Similar presentations:
822531 теорема о трех перпендикулярах
1.
2.
ПовторениеОпределение. Прямая называется перпендикулярной к
плоскости, если она перпендикулярна к любой прямой,
лежащей в этой плоскости.
a
S
F
A
a
N
D
H
a AS , a AF , a FS , a ND, a DH , a HN
3.
ПовторениеПризнак перпендикулярности прямой и плоскости.
Если прямая перпендикулярна к двум
пересекающимся прямым, лежащим в плоскости, то
она перпендикулярна к этой плоскости.
a
p
p , a p,
q , a q,
a
4.
ПланиметрияСтереометрия
А
А
а
М
Н
М
Н
Отрезок АН – перпендикуляр
Точка Н – основание перпендикуляра
Отрезок АМ – наклонная
Точка М – основание наклонной
Отрезок МН – проекция
наклонной на прямую а
Отрезок МН – проекция
наклонной на плоскость
5.
ПланиметрияСтереометрия
А
А
а
М
Н
Н
М
Из всех расстояний от точки А
до различных точек прямой
а
плоскости
наименьшим является длина
перпендикуляра.
Расстояние от точки до
Расстояние от точки до
прямой – длина
плоскости – длина
перпендикуляра
перпендикуляра
6.
Расстояние от лампочки до землиизмеряется по перпендикуляру,
проведенному от лампочки к
плоскости земли
7.
Если две плоскости параллельны, то все точки однойплоскости равноудалены от другой плоскости.
II
Расстояние от произвольной точки одной из параллельных
плоскостей до другой плоскости называется
расстоянием между параллельными плоскостями.
8.
Если прямая параллельна плоскости, то все точки прямойравноудалены от этой плоскости.
a
a II
Расстояние от произвольной точки прямой до плоскости
называется расстоянием между прямой и параллельной
ей плоскостью.
9.
Если две прямые скрещиваются, то через каждую из нихпроходит плоскость, параллельная другой прямой, и притом
только одна.
a
a b
a II
b
Расстояние между одной из скрещивающихся прямых и
плоскостью, проходящей через другую прямую параллельно
первой, называется расстоянием между
скрещивающимися прямыми.
10.
РасстояниеОтрезок, имеющий
между одной
концы
изна
скрещивающихся
двух скрещивающихся
прямых и
плоскостью,
прямых и перпендикулярный
проходящей черезкдругую
этим прямым,
прямую называется
параллельно
первой,
их общим
называется
перпендикуляром.
расстоянием между
скрещивающимися
На рисунке АВ – общий
прямыми.
перпендикуляр.
В
А
11.
ВН-Я
П-Я
А
П-Р
С
Н-Я
П-Я
M
12.
Из точки А к плоскости проведены две наклонные,которые образуют со своими проекциями на плоскость
углы в 600. Угол между наклонными 900. Найдите
расстояние между основаниями наклонных, если
расстояние от точки А до плоскости равно 18 см.
A
18
К
В
600
600
13.
Из точки А к плоскости проведены две наклонные, длиныкоторых равны 26 см и 2 133 см. Их проекции на эту
плоскость относятся как 5:4. Найдите расстояние от точки А
до плоскости .
A
2 133
26
?
В
М
С
14.
Теорема о трех перпендикулярах.Прямая, проведенная в плоскости через основание
наклонной перпендикулярно к ее проекции на эту
плоскость, перпендикулярна и к самой наклонной.
А
П-Р
Н
Н-я
П-я
М
a
15.
Обратная теорема.Прямая, проведенная в плоскости через основание
наклонной перпендикулярно к ней,
перпендикулярна и к ее проекции.
А
П-Р
Н
Н-я
П-я
М
a
16.
Прямая АК перпендикулярна к плоскости правильноготреугольника АВС, а точка М – середина стороны ВС.
Докажите, что МК ВС.
№148.
К
П-Р
А
В
П-я
М
С
BC AМ
П-я
BC MК
TTП
Н-я
17.
Отрезок АD перпендикулярен к плоскости равнобедренноготреугольника АВС. Известно, что АВ = АС = 5 см, ВС = 6 см,
АD = 12 см.
Найдите расстояния от концов отрезка АD до прямой ВС.
№149 (дом.)
D
П-Р
В
12
П-я
А
N 6
5
С
BC AN
П-я
BC DN
TTП
Н-я
АN и DN – искомые расстояния
18.
В треугольнике угол С прямой, угол А равен 600, AС=12см.DC (АВС). DC= 6 5 Найдите расстояния:
а) от точки С до прямой АВ, б) от точки D до прямой АВ.
АВ СN
D
AB DN
TTП
Н-я
П-я
6 5
CN и DN – искомые расстояния
П-Р
12
С
А
600
N
В
19.
Через вершину прямого угла С равнобедренногопрямоугольного треугольника АВС проведена прямая СМ,
перпендикулярная к его плоскости. Найдите расстояние от
точки М до прямой АВ, если АС = 4 см, а СМ = 2 7 см.
М
П-Р
2 7
С
А
4
П-я
F
В
AВ СF
П-я
AВ MF
TTП
Н-я
МF – искомое расстояние
20.
таОдин из катетов прямоугольного треугольника равен т,
острый угол, прилежащий к этому катету, равен . Через
вершину прямого угла С проведена прямая СD,
перпендикулярная к плоскости этого треугольника, СD = n.
n
Найдите расстояние от точки D до прямой АВ.
№156.
D
П-Р
С
А
П-я
F
В
AВ СF
П-я
AВ DF
TTП
Н-я
DF – искомое расстояние
21.
22.
Если две прямые скрещиваются, то через каждую из нихпроходит плоскость, параллельная другой прямой, и притом
только одна.
a
a b
a II
b
Расстояние между одной из скрещивающихся прямых и
плоскостью, проходящей через другую прямую параллельно
первой, называется расстоянием между
скрещивающимися прямыми.
23.
РасстояниеОтрезок, имеющий
между одной
концы
изна
скрещивающихся
двух скрещивающихся
прямых и
плоскостью,
прямых и перпендикулярный
проходящей черезкдругую
этим прямым,
прямую называется
параллельно
первой,
их общим
называется
перпендикуляром.
расстоянием между
скрещивающимися
На рисунке АВ – общий
прямыми.
перпендикуляр.
В
А
24.
Повторение. Теорема о трех перпендикулярах.Прямая, проведенная в плоскости через основание
наклонной перпендикулярно к ее проекции на эту
плоскость, перпендикулярна и к самой наклонной.
А
П-Р
Н
Н-я
П-я
М
a
25.
Повторение. Обратная теорема.Прямая, проведенная в плоскости через основание
наклонной перпендикулярно к ней,
перпендикулярна и к ее проекции.
А
П-Р
Н
Н-я
П-я
М
a
26.
Из точки М проведен перпендикуляр МВ к плоскостипрямоугольника АВСD. Докажите, что треугольники АМD и
МСD прямоугольные.
TTП
№147.
AD AM
AD AB
М
DC BC
П-Р
А
П-я 1
D
Н-я 1
П-я 1
П-я 2
В
С
DC CM
TTП
Н-я 2
27.
Через вершину А прямоугольника АВСD проведена прямаяАК, перпендикулярная к плоскости прямоугольника. Известно,
что КD = 6 см, КВ = 7 см, КС = 9 см. Найдите:
КА – искомое расстояние
а) расстояние от точки К до плоскости прямоугольника АВСD;
б) расстояние между прямыми АК и СD. АD – общий перпендикуляр
АD – искомое расстояние
№150.
K
Найдем другие прямые углы…
СD AD
6
D
9
П-я 1
С
П-я 1
П-Р
?
А
BC BA
7
П-я 2
В
CD DK
TTП
Н-я 1
BC BK
TTП
Н-я 2
28.
Через вершину B квадрата АВСD проведена прямая ВF,перпендикулярная к его плоскости. Найдите расстояния от
точки F до прямых, содержащих стороны и диагонали
квадрата, если ВF = 8 дм, АВ = 4 дм.
№152.
1) Расстояние от точки F до прямой АВ?
F
2) Расстояние от точки F до прямой ВС?
3) Расстояние от точки F до прямой АD?
8
П-Р
АD AB
П-я 1
AD AF
TTП
Н-я 1
4) … от точки F до прямой DC?
А
В
П-я 1
DC BC
П-я 2
D
4
С
DC FC
TTП
Н-я 2
29.
Через вершину B квадрата АВСD проведена прямая ВF,перпендикулярная к его плоскости. Найдите расстояния от
точки F до прямых, содержащих стороны и диагонали
квадрата, если ВF = 8 дм, АВ = 4 дм.
№152.
5) Расстояние от точки F до прямой АС?
F
AC BO
8
П-Р
А
П-я 3
В
П-я 1
О
D
4
С
AC FO
TTП
Н-я 3
30.
Прямая ОК перпендикулярна к плоскости ромба АВСD,диагонали которого пересекаются в точке О. а) Докажите, что
расстояние от точки К до всех прямых содержащих стороны
ромба, равны. б) Найдите это расстояние, если
ОК = 4,5 дм, АС = 6 дм, ВD = 8 дм.
№157.
К
4,5
A
А
O
6
8
Р
D
F
B
В
С
О
Р
D
F
C
31.
Через вершину В ромба АВСD проведена прямая ВМ,перпендикулярная к его плоскости. Найдите расстояние от
точки М до прямых, содержащих стороны ромба, если
АВ = 25 см, ВАD = 600, ВМ = 12,5 см.
№158.
М
12,5 см
В
В
Р
А
F
С
С
D
А
Р
600
F
D
32.
Углом между прямой и плоскостью, пересекающей этупрямую и не перпендикулярной к ней, называется угол
между прямой и ее проекцией на плоскость.
М
Н-я
А
П-Р
П-я
Н
33.
Найти угол между наклонными и плоскостью(описать алгоритм построения).
М
П-Р
F
А
R
Н
К
М
H
F
F
FМ
FH
34.
Прямая ВD перпендикулярна к плоскости треугольника АВС.Известно, что ВD = 9 см, АС = 10 см, ВС = ВА = 13 см.
Найдите: а) расстояние от точки D до прямой АС;
б) площадь треугольника АСD.
№154 (дом).
D
П-Р
А
9
П-я
В
М 10
13
С
AC BМ
TTП
П-я
AC MD
Н-я
МD – искомое расстояние
35.
Если прямая перпендикулярна к плоскости, то еепроекцией на эту плоскость является точка пересечения
этой прямой с плоскостью. В таком случае угол между
прямой и плоскостью считается равным 900.
А
Н
36.
Если прямая параллельна плоскости, то ее проекцией наплоскость является прямая, параллельная данной. В этом
случае понятие угла между прямой и плоскостью мы не
вводим. (Иногда договариваются считать, что угол между
параллельными прямой и плоскостью равен 00)
a
37.
Из точки А, удаленной от плоскости на расстояние d,проведены к этой плоскости наклонные АВ и АС под углом
300 к плоскости. Их проекции на плоскость образуют
угол в 1200. Найдите ВС.
№165.
A
d
O
С
300
1200
300
В