, у – узел)
сссссссс.сссссссс.сууууууу.уууууууу
255.255.128.
11111111.11111111.10000000.0000
0
0000
сссссссс.сссссссс.ссуууууу.уууууууу
255.255.192.
11111111.11111111.11000000.0000
0
0000
сссссссс.сссссссс.сссууууу.уууууууу
255.255.224.
11111111.11111111.11100000.0000
0
0000
сссссссс.сссссссс.ссссуууу.уууууууу
255.255.240.
11111111.11111111.11110000.0000
0
Кол-во Кол-во
подсетей узлов
2
32766
4
16382
8
8 190
16
4 094
101.
СОЗДАНИЕ 1 000 ПОДСЕТЕЙ С ПРЕФИКСОМ /810
nnnnnnnn
Заимствование 1 бита:
Заимствование 2 бит:
21 = 2
22 = 4
Заимствование 3 бит:
Заимствование 4 бит:
Заимствование 5 бит:
23 = 8
24 = 16
25 = 32
Заимствование 6 бит:
Заимствование 7 бит:
26 = 64
27 = 128
Заимствование 8 бит:
Заимствование 9 бит:
28 = 256
29 = 512
.
.
0
hhhhhhhh
.
.
0
hhhhhhhh
.
.
0
hhhhhhhh
102.
РАЗДЕЛЕНИЕ НА ПОДСЕТИ НА ОСНОВЕ ТРЕБОВАНИЙ К УЗЛАММаска
подсети
Маска подсети в двоичной системе Кол-во
(с – сеть, у – узел)
подсетей
Колво
узлов
255.255.
255.128
сссссссс.сссссссс.сссссссс.сууууууу
11111111.11111111.
11111111.10000000
2
126
/26
255.255.
255.192
4
62
/27
255.255.25
5.224
сссссссс.сссссссс.сссссссс.ссуууууу
11111111.
11111111.11111111.11000000
сссссссс.сссссссс.сссссссс.сссууууу
11111111.11111111.11111111.1110
0000
8
30
Длина
префикса
/25
103.
ПРИМЕР ТРЕБОВАНИЙ СЕТИСетевая часть
Узловая часть
10101100.00010100.000000
00.00000000
10 бит в узловой
части
210 – 2 = 1 022 узла
172.16.0.0/22
104.
ТОПОЛОГИЯ СЕТИ. БАЗОВЫЕ ПОДСЕТИЗдание
A
25 узлов
Здание
Б
20 узлов
Здание
В
15 узлов
Здание
Г
28 узлов
R1
R2
R3
R4
105.
МАСКИ ПОДСЕТИ ПРОИЗВОЛЬНОЙ ДЛИНЫ30 узлов 30 узлов
30 узлов
30 узлов
30 узлов
30 узлов
30 узлов
30
узлов
106.
БАЗОВАЯ МОДЕЛЬ VLSMУзловая часть
Десятичное
представление
с разделительными
точками
.00000000
192.168.20.0/24
0 11000000.10101000.00010100
1 11000000.10101000.00010100
.000
.001
00000
00000
192.168.20.0/27
192.168.20.32/27
2 11000000.10101000.00010100
3 11000000.10101000.00010100
.010
.011
00000
00000
192.168.20.64/27
192.168.20.96/27
Сетевая часть
11000000.10101000.00010100
Сети
LAN
А, Б,
В, Г
107.
VLSM НА ПРАКТИКЕЗдание A
Здание Б
Здание В
Здание Г
192.168.20.0/27
192.168.20.32/27
192.168.20.64/27
192.168.20.96/27
R1
R2
R3
R4
192.168.20.224/30
192.168.20.228/30
192.168.20.232/30
108.
ПЛАНИРОВАНИЕ АДРЕСАЦИИ СЕТИ?
Локальная сеть
студентов
Локальная сеть
преподавателей
Локальная сеть
администраторов
109.
ПЛАНИРОВАНИЕ ВЫДЕЛЕНИЯ АДРЕСОВ В СЕТИПредотвращение
дублирования
адресов
Планирование
выделения
адресов
Мониторинг
безопасности
и производительности
Обеспечение
и контроль
доступа
110.
ПРИСВОЕНИЕ АДРЕСОВ УСТРОЙСТВАМСеть: 192.168.1.0/24
Использование
Узловые
устройства
Серверы
Принтеры
Промежуточные
устройства
Шлюз (LANинтерфейс
маршрутизатора)
Первый
.1
Последний
.229
.230
.240
.250
.239
.249
.253
.254
111.
ГЛОБАЛЬНЫЙ ИНДИВИДУАЛЬНЫЙ АДРЕС IPV648 бит
16 бит
64 бита
Префикс глобальной
маршрутизации
Идентификатор
подсети
Идентификатор
интерфейса
Префикс маршрутизации A /48 +
идентификатор подсети 16 бит = префикс /64