Similar presentations:
Способ усиления основания пролетного строения мостового сооружения с использованием треугольных балочных ферм. Учебное пособие
1.
Методичка учебное пособие для студентов строительных вузов пособие поусиление основания на многолетнемерзлых грунтах пролетного строения
мостового сооружения с использованием комбинированных пространственных
структур для сейсмоопасных районов
СПОСОБ усиления основания пролетного строения мостового сооружения с использованием
треугольных балочных ферм для сейсмоопасных раонов [email protected]
[email protected] (996) 785-62-76, (921)944-67-10, (911) 175-84-65, т/ф (812) 694-78-10 https://t.me/resistance_test
СПб ГАСУ
2.
3.
Методичка учебное пособие для студентов строительных вузов посо4.
СПОСОБ ШПРЕНГЕЛЬНОГО УСИЛЕНИЯ ПРОЛЕТНОГО СТРОЕНИЯ мостовогосооружения с использованием треугольных балочных ферм для сейсмоопасных (812) 694-7810
5.
6.
Испытательного центра СПб ГАСУ, аккредитован Федеральной службой по аккредитации (аттестат № RA.RU.21СТ39, выдан 27.05.2015),ОО
"Сейсмофонд" ОГРН: 1022000000824 [email protected] т/ф (812) 694-78-10, (921) 962-67-78 190005, СПб, 2-я Красноармейская ул д 4 Спец воен
вест. «Един Профсоюз Оппозиционеров" № 3 02.01.2024 УДК 624.272 Коваленко А.И., Уздин А. М ., Егорова О А и др
ФГБОУ СПб ГАСУ № RA.RU.21СТ39 от 27.05.2015, 190005, СПб, 2-я Красноармейская ул. д 4, организация «Сейсмофонд» СПб ГАСУ ИНН: 2014000780
309 стр
(911) 175-84-65,
УТВЕРЖДАЮ: Президент ОО «Сейсмофонд» СПб ГАСУ ОГРН: 1022000000824 Мжиев Х.Н. 02.01. 2021 [email protected] [email protected]
7.
8.
Специальные технические условия повышения грузопщдъемности пролетного строения мостового сооружения железнодорожного моста с использованием антисейсмическихсдвиговых компенсаторов для гашения колебаний (напряжений) пролетного строения моста" МПК : F16L 27/22 ( заявка на полезную модель от организации "Сейсмофонд"
при СПб ГАСУ направлена в Роспатент (ФИПС) 16.05.2022) и надвижки структурного строения из стержневых пространственных структур, с использованием рамных
сбороно-разборных конструкций с использованием замкнутых гнутосварных профилей прямоуголного сечения, типа "Молодечно", серия 1.460.3-14 ГПИ
"Ленпроектстальконструция"), см RU 80471 "Комбинированная пространсвенная структура" на фрикционно -подвижных сдвиговых соедеиний для обеспечения
9.
быстрособираемого на фрикци-болтах соедиениях с тросовойили медной или бронзовой гильзой (втулкой) ,а в стальную шпильку , с пропиленным пазом, забиватеся,шпилька для повышения грузоподьемностиаварийного железнодорожного моста для ДНР, ЛНР https://ppt-online.org/1148335 https://disk.yandex.ru/i/z59-uU2jA_VCxA
Конструктивные решения по усилению несущих строительных конструкций балочных автомобильных мостов и повышению грузоподъемности пролетного строения мостового
сооружения с использованием пространственных трехгранных ферм -балок Новокисловодск арочного типа, быстровозводимых комбинированных пространственных
структур из трехгранных неразрезных ферм -балок предварительно -напряженных с большими перемещениями на предельное равновесие, с учетом приспособляемости , с
использованием сдвиговых демпфирующих компенсаторов из тросовой гильзы (втулки) ( гасителя сдвиговых напряжений ) при импульсных растягивающихся нагрузках ,
для улучшения демпфирующей способности болтовых соединений Коваленко А.И., Уздин А. М ., Егорова О А.,Темнов В Г (812) 694-78-10
Конференция молодых ученых «Проблемы механики: теория, эксперимент и новые технологии» с 10 по 18 марта 2024 г. на территории горнолыжного центра «Шерегеш»
Кемеровской области и в Новосибирск. Секретарь конференции: Лаврук Сергей Андреевич Адрес: 630090, г. Новосибирск, ул. Институтская, д. 4/1, ИТПМ СО РАН E-mail:
[email protected] Телефон: (383) 3308538
10.
Тема доклада " Конструктивные решения по усилению несущих строительных конструкций балочных автомобильных мостов и повышению грузоподъемности пролетногостроения мостового сооружения с использованием пространственных трехгранных ферм -балок Новокисловодск арочного типа быстровозводимых комбинированных
пространственных структур из трехгранных неразрезных ферм -балок предварительно -напряженных с большими перемещениями на предельное равновесие, с учетом
приспособляемости , с использованием сдвиговых демпфирующих компенсаторов с тросовой гильзой (втулки) , гасителя сдвиговых напряжений, при импульсных
растягивающихся нагрузках , для улучшения демпфирующей способности болтовых соединений, согласно СП 16.1330.2011 SCAD п.7.1.1- антисейсмическое фланцевое
фрикционно-подвижное соединение, для сборно-разборного, быстро собираемого армейского железнодорожного (автомобильного) однопутного моста ( грузоподъемность
90 тонн ) ( А Хейдари, В.В.Галишникова) , пролетом 18, 24 и 30 метров, с применением замкнутых гнутосварных профилей прямоугольного или трубчатого сечения, типа
"Молодечно" (серия 1.460.3-14 ГПИ "Ленпроектстальконстуркция"), для системы несущих элементов и элементов проезжей части военного сборно-разборного пролетного
надвижного строения железнодорожного или автомобильного моста , с быстросъемными упруго пластичными компенсаторами проф. дтн ПГУПС А.М.Уздина, со сдвиговой
фрикционной жесткостью согласно изобретений, изобретенных в СССР №№ 1143895, 1168755, 1174616, 156076, 2010136746, 1760020, 25507777, 154506, 858604 и
основании изобретений Медехина Евгений Анатольевича Томск ГАСУ "Покрытие из трехгранных ферм" №№ 2627794, 49859 , 2188287
Тел /факс СПб ГАСУ "Сейсмофонд" (812) 694-78-10, (921)944-67-10, (911) 175-84-65 [email protected] [email protected] [email protected]
https://t.me/resistance_test
11.
12.
13.
Тема доклада " Конструктивные решения по усилению несущих строительных конструкций балочных автомобильных мостов и повышению грузоподъемности пролетногостроения мостового сооружения с использованием пространственных трехгранных ферм -балок Новокисловодск арочного типа, быстровозводимых комбинированных
пространственных структур из трехгранных неразрезных ферм -балок предварительно -напряженных с большими перемещениями на предельное равновесие, с учетом
приспособляемости , с использованием сдвиговых демпфирующих компенсаторов из тросовой гильзы (втулки) ( гасителя сдвиговых напряжений ) при импульсных
растягивающихся нагрузках , для улучшения демпфирующей способности болтовых соединений и Расчет в ПК SCAD 3D комбинированных пространственных структур
из трехгранных неразрезных ферм -балок предварительно -напряженных с большими перемещениями на предельное равновесие , с учетом приспособляемости , с
использованием сдвиговых демпфирующих компенсаторов с тросовой гильзой (втулки) , гасителя сдвиговых напряжений, при импульсных растягивающихся нагрузках ,
для улучшения демпфирующей способности болтовых соединений, согласно СП 16.1330.2011 SCAD п.7.1.1- антисейсмическое фланцевое фрикционно-подвижное
соединение, для сборно-разборного, быстро собираемого армейского железнодорожного (автомобильного) однопутного моста ( грузоподъемность 90 тонн ) ( А Хейдари,
В.В.Галишникова) , пролетом 18, 24 и 30 метров, с применением замкнутых гнутосварных профилей прямоугольного или трубчатого сечения, типа "Молодечно" (серия
1.460.3-14 ГПИ "Ленпроектстальконстуркция"), для системы несущих элементов и элементов проезжей части военного сборно-разборного пролетного надвижного строения
железнодорожного или автомобильного моста , с быстросъемными упруго пластичными компенсаторами проф. дтн ПГУПС А.М.Уздина, со сдвиговой фрикционной
14.
жесткостью согласно изобретений, изобретенных в СССР №№ 1143895, 1168755, 1174616, 156076, 2010136746, 1760020, 25507777, 154506, 858604изобретений Мелехина Евгений Анатольевича Томск ГАСУ "Покрытие из трехгранных ферм" №№ 2627794, 49859 , 2188287
и основании
Испытательного центра СПбГАСУ, аккредитован Федеральной службой по аккредитации (аттестат № RA.RU.21СТ39, выд. 27.05.2015), организация"Сейсмофонд" при СПб
ГАСУ ОГРН: 1022000000824 ФГАОУ ВО «СПбПУ» № RA.RU.21ТЛ09 от 26.01.2017, 195251, СПб, ул. Политехническая, д 29, организация «Сейсмофонд» при СПб ГАСУ
190005, 2-я Красноармейская ул. д 4 ОГРН: 1022000000824, т/ф: (812) 694-78-10 https://www.spbstu.ru (921) 962-67-78, (911) 175-84-65 [email protected]
[email protected] [email protected] [email protected] (аттестат № RA.RU.21ТЛ09, выдан 26.01.2017) Изготовитель Сборно-разборных
автомобильных надвижных мостов, переправ "Сейсмофонд" при СПб ГАСУ Испытания на соответствие требованиям (тех. регламент , ГОСТ, тех. условия)1. ГОСТ 56728-2015
Ветровой район – VII, 2. ГОСТ Р ИСО 4355-2016 Снеговой район – VIII, 3. ГОСТ 30546.1-98, ГОСТ 30546.2-98, ГОСТ 30546.3-98 (сейсмостойкость - 9 баллов). (921) 962-67-78,
[email protected] [email protected]
https://t.me/resistance_test
ПГУПС, СПБ ГАСУ , Политехе СПб [email protected] тел факс 812 694-78-10 https://t.me/resistance_test [email protected]
геноцида изобретателей СССР» InfoArmZO и информ. агент «Рус Народная Дружина» RUSnarodINFO
[email protected]
[email protected]
Ред. газета «Вестники
[email protected]
15.
197371, СПб, а/я газета «Земля РОССИИ» пр.Королева 30 к 1 кв 135 (812) 694-78-10 [email protected][email protected]
Конструктивные решения по усилению несущих строительных конструкций балочных автомобильных мостов и повышению грузоподъемности пролетного строения мостового
сооружения с использованием пространственных трехгранных ферм -балок Новокисловодск арочного типа, быстровозводимых комбинированных пространственных
структур из трехгранных неразрезных ферм -балок предварительно -напряженных с большими перемещениями на предельное равновесие, с учетом приспособляемости , с
использованием сдвиговых демпфирующих компенсаторов из тросовой гильзы (втулки) ( гасителя сдвиговых напряжений ) при импульсных растягивающихся нагрузках ,
для улучшения демпфирующей способности болтовых соединений
( Более подробно смотри заявку на изобретение "Способ усиления пролетного строения мостового сооружения с использованием пространственных трехгранных
структур для сейсмоопасных районов (аналог № 80471, № 266598 ) от 26.12.2023
16.
17.
Ниже приводится иллюстрация нового конструктивного решения по усилению несущих строительных конструкций балочных автомобильных мостов с использованиемпространственных трехгранных ферм -балок Новокисловодск арочного типа
18.
19.
Более подробно смотрите заявку на изобретение "Способ усиления пролетного строения мостового сооружения с использованием пространственных трехгранныхструктур для сейсмоопасных районов (аналог № 80471, № 266598 ) от 26.12.2023
Ключевые слова: мост, усиление, трехгранные фермы-балки, новокисловодск, несущая способность, повышение грузоподъемности Заявка на изобретении: ««Способ усиления
пролетного строения мостового сооружения с использованием комбинированных пространственных трехгранных структур для сейсмоопасных районов Отправлено в
(ФИПС) от 26.12.2023
Заключение : На основании прямого упругопластического расчета стальных ферм-балок с большими перемещениями на предельное равновесие и приспособляемость
(А.Хейдари, В.В.Галишникова) и анализа результатов расчета проф дтн ПГУПС А.М.Уздина, можно сделать следующие выводы. 1. Очевидным преимуществом
квазистатического расчета пластинчатых балок с пластинчато -балочной системой с упруго пластинчатыми сдвиговыми компенсаторами , является его относительная простота
и высокая скорость выполнения, что полезно на ранних этапах вариантного проектирования армейских ангаров от дронов -камикадзе , с целью выбора наиболее удачного
технического решения. 2. Допущения и абстракции, принимаемые при квазистатическом расчете, рекомендованном , приводят к значительному запасу прочности стальных
ферм и перерасходу материалов в строительных конструкциях. 3. Рассматривалась упругая стадия работы , не допускающая развития остаточных деформаций. Модульный
анализ, являющийся частным случаем динамического метода, не применим при нелинейном динамическом анализе. 4. Избыточная нагрузка, действующее при чрезвычайных
и критических ситуациях на трехгранную ферму- балку и изменяющееся по координате и по времени, в SCAD следует задавать дискретными загружениями фермы-балки .
Каждому загружению соответствует свой график изменения значений и время запаздывания. 5. SCAD позволяет учесть относительное демпфирование к коэффициентам Релея,
только для первой и второй собственных частот колебаний , что приводит к завышению демпфирования и занижению отклика для частот возмущения выше второй собственной.
20.
Данное обстоятельство может привести к ошибочным результатам при расчете сложных механических систем при высокочастотных возмущениях (например, взрыв). 6.Динамические расчеты пластинчато -балочной системы на воздействие от дронов-камикадзе (беспилотника), выполняемые в модуле «Прямое интегрирование уравнений
движения» SCAD, позволят снизить расход материалов и сметную стоимость при строительстве армейских ангаров . 7. Остается открытым вопрос внедрения изобретения
"Способ усиления пролетного строения мостового сооружения с использованием комбинированных пространственных трехгранных структур для сейсмоопасных районов" ,
рассмотренной инновационной методики в практику проектирования и ее регламентирования в строительных нормах и приспособление трехгранной фермы с неразрезными
поясами пятигранного составного профиля с предварительным напряжением для плоских покрытий, с применением замкнутых гнутосварных профилей прямоугольного
сечения типа "Молодечно", серия 1.460.3-14 "Ленпроекстальконструкция") для критических и чрезвычайных ситуация для компании "РФ-Россия" для системы несущих
элементов и элементов при строительстве, с упруго пластичными компенсаторами , со сдвиговой фрикционно-демпфирующей жесткостью по изобр. проф дтн А.М.Уздина
№№1143895, 1168755, 1174616
21.
22.
Великолепная семерка : Авторы разработчики «Способа надстройки пятиэтажного здания без выселения»23.
для беженцев Херсона, Мариуполя, Бахмута, с использем сверхпрочных и сверхлегких комбинированных пространственных структурных трехгранных ферм, спредварительным напряжением, для плоских покрытий, с неразрезыми поясами пятигранного составного профиля. Изобретатели : Елисев В.К, Темнов В. Г, Коваленко А. И,
Егорова О.А,Уздина А. М, Богданова И.А, Елисеева Я.К (981) 276-49-92, (981) 886-57-42 [email protected]
т
/ф (812) 694-78-10, (921)962-67-78, (911) 175-84-65, ( 981) 276-49-92 [email protected]
[email protected] [email protected] [email protected]
[email protected]
[email protected]
Введение
По данным Росавтодора общая протяженность сети автомобильных дорог России более 1 млн. километров, а к 2030 г. она должна достигнуть показателя в 1,7 млн. километров. В
ближайшие годы предстоит как активное строительство новых, так и реконструкция старых автомобильных дорог для возможности пропуска транспортных потоков с все
большей интенсивностью, а это в свою очередь приведет к увеличению нагрузки на искусственные сооружения дорожной сети, к которым относятся автомобильные мосты.
В то же время, происходит постоянное ужесточение норм и увеличение нормативных нагрузок, на которые должны быть запроектированы новые и реконструированы
существующие мосты. Зачастую изменение строительных норм и увеличение нагрузок влечет за собой необходимость в усилении пролетных строений мостов с увеличением их
несущей способности. Кроме того, в эксплуатируемых мостовых конструкциях, постоянно возникают различные дефекты и повреждения связанные как с воздействием внешней
неблагоприятной среды, так и с физическим износом сооружения.
В настоящее время на федеральных и территориальных дорогах России эксплуатируется более 25000 автомобильных мостов, из них более 90% составляют железобетонные
мосты с типовыми пролетными строениями балочного типа с длиной пролетов до 24м [1].
Существует несколько способов увеличения несущей способности реконструируемых пролетных строений мостов [2]:
- наращивание сечения нижней растянутой арматуры;
- устройство разгружающей шпренгельной системы из стальных профилей;
- устройство усиливающей системы из композитных материалов.
При этом варианты усиления с применением стальных арматурных и профильных элементов обладают рядом недостатков:
- увеличение собственного веса конструкции, что может быть существенно для сильно ослабленного сооружения;
24.
- существенное уменьшение подмостового габарита;- технологические сложности с соединением существующих и вновь устанавливаемых элементов для их совместной работы, необходимость вскрытия существующих
арматурных стержней для приварки к ним новых;
- необходимость в дополнительных работах по антикоррозийной обработке стальных элементов усиления и периодических ремонтах антикоррозийного покрытия.
рис. Общий вид автомобильного моста через р. Мулянка
- снижение архитектурной выразительности и эстетических свойств усиленной конструкции, кроме того, психологический дискомфорт у населения от осознания
«ненадежности» сооружения.
Системы усиления на основе композитных материалов лишены подобных недостатков, т.к. обладают ничтожно малым весом по сравнению со стальными элементами, не
подвержены коррозии даже в агрессивных средах, высота сечения элементов усиления из композитного материала ничтожно мала и практически не изменяет подмостовой
габарит сооружения. Кроме того, после соответствующей обработки усиленной поверхности (окраска, шпаклевка и т.п.), композитные элементы усиления не заметны
невооруженным глазом и никак не меняют эстетических свойств сооружения.
Для усиления моста через р. Днепр в Смоленской области инженерами Сейсмофонд СПб ГАСУ предложено повышение грузоподъемности за счет использования
неразрезных арочных ферм-балок аварийных железнодорожных и автомобильных пролетных строений мостового сооружения, узлов и фрагментов за счет проскальзывания
сдвигового компенсатора проф дтн ПГУПС А.М.Уздина установленного на арочных ферм-балок в ПК SKAD, фрагментов и узлов в СПб ГАСУ элементов трехгранных ферм
-балок пролетного строения железнодорожного моста с неразрезными поясами, предварительным напряжением , из арочных ферм-балок -шпренгельного типа и
комбинированных систем, шпренгельного типа, на основании заявки на изобретение от 26.12.2023 "Способ усиления пролетного строения мостового сооружения с
использованием пространственных трехгранных структур для сейсмоопасных районов (аналог № 80471, №266598 )
Предлагается использовать демпфирующий компенсатор, гасителя динамических колебаний и сдвиговых напряжений с учетом сдвиговой жесткости в ПК SCAD ( согласно
СП 16.1330.2011 SCAD п.7.1.1 сдвиговая с учетом действий поперечных сил ) антисейсмическое фланцевое фрикционное соединение для сборно-разборного
быстрособираемого железнодорожного армейского моста из стальных конструкций покрытий производственных здании пролетами 18, 24 и 30 м с применением замкнутых
гнутосварных профилей прямоугольного сечения типа «Молодечно» (серия 1.460.3-14 ГПИ «Ленпроектстальконструкция» ), согласно заявки на изобретение от 14.02.2022
"Огнестойкий компенсатор -гаситель температурных напряжений", заявки № 2022104632 от 21.02.2022 , "Фрикционно-демпфирующий компенсатор для трубопроводов",
25.
заявки № 2021134630 от 29.12.2021 "Термический компенсатор- гаситель температурных колебаний", заявки № 2022102937 от 07.02.2022 "Термический компенсатор- гасительтемпературных колебаний СПб ГАСУ,"заявки "Фланцевое соединения растянутых элементов трубопровода со скошенными торцами" № а 20210217 от 23.09. 2021, заявки
"Спиральная сейсмоизолирующая опора с упругими демпферами сухого трения" № а20210051, заявки "Компенсатор тов Сталина для трубопроводов" № а 20210354 от 22.02.
2022, Минск, "Антисейсмическое фланцевое фрикционное соединения для сборно-разборного моста", закрепленная с помощью фрикционно-подвижных соединениях с
контролируемым натяжением (ФПС), выполненных в виде болтовых соединений (латунная шпилька с пропиленным в ней пазом и забитым в паз шпильки, демпфирующим
медным обожженным клином, согласно изобретениям: патенты №№1143895, 1168755, 1174616, № 165076 RU E 04H 9/02 «Опора сейсмостойкая», изобретения «Способ защиты
зданий и сооружений при взрыве с использованием сдвигоустойчивых и легко сбрасываемых соединений, использующие систему демпфирования фрикционности и
сейсмоизоляцию для поглощения взрывной и сейсмической энергии» № 2010136746 от 20.01.2013 на протяжных фрикционно-подвижных соединениях, фланцевых
фрикционно-подвижных соединений (ФПС) трубопроводов (фланцевые фрикционно-подвижные соединения с прямыми или косыми стыками) для подключения к
цилиндрическим резервуарам, предназначенных для сейсмоопасных районов с сейсмичностью более 9 баллов по шкале МСК -64).
Таким образом, любая нагрузка, расположенная симметрично по отношению к продольной оси моста, распределяется между главными балками пропорционально их жесткости.
В расчете были учтены постоянные нагрузки от собственного веса строительных конструкций моста, определенные по результатам его натурного обследования, и временные
нагрузки от автотранспортных средств по . Кроме того, конструкции пролетного строения были рассчитаны на пропуск сверхнормативной подвижной нагрузки от автоколонны с
коксовой камерой массой 213т.
Максимальный изгибающий момент от расчетных нагрузок в середине пролета главных балок составил M = 260тм, а максимальная поперечная сила на опоре главных балок Q =
61т. При этом, несущая способность существующих неусиленных балок пролетного строения по моменту
= Создать карусель Добавьте описание 194тм, а по поперечной силе = Создать карусель Добавьте описание 54т.
Таким образом, по результатам проверочных расчетов, главные балки пролетного строения моста не обладали достаточной несущей способностью для восприятия
сверхнормативных нагрузок при транспортировке тяжелого оборудования, поэтому было принято решение об усилении главных балок пролетного строения и плиты проезжей
части на участках с трещинами. В качестве элементов усиления была выбрана система из композитных материалов на основе углеродных и базальтовых волокон.
4. Конструктивные решения по усилению моста
Наиболее распространенным решением при усилении балок пролетных строений мостов , это конструктивное решения по усилению несущих строительных конструкций
балочных автомобильных мостов и повышению грузоподъемности пролетного строения мостового сооружения с использованием пространственных трехгранных ферм балок Новокисловодск арочного типа, быстровозводимых комбинированных пространственных структур из трехгранных неразрезных ферм -балок предварительно напряженных с большими перемещениями на предельное равновесие, с учетом приспособляемости с использованием сдвиговых демпфирующих компенсаторов из
тросовой гильзы (втулки) ( гасителя сдвиговых напряжений ) при импульсных растягивающихся нагрузках , для улучшения демпфирующей способности болтовых
соединений
Данное решение позволяет повысить несущую способность конструкции примерно на 200%, но к рассматриваемому случаю данный вариант не применим, т.к. требуется
повысить несущую способность главных балок более чем на 100 %, поэтому предложен новый способ увеличения несущей способности балок пролетного строения путем
послойного внешнего армирования композитным материалом в три этапа.
Заключение
26.
Предложенный в данной работе новый способ усиления сборных железобетонных балок пролетных строений мостовых конструкций с использованием пространственныхтрехгранных ферм -балок Новокисловодск арочного типа, быстровозводимых комбинированных пространственных структур из трехгранных неразрезных ферм -балок
предварительно -напряженных с большими перемещениями на предельное равновесие, с учетом приспособляемости , с использованием сдвиговых демпфирующих
компенсаторов из тросовой гильзы (втулки) ( гасителя сдвиговых напряжений ) при импульсных растягивающихся нагрузках , для улучшения демпфирующей способности
болтовых соединений и повышению грузоподъемности пролетного строения мостового сооружения с использованием пространственных трехгранных ферм -балок
Новокисловодск арочного типа, быстровозводимых комбинированных пространственных структур из трехгранных неразрезных ферм -балок предварительно напряженных с большими перемещениями на предельное равновесие, с учетом приспособляемости с использованием сдвиговых демпфирующих компенсаторов из
тросовой гильзы (втулки) ( гасителя сдвиговых напряжений ) при импульсных растягивающихся нагрузках , для улучшения демпфирующей способности болтовых
соединений
УДК 624.272 Коваленко А.И., Уздин А. М ., Егорова О А. Темнов В Г
Повышение грузоподъемности пролетного строения мостового сооружения за счет применения комбинированных пространственных трехгранных структур для
сейсмоопасных районов»
Автор, ответственный за переписку: Коваленко Елена Ивановна , e-mail: [email protected] [email protected] [email protected] (812) 694-7810 ( 921) 944-67-10
Аннотация. В статье представлен метод повышение грузоподъемности пролетного строения мостового сооружения за счет применения комбинированных пространственных
трехгранных структур для сейсмоопасных районов, как одна из составляющих комплексного мониторинга объектов транспортной инфраструктуры. Приведены примеры
систем контроля технического состояния мостов, изложены инновационные подходы к прочностному мониторингу. Применены новейшие технологии обследования и расчета
свайного фундамента на примере одной из опор железнодорожного моста и повышение грузоподъемности пролетного строения мостового сооружения за счет применения
комбинированных пространственных трехгранных структур для сейсмоопасных районов
Испытательной лабораторией СПб ГАСУ Сейсмофонд выполнены работы по обследованию конструкции и повышение грузоподъемности пролетного строения мостового
сооружения за счет применения комбинированных пространственных трехгранных структур для сейсмоопасных районов,
после окончания строительных работ по сооружению
В конце работы сделан вывод о целесообразности проделанных мероприятий и по повышение грузоподъемности пролетного строения мостового сооружения за счет
применения комбинированных пространственных трехгранных структур для сейсмоопасных районов
27.
Ключевые слова: повышение, грузоподъемность, пролетное строение мостового сооружения, применения, комбинированных, пространственных, трехгранных структур,сейсмоопасный, район, свайный фундамент, мост; численное моделирование; напряженно- деформированное состояние; грунтовый массив; технологический регламент; проект
производства работ
В современном мире мостостроение является неотъемлемой частью формирования транспортной инфраструктуры. К мостовым сооружениям предъявляются
эксплуатационные, экономические, экологические, архитектурные и расчетно-конструктивные требования
1 . Перед застройщиком часто встают разного рода задачи, решение которых невозможно без применения нестандартных технических подходов, для повышения
грузоподъемности пролетного строения мостового сооружения за счет применения комбинированных пространственных трехгранных структур для сейсмоопасных
районов,
Мониторинг технического состояния мостовых конструкций является актуальной задачей, которая заключается в эффективном контроле, надежном анализе, рациональной
интерпретации данных, а также обеспечении правильного принятия решений по эффективному управлению мостовой инфраструктурой и повышение грузоподъемности
пролетного строения мостового сооружения за счет применения комбинированных пространственных трехгранных структур для сейсмоопасных районов
.
На сегодняшний день по всему миру активно разрабатываются технологии контроля технического состояния мостов, позволяющие оценивать их состояние без
непосредственного доступа к конструкции и нарушения движения .
Одним из важных критериев выбора повышение грузоподъемности пролетного строения мостового сооружения за счет применения комбинированных пространственных
трехгранных структур для сейсмоопасных районов,
рациональной технологии усиления фундаментов является соотношение прочности и экономичности, что способствует не только восстановлению несущей способности
фундамента, но и возможности экономии материалов и снижения трудозатрат
В представленной работе рассмотрено повышение грузоподъемности пролетного строения мостового сооружения за счет применения комбинированных
пространственных трехгранных структур для сейсмоопасных районов. Конструкция повышение грузоподъемности пролетного строения мостового сооружения за счет
применения комбинированных пространственных трехгранных структур для сейсмоопасных районов показана на рисунке 1.
28.
Рис 1 Показан трехгранная ферма -балка для повышение грузоподъемности пролетного строения мостового сооружения за счет применения комбинированныхпространственных трехгранных структур для сейсмоопасных районов,
29.
Рис 2 Показан трехгранная ферма -балка для повышение грузоподъемности пролетного строения мостового сооружения за счет применения комбинированныхпространственных трехгранных структур для сейсмоопасных районов, которая используется за рубежом ( США )
30.
31.
Рис 3 Показаны узлы крепления и соединения трехгранных ферм -балка для повышение грузоподъемности пролетного строения мостового сооружения за счет применениякомбинированных пространственных трехгранных структур для сейсмоопасных районов,
32.
Рис 4 Показаны узлы крепления и соединения трехгранных ферм -балка для повышение грузоподъемности пролетного строения мостового сооружения за счет применениякомбинированных пространственных трехгранных структур для сейсмоопасных районов,
33.
34.
Рис 5 Показаны узлы крепления и соединения трехгранных ферм -балка для повышение грузоподъемности пролетного строения мостового сооружения за счет применениякомбинированных пространственных трехгранных структур для сейсмоопасных районов,
Рис 6 Показаны узлы крепления и соединения трехгранных ферм -балка для повышение грузоподъемности пролетного строения мостового сооружения за счет применения
комбинированных пространственных трехгранных структур для сейсмоопасных районов,
35.
Рис 7 Показаны узлы крепления и соединения трехгранных ферм -балка для повышение грузоподъемности пролетного строения мостового сооружения за счет применениякомбинированных пространственных трехгранных структур для сейсмоопасных районов,
36.
Рис 7 Показаны узлы крепления и соединения трехгранных ферм -балка для повышение грузоподъемности пролетного строения мостового сооружения за счет применениякомбинированных пространственных трехгранных структур для сейсмоопасных районов,
37.
Рис 8 Показаны узлы крепления и соединения трехгранных ферм -балка для повышение грузоподъемности пролетного строения мостового сооружения за счет применениякомбинированных пространственных трехгранных структур для сейсмоопасных районов,
Рис 9 Показаны узлы крепления и соединения трехгранных ферм -балка для повышение грузоподъемности пролетного строения мостового сооружения за счет применения
комбинированных пространственных трехгранных структур для сейсмоопасных районов,
38.
Рис 10 Показаны узлы крепления и соединения трехгранных ферм -балка для повышение грузоподъемности пролетного строения мостового сооружения за счет применениякомбинированных пространственных трехгранных структур для сейсмоопасных районов,
39.
Рис 11 Показаны узлы крепления и соединения трехгранных ферм -балка для повышение грузоподъемности пролетного строения мостового сооружения за счет применениякомбинированных пространственных трехгранных структур для сейсмоопасных районов,
40.
Рис 12 Показаны узлы крепления и соединения трехгранных ферм -балка для повышение грузоподъемности пролетного строения мостового сооружения за счет применениякомбинированных пространственных трехгранных структур для сейсмоопасных районов,
41.
Рис 13 Показаны узлы крепления и соединения трехгранных ферм -балка для повышение грузоподъемности пролетного строения мостового сооружения за счет применениякомбинированных пространственных трехгранных структур для сейсмоопасных районов,
42.
Рисунок 16. Общий вид конструктивных решений по повышение грузоподъемности пролетного строения мостового сооружения за счет применения комбинированныхпространственных трехгранных структур для сейсмоопасных районов с использованием зарубежного опыта
Моделирование и расчѐт несущей способности и повышение грузоподъемности пролетного строения мостового сооружения за счет применения комбинированных
пространственных трехгранных структур для сейсмоопасных районов, велись при помощи расчетного комплекса программ «PLAXIS 3D». В основу комплекса положен
метод конечных элементов (МКЭ), позволяющий выполнять математическое моделирование процессов, протекающих в грунте.
Для моделирования работы грунта для повышения грузоподъемности пролетного строения мостового сооружения за счет применения комбинированных пространственных
трехгранных структур для сейсмоопасных районов, использована модель «Мора-Кулона». Рассматриваемая модель грунта формируется в виде зависимостей бесконечно
малых приращений эффективных напряжений (скорости эффективных напряжений) и бесконечно малых приращений деформации (скорости деформации).
43.
Основной принцип решений упругопластических задач заключается в том, что деформации и их скорости разделяются на упругие и пластические составляющие для расчета идля повышения грузоподъемности пролетного строения мостового сооружения за счет применения комбинированных пространственных трехгранных структур для
сейсмоопасных районов
Для установления закономерности между величинами напряжений и упругими деформациями используется закон Гука:
Физико-механические характеристики грунтов в расчетной модели повышение грузоподъемности пролетного строения мостового сооружения за счет применения
комбинированных пространственных трехгранных структур для сейсмоопасных районов, принимался на основании результатов инженерно-геологических изысканий для
расчетных значений с доверительной вероятностью а = 0,95 (для расчетов по первой группе предельных состояний).
Наибольшее расчѐтное усилие, передаваемое на фундаменты в уровне подошвы сваи составляет 215,4 т (2112 кН).
Моделирование напряженно-деформированного состояния (НДС) свайного основания с грунтовым массивом
Modeling of the stress-strain state (SSS) of a pile foundation with a soil massif
Построение расчетных моделей, учитывающих конструкции строящихся опор, внешние нагрузки, порядок производства работ, напластование грунта и гидрологические
условия, выполнены на основе предоставленной проектной документации и в соответствии с отчетом по инженерно-геологическим изысканиям.
В настоящее время на федеральных и территориальных дорогах России эксплуатируется более 25 тыс. автомобильных мостов, из них более 90 процентов , составляют
железобетонные мосты с типовыми продетыми строенисми балочного типа с длиной пролетов до 24 м
Существует несколько спого&ов увеличения несущей способности реконструируемых пролетных строений мостов
• наращивание сечения нижней растянутой арматуры;
• устройство разгружающей шпренгельной системы из стальных профилей:
• устройство усиливающей системы из композитных материалов.
При этом варианты усиления с применением стадьныхарматуриых и профильных элементов обладают рядом недостатков:
44.
Дано описание нового конструктивного решения по усилению несущих строительных конструкций балочных автомобильных мостов с использованием композитных материаловна основе углеродных и базальтовых волокон, приведены основные инженерные формулы для оценки несущей способности главных балок с учетом усиления.
Обследование моста было выполнено специалистами Сейсмофонд СПб ГАСУ. Были определены фактические схемы расположения элементов конструкций. размеры
поперечных сечений и их соединений. Выполнена проверка соответствия конструкций имеющейся проектной документации, фактической геометрической невменяемости.
выявлены отклонения, повреждения. дефекты элементов и узлов конструкций. Уточнены фактические и прогнозируемые нагрузки и воздействия на строительные конструкции.
Установлены механические свойства материалов конструкций.
Строительство моста осуществлялось в 2003 г. Сооружение представляет собой однопролетный автодорожный мост с двумя береговыми опорами. Длина моста 18 м. общая
ширина 7,84 м. Мост расположен я плане и н продольном профиле на прямой. Габарит проезжей части Г - 6.5 м. На мосту и на подходах к мосту две полосы для движения - по
одной полосе в каждую сторону. Тротуар выполнен только с одной стороны моста. ширина тротуара Т 0.6 м. Фотографии общего вида моста приведена па Иллюстрации 1.
Конструкция моста образована двумя береговыми опорами, пролетным строением и могтожыч полотном. Покрытие проезжей части асфальтобетонное. Толщина дорожной
одежды иа мосту составляет от 50 до 100 мм.
Пролетное строение моста образовано четырьмя сборными железобетонными балками таврового сечения, объединенными монолитной железобетонной плитой толщиной 1.50
мм в единую температурно-неразрезную бездиафрагмениую конструкцию. Расстояние между балками 1,83 м. Схема расстановки балок в поперечном направлении К 1.175 - 1.83'
3 ? К 1.175. Балки пролетного строения изготовлены по типовой серии 3.503.1-73. Полная длина балок 18 м. Высота балок 1050 мм. толщина пояса балки 150 мм. толщина ребра
балки
от 160 мм.
Балки пролетного строения опираются па полимерные опорные части размером 150 мм * 350 мм. высотой 70 мм. установленные па монолитные железобетонные постаместты
берего- вых опор размером 500 мм * 500 мм. высотой 120 мм.
Береговые опоры монолитные железобетонные призматического очертания шириной 6-59 м. высотой до верха свайного ростверка 2.8 м. Фундаменты береговых опор свайные.
В процессе обследовании были обнаружены следующие дефекты и повреждения строительных конструкций пролетного строения моста: • разрушение защитного слоя бетона с
оголением и коррозией продольной рабочей арматуры в двух балках пролетного строении в при- опориой зоне:
• наклонные трещины на приопор- ных участках двух балок пролетного строения с шириной рас крытии до 0.1 мм. шаг трещин 500 мм:
• продольная трпцина в монолитной железобетонной плите пролетного строения по оси моста с шириной раскрытия до 0.3 мм на всем протяжении продетого строения:
• разрушение защитного слои бетона с оголением и коррозией рабочей арматуры плиты проезжей части на участках сопряжения моста с берегом.
Статичоскии расчет конструкций пролетного строения
45.
Статический расчет элементов главных бал (ж и плиты проезжей части моста выполнился аналитическим путем. Пространственное распределение нлфузки на главные балкимоста определялось по способу виецентрен- кото сжатии |5|. При этом предполагается. 'сто поперечные сечения пролетного строении не испытывают деформаций, т.е. имеют
бесконечно большую жесткость, а плита проезжей части пролетного строения рассматривается как иеразрезиая балка на упругих опорах, в качестве которых принимаются
главные балки. Таким образом, любая нагрузка, расположенная симметрично по отношению к продольной оси моста, распределп- ется между главными балками
пропорционально их жесткости.
В расчете были учтены постоянные нагрузки от собственного веса строительных конструкций моста, определенные по результатам его натурного обследования, и временные
нагрузки от автотранспортных средств по |6|. Кроме того, конструкции пролетного строения были рассчитаны на пропуск сверхнормативной подвижной нагрузки от
автоколонны с коксовой камерой масс oil 213 т.
Максимальный изгибающий момент от расчетных нагрузок в середине пролета главных балок составил .1260 тм. а максимальная поперечная сила иа опоре главных балок
Таким образом, по результатам проверочных расчетов главные балки пролетного строения моста не обладали достаточной несущей способностью лдп восприятия
сверхнормативных нагрузок при транспортировке тяжелого оборудования, поэтому было принято решение об усилении главных балок пролетного строения и плиты проезжей
части на участках с трещинами. В качестве элементов усиления была выбрана система из композитных материалов иа основе углеродных и базальтовых волокон.
Конструктивные решения по усилению моста
Наиболее распространенным решением при усилении балок пролетных строений мостов композитными материалами валяется приклейка композитной ламели к нижней грани
главных балок пролетного строения В этом случае ла мель может быть дополнительно закреплена на концах поперечными U-образными хомутами из полос композитной ткани.
Данное решение позволяет повысить несущую способность конструкции примерно на 15%. но к рассматриваемому случаю данный вариант неприменим, так как требуется
повысить несущую способность главных балок более чем на 30%. Поэтому предложен нмшй способ увеличения несущей способности балок пролетного строен и в путем
послойною внешнего армирования композитным материалом п три этапа.
На первом этапе выполняется повышение грузоподъемности пролетного строения мостового сооружения за счет применения комбинированных пространственных
трехгранных структур для сейсмоопасных районов
Усиление и повышение грузоподъемности пролетного строения мостового сооружения за счет применения комбинированных пространственных трехгранных структур
для сейсмоопасных районов
46.
Выбранная конструктивная схема усиления пролетного строения моста позволяет повысить несущую способность балок пролетного строения на 28% по изгибающему моментуи на 164 по поперечной силе. Таким образом, иссушая способность конструкции после усиления составила по изгибанннему моменту М26S тм. а по поперечной силе Q 63 т. что
достаточно дли восприятия расчетных усилий, возникающих при движении автоколонны со сверхнормативной нагрузкой.
Заключение
1 Предложенный в данной работе новый способ усиления сборных железобетонных балок пролетных строении мостовых конструкций повышение грузоподъемности
пролетного строения мостового сооружения за счет применения комбинированных пространственных трехгранных структур для сейсмоопасных районов, позволяет
повысить их несущую способность
2 Предложенный способ усиления для, повышение грузоподъемности пролетного строения мостового сооружения за счет применения комбинированных пространственных
трехгранных структур для сейсмоопасных районов , при отсутствии значительных технических недостатков, обладает также целым радом достоинств по сравнению с
различными способами усиления стальными профилями.
3 Основываясь на опыте эксплуатации подобных сооружений, можно сделать вывод, что применение и повышение грузоподъемности пролетного строения мостового
сооружения за счет применения комбинированных пространственных трехгранных структур для сейсмоопасных районов является эффективным и надежным способом
увеличения несущей способности строительных конструкций автомобильных мостов и может быть рекомендовано для применения на других подобных конструкциях.
Применение и трехгранных ферм для повышение грузоподъемности пролетного строения мостового сооружения за счет применения комбинированных пространственных
трехгранных структур для сейсмоопасных районов, позволяет существенно ускорить и упростить процесс повышение грузоподъемности пролетного строения мостового
сооружения за счет применения комбинированных пространственных трехгранных структур для сейсмоопасных районов, реконструкцию и эксплуатируемых
автомобильных и железнодорожных мостов, а значит, дает возможность пропуска больших транспортных потоков и увеличения скорости их движения, что в конечном итоге
неминуемо приведет к улучшению качества жизни всех жителей России.
Список использованной литературы:
1. Журнал «Сельское строительство» № 9/95 стр.30 «Отвести опасность», А.И.Коваленко
2. Журнал «Жилищное строительство» № 4/95 стр.18 «Использование сейсмоизолирующего пояса для существующих
зданий»,
3. Журнал «Жилищное строительство» № 9/95 стр.13 «Сейсмоизоляция малоэтажных жилых зданий»,
4. Журнал «Монтажные и специальные работы в строительстве» № 4/95 стр. 24-25 «Сейсмоизоляция малоэтажных зданий»,
А.И.Коваленко
47.
5. Российская газета от 26.07.95 стр.3 «Секреты сейсмостойкости». А.И.Коваленко6. Российская газета от 11.06.95 «Землетрясение: предсказание на завтра», А.И.Коваленко
8. Газета «Грозненский рабочий» № 5 февраль 1996 «Честь мундира или сэкономленные миллиарды»,
9. «Голос Чеченской Республики» 1 февраль 1996 «Башни и баллы» А.И.Коваленко
10. Республика ЧР № 7 август 1995 «Удар невиданной звезды или через четыре года». А.И.Коваленко
11. Газета «Земля России» за октябрь 1998 стр. 3 «Уникальные технологии возведения фундаментов без заглубления –
просадочных грунтах»
дом на грунте. Строительство на пучинистых и
12. Газета «Земля России» № 2 ( 26 ) стр. 2-3 « Предложение ученых общественной организации инженеров «Сейсмофонд» –
области реформы ЖКХ.
Фонда «Защита и безопасность городов» в
13. Журнал «Жизнь и безопасность « № 3/96 стр. 290-294 «Землетрясение по графику» Ждут ли через четыре года планету
потрясения «звездотрясения» А.И.Коваленко, Е.И.Коваленко.
«Земля глобальные и разрушительные
14. Журнал «Монтажные и специальные работы в строительстве» № 11/95 стр. 25 «Датчик регистрации электромагнитных
волн, предупреждающий о землетрясении гарантия сохранения вашей жизни!» и другие зарубежные научные издания и
журналах за 1994- 2004 гг. А.И.Коваленко и др. изданиях С брошюрой «Как построить
сейсмостойкий дом с учетом народного опыта сейсмостойкого строительства горцами Северного
Кавказа сторожевых башен» с.79 г. Грозный –1996. А.И.Коваленко
в ГПБ им Ленина г. Москва и РНБ СПб пл. Островского, д.3 .
Альбомы, чертежи и типовые серии по легкосбрасываемым конструкциям можно скачать по ссылке http://dwg.ru. Узлы и типовые серии рабочих чертежей можно
скачать по ссылке http://rutracker.org. Технические решения можно скачать http://www1.fips.ru
48.
На Украине мосты в основном держат до 40 тонн есть до 60 ти , их мало Усиленыые мосты проф дтн ПГУПС Уздина А М надо использовать сверхпрочные и сверхлегкиекомбинированные пространственных трехгранные структурны ферм-балок , с предварительным напряжением, для усления пролтеного мостового сооружения , с неразрезыми
поясами пятигранного составного профиля ( Мелехина ТОМСК ГАСУ) Подарок тов. Сталину И.В. к Дню рождения, 144 годовщина, изобретение "СПОСОБ УСИЛЕНИЯ
ПРОЛЕТНОГО СТРОЕНИЯ МОСТОВОГО СООРУЖЕНИЯ c использованием комбинированных пространственных трехгранных структур для сейсмоопасных "
[email protected] 8126947810
Онакко, Минтранс, Минстрой , МЧС , Жилдор, ноболее 30 лет не замечаб успехи блока НАТО (США) и КНР и умышденно не
принимают и не рассмаитриваби на НТС НИОКР проетную доументацию и изобртения СПбГАСУ Сейсмоонд.
Это диверсию , вредительство или саботаж во время СВО, должны рассотреть Следсвенный Комитет, военный трибунал и прокуратура РФ-Россия https://pptonline.org/1435747
49.
Модульные трѐхгранные фермы плоских покрытийЕ. А. Мелѐхин
https://doi.org/10.31675/1607-1859-2021-23-2-65-78 https://vestnik.tsuab.ru/jour/article/view/970
https://www.liveinternet.ru/users/russkayadruzhina/post500023116/
Обустройство линий обороны от дронов-камикадзе
https://ppt-online.org/1386647
Напряженно-деформированное состояние трехгранной фермы с неразрезными поясами пятигранного составного профиля
Евгений Анатольевич Мелѐхин https://doi.org/10.22227/2305-5502.2023.1.4 https://www.nso-journal.ru/jour/article/view/91
http://www.ivdon.ru/uploads/article/pdf/IVD_43__5_Melekhin_Goncharov_Malygin2705.pdf_1aa1bc6691.pdf
держат до 90 тонн, собираются за 24 часа , как в КРН и США. Без надстройки и усиления существующего Украинского моста , из преднапряженной трехгарной фермой балкй , мост просто рукнет Будет много жертв Погибнут морпехи Севастополя Имеется положительное заключениегенерала Косенкова Железнодорожные восйска
Shogu Polozhitelnoe zaklyuchenie Minoboroni NIITS JDV Logunov 10 iyulya 2022 10 str
https://ppt-online.org/1450454
Онакко, Минтсранс, Минстрой , МЧС , Жилдор, упррноболе 30 лет не замечаб успехи блока НАТО (США) и КНР и умышденно не примают и не рассмаитриваби на
НТСНИОКР проетную доументацию и изобртения СПбГАСУ Сейсмоонд.
50.
Это диверсия , вредительство или саботаж во время СВО, должны рассотреть Следсвенный Комитет, военный трибунал и прокуратура РФ-Россия51.
52.
53.
54.
55.
Заявка на изобретение "СПОСОБ УСИЛЕНИЯ ПРОЛЕТНОГО СТРОЕНИЯ МОСТОВОГО СООРУЖЕНИЯ c использованием комбинированных пространственныхтрехгранных структур для сейсмоопасных "
районов
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
Реферат Способ усиления пролетного строения мостового сооружения с использованием комбинированных пространственных трехгранных структур для сейсмоопасныхрайонов
Полезная модель способа усиления пролетного строения мостового сооружения с использованием комбинированных пространственных трехгранных структур для
сейсмоопасных районов, относится к ремонту и повышения грузоподъемности аварийного пролетного строения автомобильного и железнодорожного моста и может быть
использована для аварийного поста при укреплении с использованием пространственных стержневых конструкций Новокисловодск и изобретений Мелехина . Задача
полезной модели - снизить материалоемкость покрытия, повысить его жесткость и расширить область применения. Это достигается тем, что известное комбинированное
пространственное структурное покрытие, содержащее пространственный каркас, из соединенных в узлах, стержней поясов и раскосов и размещенные в средней части, вдоль
пролета, жестко прикрепленные нижнего пояса, нижние и расположенные над верхние пролетные, установленные на опоры подкрепляющие элементы, снабжено
установленными на опоры и расположенными вдоль пролета жестко прикрепленными к нижнего пояса нижними и монтированными над верхними контурными , причем
верхние контурные и пролетные жестко прикреплены к узлам верхнего пояса . Нижние пролетные и контурные жестко прикреплены посредством крестового монтажного
столика к нижнего пояса , а верхние - к нижнего пояса, соответственно При сборке покрытия вначале монтируются опираемые на опоры нижние и верхние пролетные , и
контурные, с крестовыми монтажными столиками . После чего собирается нижний пояс из стержней нижнего пояса и с узловыми элементами в виде полых шаров , при этом
жестко прикрепляются посредством электросварки к монтажным столикам нижних пролетных и контурных . Затем монтируются стержни раскосов 4 и верхнего пояса. На
заключительном этапе монтируются стержни верхнего пояса и выполняется жесткое крепление верхнего пояса посредством электросварки к монтажным столикам верхних
пролетных и контурных . Снабжение комбинированного покрытия установленными на опоры и расположенными вдоль пролета нижними и верхними контурными и жесткое
прикрепление контурных , и пролетных, что позволяет повысить жесткость покрытия, а также избежать необходимости в установке опор для опирания , горизонтальных и
вертикальных связей, подвесок, что существенно снижает материалоемкость покрытия. Отсутствие опор вдоль контурных , комбинированного покрытия расширяет также
область его применения, например, при строительстве авиационных ангаров, цехов, покрытий зрелищных сооружений и т.д. 5 ил.
Изобретение относится к способам для ремонта или укрепления существующих мостов. Способ усиления пролетного строения мостового сооружения с изменением поперечного
сечения включает усиление главных балок путем установки и натяжения канатов. Сначала создают коробчатое сечение путем дополнительной установки нижнего блока и
закрепления его в нижней части двух соединенных между собой трехгранных ферм - балок.
При испытаниях фрагментов и узлов по усилению пролетного строения мостового сооружения с использованием комбинированных пространственных трехгранных
структур для сейсмоопасных районов, использовались изобретения проф дтн ПГУПС А.М.Уздина №№ 1143895, 1168755, 1174616, 2550777 и аспиранта ЛенЗНИИЭП,
стажера СПб ГАСУ А.И.Коваленко №№ 1760020, 2010136746, 165076, 154506, 1395500, 101847, 998300, 172414
Podarok tov Stalinu Antiseysmicheskoe flantsevo soedinenie friktsionno friktsionno-podvizhnix soedineniy proletnogo stroeniya mosta 2 str
Podarok tov Stalinu Antiseysmicheskoe flantsevo soedinenie friktsionno friktsionno-podvizhnix soedineniy proletnogo stroeniya mosta 2 str
https://ppt-online.org/1454657
Пояснительная записка к расчету упруго пластического сдвигаемого шарнира для сборно-разборного железнодорожного моста
https://ppt-online.org/1446618
https://dzen.ru/a/ZX7AY8TkcRaNPvtN
Для включения в план НИОКР Минстроя ЖКХ, Минпромторга, Минтраса
Дистанционный доклад (сообщение) на НТС Минстроя ЖКХ на удаленке из поселения ученого, заместителя, заместителя Президента организации "Сейсмофонд" при СПб
ГАСУ, редатора газеты "Армия Защитников Отечества", полковника Шендакова Михаил Анатольевича на научно -техническом ( Совете НТС в Минстрое ЖКХ в марте -апреля
2023 и доклад на научной конференции в Политехническом Университете СПб 21 - 25 августа 2023 года
71.
Тема доклада: Метод предельного равновесия при расчете в ПK SCAD ( сдвиговая прочность СП16.1330.2011 SCAD п.7.1.1 придельная поперечная сила ) статическинеопределенных упругопластинчатых стальных ферм-балок ( пластинчато –балочных сиcтемам ) с большими перемещениями на прельеное равновесие и приспособляемость на
основе изобретений проф А.М.Уздина ( №№ 1143895,, 1168755, 1174616, 255 0777, 2010136746, 1760020, 165076, 154506, 858604 ) и инженерные решения по использованию для
железнодорожных мостов упругопластических сверхлегких и сверхпрочных конструкций стальных ферм-балок, сконструированном со встроенным бетонным настилом, с
пластическим шарниром и расчет в 3D-модели, в SCAD неразрезной балки-фермы с большими перемещениями, с учетом сдвиговой жесткостью к неравномерным нагрузкам
железнодорожного моста, для преодоления водных преград в критических и чрезвычайных ситуациях, позволяющих уменьшить массу пролетного строения армейского моста до
30 процентов, за счет пластинчатости и приспособляемости моста, что уменьшит сметную стоимость СМР до 30 процентовhttps://vk.com/wall789869204_122
Бодрящий ответ для организации Сейсмофонд при СПб ГАСУ
https://ppt-online.org/1300515 3 з.п. ф-лы,
Формула полезной модели способ усиления пролетного строения мостового сооружения с использованием комбинированных пространственных трехгранных структур для
сейсмоопасных районов
Способ усиления пролетного строения мостового сооружения с использованием комбинированных пространственных трехгранных структур для сейсмоопасных районов из
комбинированнох пространственных структур пролетного строения мостового сооружения с использованием комбинированных пространственных трехгранных структур
для сейсмоопасных районов , содержащее пространственный каркас из соединенных в узлах стержней поясов и раскосов и размещенные в средней части пространственного
каркаса вдоль пролета жестко прикрепленные к узлам нижнего пояса каркаса нижние и расположенные над каркасом верхние пролетные подкрепляющие элементы,
установленные на опоры, отличающееся тем, что оно снабжено установленными на опоры и расположенными вдоль пролета жестко прикрепленными к узлам нижнего пояса
нижними и монтированными над каркасом верхними контурными подкрепляющими элементами, причем верхние контурные и пролетные подкрепляющие элементы жестко
прикреплены к узлам верхнего пояса пространственного каркаса.
1. Способ усиления пролетного строения мостового сооружения с использованием комбинированных пространственных трехгранных ферм -балок изобретателя
Новокисловодс и Мелехина и структур ( смотри : ИННОВАЦИОННАЯ РАЗРАБОТКА МОДУЛЯ "НОВОКИСЛОВОДСК" И ЕГО ЭКОНОМИЧЕСКОЕ ОБОСНОВАНИЕ
имеет дополнительные пояснению и описания по ссылкам :
https://cyberleninka.ru/article/n/innovatsionnaya-razrabotka-modulya-novokislovodsk-i-ego-ekonomicheskoe-obosnovanie
Марутян Александр Суренович (RU) https://yandex.ru/patents/doc/RU153753U1_20150727 https://patents.s3.yandex.net/RU153753U1_20150727.pdf УЗЛОВЫЕ СОЕДИНЕНИЯ
ПЕРЕКРЕСТНО-СТЕРЖНЕВЫХ КОНСТРУКЦИЙ, ВКЛЮЧАЯ УЗЛЫ СИСТЕМЫ «НОВОКИСЛОВОДСК», И ИХ РАСЧЕТ https://msi.elpub.ru/jour/article/view/863/0
https://www.liveinternet.ru/users/russkayadruzhina/post499999227/
2. для сейсмоопасных районов мостового сооружения с изменением поперечного сечения, включающий усиление главных балок путем установки трехгранных ферм-балок с
упругопластическим компенсатором с отличающийся тем,
72.
3. При оформлении изобретения использовались изобретения блока НАТО : США, CCCP, Беларусь, Торговой компании «РФ-Россия» : №№ 2140509 E 04 H1/02, MPK E04 G23/00 RU2043465, 2121553, Малафеев 2336399, 2021450, Насадка 2579073, SU 1823907 ( нет в общей доступности), 2534552, 2664562, 2174579, Курортный , 2597901, полезная
модель 154158, Марутяна Александр Суренович г.Кисловодск №№ 153753, 2228415, 2228415, 2136822, Способ надстройки зданий №№ 2116417, 2336399, 2484219
https://dzen.ru/a/ZPwU9rZlbXapNcHI
https://t.me/resistance_test/516
4. Трѐхгранные фермы с предварительным напряжением для плоских покрытий Е.А. Мелѐхин1 , Н.В. Гончаров2 , А.Б. Малыгин1 1Московский государственный строительный
университет 2Национально исследовательский Томский Политехнический университет
http://www.ivdon.ru/uploads/article/pdf/IVD_43__5_Melekhin_Goncharov_Malygin2705.pdf_1aa1bc6691.pdf
Мелѐхин Е.А. Модульные трѐхгранные фермы плоских покрытий. Вестник Томского государственного архитектурно-строительного университета. 2021;23(2):6578. https://doi.org/10.31675/1607-1859-2021-23-2-65-78
https://vestnik.tsuab.ru/jour/article/view/970/722
Скачать PDF
5. ПОКРЫТИЕ ИЗ ТРЕХГРАННЫХ ФЕРМ
Мелѐхин Евгений Анатольевич (RU)
https://rusneb.ru/catalog/000224_000128_0002627794_20170811_C1_RU/
6. Напряженно-деформированное состояние трехгранной фермы с неразрезными поясами пятигранного составного профиля
https://doi.org/10.22227/2305-5502.2023.1.4
https://www.nso-journal.ru/jour/article/view/91
https://www.freepatent.ru/patents/2188287
https://edrid.ru/authors/201.dffe3.html
http://nso-journal-03.mgsu.ru/ru/component/sjarchive/issue/article.display/2023/4/556-571
https://www.litprichal.ru/work/517210/
Бодрящий ответ для организации Сейсмофонд при СПб ГАСУ
https://ppt-online.org/1300515
Евгений Анатольевич Мелѐхин
73.
Расчет упругоппластического структурного сбороно разбороного моста на основе трехгранной блок-фермыhttps://ppt-online.org/1299327
https://rodinailismertlistru.diary.ru/p221562547_vse-dlya-fronta-vse-dlya-pobedy-predlozhenie-dlya-minstroya-zhkh-mintransu-minoborony.htm
Metod predelnogo ravnovesiya uprugoplasticheskogo rascheta SCAD staticheski neopredelimix stalnix ferm zheleznodorozhnogo mosta 538 str.docx https://disk.yandex.ru/d/wyRxGzE8rRmBA
https://rodinailismertlistru.diary.ru/p221562547_vse-dlya-fronta-vse-dlya-pobedy-predlozhenie-dlya-minstroya-zhkh-mintransu-minoborony.htm
Специальный военный вестник "Армия Защитников Отечества" №15
https://ppt-online.org/1323327
Расчет упругоппластического структурного сбороно разбороного моста на основе трехгранной блок-фермы
https://ppt-online.org/1299327
Расчет упругопластического структурного сборно-разборного моста на основе трехгранной блок-фермы
https://ppt-online.org/1297775
Секция III. Механика деформируемого твердого тела. Расчет упругопластического структурного сборно-разборного моста
https://ppt-online.org/1297382
О пригодности быстровозводимого армейского сборно-разборного автомобильного моста
https://ppt-online.org/1305281
Описание: "Способ усиления пролетного строения мостового сооружения с использованием комбинированных пространственных трехгранных структур для сейсмоопасных
районов"
74.
Полезная модель относится к строительству и может быть использована при возведении пространственных стержневых конструкций для усиления пролетного строениямостового сооружения с использованием комбинированных пространственных трехгранных структур для сейсмоопасных районов. Аналог изобретение № 80471 и №
266595
Задача полезной модели - снизить материалоемкость покрытия, повысить его жесткость и расширить область применения. Это достигается тем, что известное комбинированное
пространственное структурное покрытие, содержащее пространственный каркас из соединенных в узлах стержней поясов и раскосов и размещенные в средней части
пролетного строения мостового сооружения с использованием комбинированных пространственных трехгранных структур для сейсмоопасных районов, вдоль пролета,
жестко прикрепленные к нижнего пояса нижние и расположенные над верхние пролетные, установленные на опоры подкрепляющие элементы, снабжено установленными на
опоры и расположенными вдоль пролета жестко прикрепленными к нижнего пояса нижними и монтированными над верхними контурными, причем верхние контурные и
пролетные жестко прикреплены к узлам верхнего пояса .
Нижние пролетные и контурные жестко прикреплены посредством крестового монтажного столика к нижнего пояса , а верхние - к нижнего пояса, соответственно
При сборке пролетного строения мостового сооружения с использованием комбинированных пространственных трехгранных структур для сейсмоопасных районов для
повышение несущей способности пролетного строения, вначале монтируются опираемые на опоры нижние и верхние пролетные и контурные , 9 с крестовыми монтажными
столиками .
После чего собирается нижний пояс из стержней нижнего пояса и с узловыми элементами в виде полых шаров , при этом жестко прикрепляются посредством электросварки к
монтажным столикам нижних пролетных и контурных .
Затем монтируются стержни раскосов и верхнего пояса. На заключительном этапе монтируются стержни верхнего пояса и выполняется жесткое крепление верхнего пояса
посредством электросварки к монтажным столикам верхних пролетных и контурных .
Снабжение комбинированного покрытия установленными на опоры и расположенными вдоль пролета нижними и верхними контурными и жесткое прикрепление контурных ,
и пролетных , что позволяет повысить жесткость и несущею способность аварийного пролетного строения мостового сооружения с использованием комбинированных
пространственных трехгранных структур для сейсмоопасных районов покрытия, а также избежать необходимости в установке опор для опирания , горизонтальных и
вертикальных связей, подвесок, что существенно снижает материалоемкость покрытия. Отсутствие опор вдоль контурных , комбинированного покрытия расширяет также
область его применения, например, при строительстве авиационных ангаров, цехов, покрытий зрелищных сооружений и т.д. см иллюстрацию в социальной сети по ссылке
SPBGASU Uprugoplacheskiy rascchet predelnogo ravnovesiya SCAD-staticheski neopredelimix ferm-balok 568 str
https://vk.com/wall789869204_122
Специальный военный вестник "Армия Защитников Отечества" №15
https://ppt-online.org/1323327
https://te9219626778gmailcom.diary.ru/p221651243_v-sankt-peterburge-nikakoj-tehnicheskoj-politiki-nikakoj-sistemy-sozdaniya-i-realizaci.htm
Расчет упругоппластического структурного сбороно разбороного моста на основе трехгранной блок-фермы
https://ppt-online.org/1299327
Metod predelnogo ravnovesiya rasccheta SCAD fuktsiya sdvig staticheski neopredelimix uprugoplasticheskix ferm 483 str (1) — копия
75.
Метод предельного равновесия для упругопластического расчета в ПК SCADhttps://ppt-online.org/1322416
https://vk.com/wall782713716_906
Расчет упруго пластического шарнира для металлических ферм балок пролетного строения автомобильного (железнодорожного) моста c использованием систем
демпфирования с использованием тросовой демпфирующей петли - вставки для верхнего сжатого пояса фермы-балки и упруго пластических шарниров из косых стыков с
тросовой гильзой для нижнего растягивающего пояса фермы-балки со стальной шпильки с пропиленным болгаркой пазов. куда забивается при сборке медный обожженный
клин во время скоростной сборки сборно-разборного моста с большими перемещениями и приспособляемости с учетом демпфирования упруго пластического шарнира за счет
тросовой демпфирующей гильзы залитой расплавленным свинцом или битумом для металлических ферм балок пролетного строения автомобильного и железнодорожного
моста c использованием систем демпфирования за счет пластического шарнира Диагональные раскосы фермы-балки , крепятся на болтовыми соединениями с пружинистой
тросовой гильзой, залитой расплавленным свинцом или битумом и устанавливается в овальные отверстия -сдвиговые . Стальная ферма- балка сконструирована со
встроенным бетонным настилом При испытаниях была использована 3D -конечных элементов
https://rodinailismertlistru.diary.ru/p221562547_vse-dlya-fronta-vse-dlyapobedy-predlozhenie-dlya-minstroya-zhkh-mintransu-minoborony.htm
Полезная модель относится к строительству для усиления аварийного пролетного строения мостового сооружения с использованием комбинированных пространственных
трехгранных структур для сейсмоопасных районов и может быть использована при возведении пространственных стержневых конструкций.
Известно пространственное структурное покрытие, содержащее установленный по контуру на опоры пространственный каркас из соединенных в узлах стержней поясов и
раскосов .
Недостатком пространственного структурного покрытия является наличие по контуру покрытия большого количества опор, на которые производится установка
пространственного каркаса, и возникновение в стержнях поясов и раскосов при больших пролетах значительных усилий, что, в совокупности, обуславливает высокую
материалоемкость конструкции. Кроме того, наличие опор по контуру пространственного структурного покрытия ограничивает, в ряде случаев, область его применения,
например, при строительстве авиационных ангаров, цехов, покрытий зрелищных сооружений и т.д.
Известно также комбинированное пространственное структурное покрытие, содержащее опираемый по контуру на опоры пространственный каркас из соединенных в узлах
стержней поясов и раскосов и размещенные в средней части пространственного каркаса вдоль пролета, жестко прикрепленные к узлам нижнего пояса каркаса нижние и
расположенные над каркасом верхние пролетные подкрепляющие элементы, установленные на опоры, причем верхние пролетные подкрепляющие элементы соединены между
собой посредством горизонтальных и вертикальных связей, а с нижними подкрепляющими элементами - посредством вертикальных подвесок .
Снабжение комбинированного пространственного структурного покрытия размещенные в средней части пространственного каркаса вдоль пролета жестко прикрепленными к
узлам нижнего пояса пространственного каркаса нижними и расположенными над каркасом верхними пролетными подкрепляющими элементами, установленными на опоры,
позволяет существенно разгрузить элементы пространственного каркаса, и, тем самым, в некоторой степени снизить материалоемкость конструкции покрытия.
Однако известное комбинированное пространственное структурное покрытие по-прежнему характеризуется повышенной материалоемкостью вследствие наличия по контуру
покрытия большого количества опор, на которые устанавливается пространственный каркас. Повышенной материалоемкости способствует также необходимость установки
большого количества горизонтальных и вертикальных связей, подвесок между нижними и верхними пролетными подкрепляющими элементами. Соединение между собой
верхних и нижних пролетных подкрепляющих элементов только вертикальными подвесками снижает жесткость покрытия в направлении, перпендикулярном подкрепляющим
элементам. Кроме того, наличие опор по контуру пространственного структурного покрытия ограничивает, в ряде случаев, область его применения, например, при строительстве
авиационных ангаров, цехов, покрытий зрелищных сооружений и т.д.
76.
Задача, на решение которой направлена предлагаемая полезная модель, состоит в том, чтобы снизить материалоемкость комбинированного пространственного структурногопокрытия, повысить его жесткость и расширить область применения.
Решение поставленной задачи достигается тем, что известное комбинированное пространственное структурное покрытие, содержащее пространственный каркас из соединенных
в узлах стержней поясов и раскосов и размещенные в средней части пространственного каркаса вдоль пролета, жестко прикрепленные к узлам нижнего пояса каркаса нижние и
расположенные над каркасом верхние пролетные подкрепляющие элементы, установленные на опоры, снабжено установленными на опоры и расположенными вдоль пролета
жестко прикрепленными к узлам нижнего пояса нижними и монтированными над каркасом верхними контурными подкрепляющими элементами, причем верхние контурные и
пролетные подкрепляющие элементы жестко прикреплены к узлам верхнего пояса пространственного каркаса.
Снабжение комбинированного пространственного структурного покрытия установленными на опоры и расположенными вдоль пролета жестко прикрепленными к узлам
нижнего пояса нижними и монтированными над каркасом верхними контурными подкрепляющими элементами и жесткое прикрепление верхних контурных и пролетных
подкрепляющих элементов к узлам верхнего пояса пространственного каркаса позволяет избежать необходимости в установке опор для опирания пространственного каркаса,
горизонтальных и вертикальных связей, подвесок, функции которых выполняют соединенные в узлах стержни поясов и раскосов пространственного каркаса. Исключение же из
конструкции комбинированного покрытия опор для опирания пространственного каркаса, связей и подвесок обуславливает существенное снижение материалоемкости покрытия.
Соединение между собой верхних и нижних пролетных подкрепляющих элементов выполняющими функции связей и собранными в узлах стержнями поясов и раскосов
существенно повышает жесткость покрытия в направлении, перпендикулярном подкрепляющим элементам. Отсутствие опор вдоль контурных поддерживающих элементов
комбинированного пространственного структурного покрытия расширяет также область его применения, например, при усилении пролетного строения мостового сооружения
с использованием комбинированных пространственных трехгранных структур для сейсмоопасных районов, авиационных ангаров, цехов, покрытий зрелищных сооружений и
т.д.
Полезная модель поясняется чертежами, на фиг.1 изображен общий узел комбинированного пространственного структурного покрытия в плане; на фиг.2 - разрез А-А на фиг.1;
на фиг.3 - разрез Б-Б на фиг.1; на фиг.4 - узел «1» на фиг.3; на фиг.5 - разрез В-В на фиг.4. Обозначения: 1 - пространственный каркас; 2 - узлы системы БрГТУ; 3 - стержни
поясов; 4 - стержни раскосов; 5 - опоры; 6 - нижние пролетные подкрепляющие элементы; 7 - нижние контурные подкрепляющие элементы; 8 - верхние пролетные
подкрепляющие элементы; 9 - верхние контурные подкрепляющие элементы; 10 - крестовой монтажный столик; 11 - электросварной шов; 12 - гайки; 13 - полые шары; 14 крепежные болты; 15 - внутренние шайбы; 16-наружные шайбы; 17 - силовые гайки; 18 - стопорные гайки.
Комбинированное пространственное структурное покрытие содержит пространственный каркас 1 из соединенных в узлах 2 системы БрГТУ стержней 3, 4 поясов и раскосов,
соответственно, и установленные на опоры 5 нижние 6, 7 и расположенные над каркасом 1 верхние 8, 9 пролетные 6, 8 и контурные 7, 9 подкрепляющие элементы.
Подкрепляющие элементы 6-9 могут быть выполнены из труб (фиг.1-5) или любого другого стального профиля (на чертежах не показано).
Нижние пролетные 6 и контурные 7 подкрепляющие элементы жестко прикреплены посредством крестового монтажного столика 10 к узлам 2 нижнего пояса пространственного
каркаса 1, а верхние 8, 9 - к узлам 2 нижнего пояса, соответственно (фиг.2-5).
Пролетные подкрепляющие элементы 6, 8 размещены в средней части пространственного каркаса 1 вдоль пролета симметрично относительно оси пространственного каркаса 1
вдоль его большего размера, а контурные подкрепляющие элементы 7, 9 - параллельно подкрепляющим элементам 6, 8 по контуру пространственного каркаса 1 (фиг.1, 2).
Узлы соединения полых стержней 3, 4 поясов и раскосов, оголовки которых снабжены жестко установленными в их полостях гайками 12, пространственного каркаса 1 системы
БрГТУ содержат узловые элементы верхнего и нижнего поясов в виде полых шаров 13 с отверстиями в стенках, через которые пропущены со стороны полости шаров 13 с
возможностью вкручивания в гайки 12 стержней 3, 4 болты 14 с внутренними 15 и наружными 16 шайбами и силовыми 17 и стопорными 18 гайками (фиг.4, 5)
77.
Силовые 17 и стопорные 18 гайки размещены между шаром 13 и гайками 12 стержней 3, 4. В проектном положении стопорная гайка 18 стопорит болт 14 относительно гайки 12,а силовая 17 - болт 12 относительно шара 13 (фиг.4, 5).
Внутренние 15 и наружные 16 шайбы выполнены со сферическими, обращенными к шару 13 поверхностями, и установлены между головками болтов 14 и внутренней
поверхностью шара 13 и наружной поверхностью шара 13 и силовыми гайками 17, соответственно.
Сборка пространственного каркаса производится в следующем порядке.
Вначале монтируются опираемые на опоры 5 нижние 6, 7 и верхние 8, 9 пролетные 6, 8 и контурные 7, 9 подкрепляющие элементы с крестовыми монтажными столиками 10.
После чего собирается нижний пояс пространственного каркаса 1 из стержней 3 нижнего пояса и узлов 2 с узловыми элементами в виде полых шаров 13, при этом узлы 2 жестко
прикрепляются посредством электросварки к монтажным столикам подкрепляющих нижних пролетных 6 и контурных 7 элементов. Затем монтируются стержни раскосов 4 и
узлы 2 верхнего пояса. На заключительном этапе монтируются стержни 3 верхнего пояса и выполняется жесткое крепление узлов 2 верхнего пояса посредством электросварки к
монтажным столикам верхних подкрепляющих пролетных 8 и контурных 9 элементов.
При сборке узлов нижнего и верхнего поясов из стержней 3, 4 и узловых элементов в виде полых шаров 13 силовые 17 и стопорные 18 гайки болтов 14 устанавливаются рядом
друг с другом и стопорятся относительно друг друга и болтов 14, при этом расстояние от торца каждого из болтов 14 до гайки 12 стержней 3, 4 должно быть равно расстоянию от
головки болта 14 до внутренней шайбы 15 в положении прижатия силовой 17 и стопорной 18 гаек с наружной шайбой 16 и внутренней шайбы 15 к полому шару 13. Стопорение
гаек 17, 18 осуществляется посредством их поворота с затягиванием навстречу друг другу. Затем, путем вращения застопоренных гаек 17, 18 с болтом 14, последний
ввинчивается в гайку 12 стержней 1 или 2 до упора гаек 18 в гайку 12, при этом головка болта 14 с шайбой 15 опирается на внутреннюю поверхность шара 13. На
заключительном этапе силовая гайка 17 вращается в обратную сторону, при застопоренных гайках 12, 18, до момента ее опирания в наружную шайбу 16 и производится
стопорение болта 14 относительно полого шара 13 путем затягивания силовой гайки 17 (фиг.4, 5).
Снабжение комбинированного пространственного структурного покрытия установленными на опоры 5 и расположенными вдоль пролета жестко прикрепленными к узлам 2
нижнего пояса нижними 7 и монтированными над каркасом 1 верхними 9 контурными подкрепляющими элементами и жесткое прикрепление верхних контурных 9 и пролетных
8 подкрепляющих элементов к узлам 2 верхнего пояса пространственного каркаса 1 позволяет избежать необходимости в установке опор 5 для опирания пространственного
каркаса 1, горизонтальных и вертикальных связей, подвесок, функции которых выполняют соединенные в узлах 2 стержни поясов 3 и раскосов 4 пространственного
каркаса 1. Исключение же из конструкции комбинированного покрытия опор 5 для опирания пространственного каркаса 1, связей и подвесок обуславливает существенное
снижение материалоемкости покрытия. Соединение между собой верхних 8 и нижних 6 пролетных подкрепляющих элементов выполняющими функции связей и собранными в
узлах 2 стержнями поясов 3 и раскосов 4 существенно повышает жесткость покрытия в направлении, перпендикулярном подкрепляющим элементам 6-9. Отсутствие опор 5
вдоль контурных поддерживающих элементов 7, 9 комбинированного пространственного структурного покрытия расширяет также область его применения, например, при
строительстве авиационных ангаров, цехов, покрытий зрелищных сооружений и т.д.
Изобретение относится к способам для ремонта или укрепления существующих мостов. Известен патент на изобретение SU №1079734, МПК E01D 21/00 «Способ усиления
пролетных строений мостов». Способ усиления пролетных строений мостов, включающий установку пары неподвижных упоров по длине усиляемого элемента пролетного
строения, установку затяжки с концевыми анкерами в упоры и натяжение затяжки с последующей фиксацией концевых анкеров, отличающийся тем, что с целью снижения
трудоемкости и энергоемкости процесса усиления пролетных строений, на смежной с усиляемым строением части моста со стороны подвижной опоры опорной части
усиляемого пролетного строения закрепляют по оси затяжки съемный захват с жесткой тягой, соединяют тягу с ближайшим к захвату анкером затяжки посредством разъемного
78.
соединения, фиксируют тягу в захвате во время прохода эксплуатационной нагрузки по усиляемому пролетному строению, фиксируют соединенный с тягой анкер затяжки насоответствующем упоре во время разгрузки пролетного строения от эксплуатационной нагрузки, после чего повторяют поочередно операции по фиксации тяги и соединенного с
ней анкера затяжки при въезде и съезде эксплуатационной нагрузки с усиляемого пролетного строения до достижения требуемого усилия натяжения затяжки.
Недостатком данного способа является то, что этот способ ненадежность усиления пролетного строения моста.
Наиболее близким (прототип) к заявляемому изобретению является патент на изобретение РФ №2608378, МПК E01D 22/00 «Способ реконструкции и усиления
сталежелезобетонного разрезного пролетного строения напрягаемыми канатами». Способ реконструкции и усиления сталежелезобетонного разрезного пролетного строения
напрягаемыми канатами включает замену железобетонной плиты, усиление главных балок, ремонт, замену или увеличение числа устройств, объединяющих плиту с
металлоконструкциями, и усиление стенок главных балок дополнительными ребрами жесткости, при этом усиление главных балок выполняется путем установки предварительно
напрягаемых прямолинейных канатов, расположенных над нижними поясами главных балок и которые после устройства новой железобетонной плиты остаются на балках и
сохраняют выступающие за анкера концы канатов для подтяжки канатов до завершения строительных работ на пролетном строении и восстановления расчетной
грузоподъемности пролетного строения.
Недостатками данного способа является сложность производимых работ, а так же необходимость замены железобетонной плиты.
Задачей предлагаемого изобретения является создание простого способа усиления пролетного строения мостового сооружения с изменением поперечного сечения с
обеспечением надежного усиления без замены элементов мостового сооружения.
Поставленная задача решается за счет того, что способ усиления пролетного строения мостового сооружения с изменением поперечного сечения, включающий в себя усиление
главных балок путем установки и натяжения канатов. Сначала создают коробчатое сечение, путем дополнительной установки нижнего блока и закрепления его в нижней части
двух соединенных между собой Т-образных балок способом омоноличивания бетоном с объединением арматуры стыкуемых элементов. Затем усиливают пролетное строение
мостового сооружения, где сначала внутри опорных элементов двух соединенных между собой Т-образных балок в нижней их части устанавливают канаты в несколько рядов.
После чего дополнительно устанавливают канаты над верхним поясом двух соединенных между собой Т-образных балок в местах надопорной зоны пролетного строения. Далее
дополнительно устанавливают канаты над нижним блоком внутри коробчатого сечения в местах межопорной зоны пролетного строения. После этого канаты над верхним
поясом, в нижней части опорных элементов двух соединенных между собой Т-образных балок и над нижним блоком внутри коробчатого сечения натягивают. И в заключении
канаты анкеруют и бетонируют. Канаты над верхним и нижним поясом могут устанавливать непосредственно в местах, предназначенных для усиления пролетного строения,
причем для усиления надопорной зоны пролетного строения канаты устанавливают над верхним поясом, а для усиления межопорной зоны канаты устанавливают над нижним
блоком внутри коробчатого сечения. При усилении пролетного строения с полыми опорными элементами Т-образных балок прямолинейные канаты устанавливают внутри
полостей опорных элементов. При усилении пролетного строения с монолитными опорными элементами Т-образных балок дополнительно пробуривают отверстия в нижней
части опорных элементов, после чего в этих отверстиях устанавливают прямолинейные канаты.
Суть заявляемого изобретения поясняется чертежами где:
На фиг. 1 - Изображены два соединенных между собой Т-образных блока с установленным нижним блоком и установленными в образованном коробчатом сечении канатами.
На фиг. 2 - Изображены места усиления пролетного строения мостового сооружения.
79.
Известны различные способы усиления пролетных строений мостовых сооружений:Внутренняя опалубочная форма
Способ усиления моста включает установку внутри отверстия моста съемной опалубочной формы для образования усиливающей конструкции, максимально приближенной к
форме отверстия существующего моста, заполнение полостей между съемной опалубочной формой и устоями существующего моста бетонной смесью с армированием и
образование нового пролетного строения. Вначале устанавливают фундамент - бетонное основание, далее пространство между существующими устоями моста и съемной
опалубочной формой заполняют бетонной смесью с образованием усиливающей конструкции, стенки которой, монолитно связывают с устоями существующего моста связями,
например, в виде анкерных штырей, а между низом существующего пролетного строения и верхом нового пролетного строения образован воздушный зазор, обеспечивающий
свободу прогиба существующего пролетного строения, после набора бетоном заполнения проектной прочности осуществляют разборку старого пролетного строения, выполняют
новое дорожное покрытие с его опиранием на новое пролетное строение. Технический результат изобретения состоит в обеспечении возможности нормальной эксплуатации
моста при проведении строительных работ, снижении материалоемкости конструкций усиления моста и обеспечении максимальной площади отверстия усиленного сооружения.
Приклейка композитных материалов.
Наиболее распространенным решением при усилении балок пролетных строений мостов композитными материалами является приклейка композитной ламели к нижней грани
главных балок пролетного строения. В этом случае ламель может быть дополнительно закреплена на концах поперечными U-образными хомутами из полос композитной ткани.
Однако эти способы достаточно трудоемки и дороги. Предлагаемый способ усиления пролетного строения мостового сооружения с изменением поперечного сечения прост,
надежен, не требует замены элементов существующего пролетного строения, он сохраняет конструкцию пролетного строения, а также повышает нагрузочную способность и
надежность мостового сооружения
Способ усиления пролетного строения мостового сооружения 1 с изменением поперечного сечения 2, включающий в себя усиление главных балок 3 путем установки и
натяжения канатов 4. Сначала создают коробчатое сечение 5, путем дополнительной установки нижнего блока 6 и закрепления его в нижней части двух соединенных между
собой Т-образных балок 7 способом омоноличивания бетоном с объединением арматуры стыкуемых элементов. Затем усиливают пролетное строение мостового сооружения 1,
где сначала внутри опорных элементов 8 двух соединенных между собой Т-образных балок 7 в нижней их части устанавливают канаты 4 в несколько рядов. После чего
дополнительно устанавливают канаты 4 над верхним поясом 9 двух соединенных между собой Т-образных балок 7 в местах надопорной зоны пролетного строения 1. Далее
дополнительно устанавливают канаты 4 над нижним блоком 6 внутри коробчатого сечения 5 в местах межопорной зоны 11 пролетного строения 1. После этого канаты 4 над
верхним поясом 9, в нижней части опорных элементов 8 двух соединенных между собой Т-образных балок 7 и над нижним блоком 6 внутри коробчатого сечения 5 натягивают.
И в заключении канаты 4 анкеруют и бетонируют. (см. фиг. 1)
Канаты над верхним 9 и нижним поясом 10 могут устанавливать непосредственно в местах, предназначенных для усиления пролетного строения 1, причем для усиления
надопорной зоны пролетного строения 1 канаты устанавливают над верхним поясом 9, а для усиления межопорной зоны 11 канаты 4 устанавливают над нижним блоком 6
внутри коробчатого сечения.
При усилении пролетного строения 1 с полыми опорными элементами Т-образных балок 7 прямолинейные канаты 4 устанавливают внутри полостей опорных элементов 8. При
усилении пролетного строения 1 с монолитными опорными элементами 8 Т-образных балок 7 дополнительно пробуривают отверстия в нижней части опорных элементов 8,
после чего в этих отверстиях устанавливают прямолинейные канаты 4.
80.
Предложенный способ усиления пролетного строения мостового сооружения с изменением поперечного сечения целесообразно применять при условии обеспечения сохраненияпрочности бетоном сжатой зоны. Усилие натяжения и сечение затяжки подбираются с таким расчетом, чтобы не допустить переармирования элементов.
Суть заявляемого изобретения состоит в том, что:
1. Сначала создают коробчатое сечение 5, путем дополнительной установки нижнего блока 6.
2. Закрепляют нижний блок 6 в нижней части двух соединенных между собой Т-образных балок 7 способом омоноличивания бетоном с объединением арматуры стыкуемых
элементов.
3. Затем внутри опорных элементов 8 двух соединенных между собой Т-образных балок 7 в нижней их части устанавливают канаты 4 в несколько рядов.
4. После чего дополнительно устанавливают канаты 4 над верхним поясом 9 двух соединенных между собой Т-образных балок 7 в местах надопорной зоны пролетного строения
1.
5. Далее дополнительно устанавливают канаты 4 над нижним блоком 6 внутри коробчатого сечения 5 в местах межопорной зоны 11 пролетного строения 1.
6. После этого канаты 4 над верхним поясом 9, в нижней части опорных элементов 8 двух соединенных между собой Т-образных балок 7 и над нижним блоком 6 внутри
коробчатого сечения 5 натягивают.
7. И в заключении канаты 4 анкеруют и бетонируют.
На сегодняшний день, предлагаемый способ усиления пролетного строения мостового сооружения с изменением поперечного сечения достаточно актуален, так как
предлагаемые ранее способы требуют больших энергозатрат, дополнительных материалов, а также демонтажа некоторых элементов усиливаемого пролетного строения.
Промышленная применимость заключается в том, что для осуществления заявляемого способа используют известное оборудование, применяемое в различных областях и не
требующее дополнительного изготовления и доработки.
Все вышеизложенное свидетельствует о решении поставленной задачи.
Перечень позиций 1. пролетное строение мостового сооружения
2. поперечное сечение 3. главные балки 4. канаты 5. коробчатое сечение
6. нижний блок 7. Т-образная балка 8. опорные элементы
9. верхний пояс 10. нижний пояс 11. межопорной зоны пролетного строения.
81.
Формула полезной модели способ усиления пролетного строения мостового сооружения с использованием комбинированных пространственных трехгранных структур длясейсмоопасных районов
Способ усиления пролетного строения мостового сооружения с использованием комбинированных пространственных трехгранных структур для сейсмоопасных районов из
комбинированнох пространственных структур пролетного строения мостового сооружения с использованием комбинированных пространственных трехгранных структур
для сейсмоопасных районов , содержащее пространственный каркас из соединенных в узлах стержней поясов и раскосов и размещенные в средней части пространственного
каркаса вдоль пролета жестко прикрепленные к узлам нижнего пояса каркаса нижние и расположенные над каркасом верхние пролетные подкрепляющие элементы,
установленные на опоры, отличающееся тем, что оно снабжено установленными на опоры и расположенными вдоль пролета жестко прикрепленными к узлам нижнего пояса
нижними и монтированными над каркасом верхними контурными подкрепляющими элементами, причем верхние контурные и пролетные подкрепляющие элементы жестко
прикреплены к узлам верхнего пояса пространственного каркаса.
1. Способ усиления пролетного строения мостового сооружения с использованием комбинированных пространственных трехгранных ферм -балок изобретателя
Новокисловодс и Мелехина структур ( смотри : ИННОВАЦИОННАЯ РАЗРАБОТКА МОДУЛЯ "НОВОКИСЛОВОДСК" И ЕГО ЭКОНОМИЧЕСКОЕ ОБОСНОВАНИЕ
https://cyberleninka.ru/article/n/innovatsionnaya-razrabotka-modulya-novokislovodsk-i-ego-ekonomicheskoe-obosnovanie
Марутян Александр Суренович (RU) https://yandex.ru/patents/doc/RU153753U1_20150727
https://patents.s3.yandex.net/RU153753U1_20150727.pdf
УЗЛОВЫЕ СОЕДИНЕНИЯ ПЕРЕКРЕСТНО-СТЕРЖНЕВЫХ КОНСТРУКЦИЙ, ВКЛЮЧАЯ УЗЛЫ СИСТЕМЫ «НОВОКИСЛОВОДСК», И ИХ РАСЧЕТ
https://msi.elpub.ru/jour/article/view/863/0
https://www.liveinternet.ru/users/russkayadruzhina/post499999227/
для сейсмоопасных районов мостового сооружения с изменением поперечного сечения, включающий усиление главных балок путем установки трехгранных ферм-балок с
упругопластическим компенсатором с отличающийся тем,
При оформлении изобретения использовались изобретения блока НАТО : США, CCCP, Беларусь, Торговой компании «РФ-Россия» : №№ 2140509 E 04 H1/02, MPK E04 G 23/00
RU2043465, 2121553, Малафеев 2336399, 2021450, Насадка 2579073, SU 1823907 ( нет в общей доступности), 2534552, 2664562, 2174579, Курортный , 2597901, полезная модель
154158, Марутяна Александр Суренович г.Кисловодск №№ 153753, 2228415, 2228415, 2136822, Способ надстройки зданий №№ 2116417, 2336399, 2484219
https://dzen.ru/a/ZPwU9rZlbXapNcHI
https://t.me/resistance_test/516
Трѐхгранные фермы с предварительным напряжением для плоских покрытий Е.А. Мелѐхин1 , Н.В. Гончаров2 , А.Б. Малыгин1 1Московский государственный строительный
университет 2Национально исследовательский Томский Политехнический университет
http://www.ivdon.ru/uploads/article/pdf/IVD_43__5_Melekhin_Goncharov_Malygin2705.pdf_1aa1bc6691.pdf
82.
Мелѐхин Е.А. Модульные трѐхгранные фермы плоских покрытий. Вестник Томского государственного архитектурно-строительного университета. 2021;23(2):6578. https://doi.org/10.31675/1607-1859-2021-23-2-65-78https://vestnik.tsuab.ru/jour/article/view/970/722
Скачать PDF
ПОКРЫТИЕ ИЗ ТРЕХГРАННЫХ ФЕРМ
Мелѐхин Евгений Анатольевич (RU)
https://rusneb.ru/catalog/000224_000128_0002627794_20170811_C1_RU/ Напряженно-деформированное состояние трехгранной фермы с неразрезными поясами пятигранного
составного профиля
Евгений Анатольевич Мелѐхин https://doi.org/10.22227/2305-5502.2023.1.4
https://www.nso-journal.ru/jour/article/view/91
https://www.freepatent.ru/patents/2188287
https://edrid.ru/authors/201.dffe3.html
http://nso-journal-03.mgsu.ru/ru/component/sjarchive/issue/article.display/2023/4/556-571
https://www.litprichal.ru/work/517210/
Бодрящий ответ для организации Сейсмофонд при СПб ГАСУ
https://ppt-online.org/1300515
Расчет упругоппластического структурного сбороно разбороного моста на основе трехгранной блок-фермы
https://ppt-online.org/1299327
https://rodinailismertlistru.diary.ru/p221562547_vse-dlya-fronta-vse-dlya-pobedy-predlozhenie-dlya-minstroya-zhkh-mintransu-minoborony.htm
Metod predelnogo ravnovesiya uprugoplasticheskogo rascheta SCAD staticheski neopredelimix stalnix ferm zheleznodorozhnogo mosta 538 str.docx https://disk.yandex.ru/d/wyRxGzE8rRmBA
https://rodinailismertlistru.diary.ru/p221562547_vse-dlya-fronta-vse-dlya-pobedy-predlozhenie-dlya-minstroya-zhkh-mintransu-minoborony.htm
Специальный военный вестник "Армия Защитников Отечества" №15
https://ppt-online.org/1323327
Расчет упругоппластического структурного сбороно разбороного моста на основе трехгранной блок-фермы
83.
https://ppt-online.org/1299327Расчет упругопластического структурного сборно-разборного моста на основе трехгранной блок-фермы
https://ppt-online.org/1297775
Секция III. Механика деформируемого твердого тела. Расчет упругопластического структурного сборно-разборного моста
https://ppt-online.org/1297382
О пригодности быстровозводимого армейского сборно-разборного автомобильного моста
https://ppt-online.org/1305281
Ходатайство директору ФИПС Неретину Олегу Петровичу от ветерана боевых действий , инвалида первой группы, военного пенсионера Коваленко Александра Ивановича
по заявке на изобретение полезная модель «Способ усиления пролетного строения мостового сооружения с использованием комбинированных пространственных трехгранных
структур для сейсмоопасных районов» от нищенской пенсией 20 тыс руб с просьбой к Руководителю Федеральной службы по интеллектуальной собственности Юрию
Сергеевичу Зубову [email protected] тел. +7 (499) 240-60-15 (812) 6947810 Прошу прислать реквизиты для оплаты патентной пошлины для преподавателе
ПГУПС, не являющие ветеранами боевых действий, но являющие соавторами интеллектуальной собственности проф дтн ПГУПС А.М.Уздина, доц ктн О А Егорова , проф
дтн Темнов В.Г , которые будут оплачивать патентую пошлину по 100 руб в месяц , по частям , из-за тяжелого финансового положения научной интеллигенции ПГУПС, СПБ
ГАСУ , Политехе СПб [email protected] тел факс 812 694-78-10 https://t.me/resistance_test [email protected]
Application of BRB to Seismic Mitigation of Steel Truss Arch Bridge Subjected to Near-Fault Ground Motions
by
Haoyuan Gao
84.
12
,
Kun Zhang
,
Xinyu Wu
3,
Hongjiang Liu
85.
4,* andLianzhen Zhang
5
1
College of Civil Engineering, Tongji University, Shanghai 200092, China
2
College of Engineering, University of Auckland, Auckland 1023, New Zealand
3
Shenyang Geotechnical Investigation & Surveying Research Institute Co., Ltd., Shenyang 110004, China
4
College of Civil, Environmental and Land Magement Engineering, Polytechnic University of Milan, 20133 Milan, Italy
5
College of Transportation Science and Engineering, Harbin Institute of Technology, Harbin 150096, China
*
Author to whom correspondence should be addressed.
Buildings 2022, 12(12), 2147; https://doi.org/10.3390/buildings12122147
Submission received: 16 October 2022 / Revised: 23 November 2022 / Accepted: 1 December 2022 / Published: 6 December 2022
(This article belongs to the Special Issue New Trends in Seismic Performance Evaluation)
Download keyboard_arrow_down
Browse Figures
86.
Versions NotesAbstract
In this paper, the seismic response of a steel truss arch bridge subjected to near-fault ground motions is studied. Then, the idea of applying buckling restrained braces (BRBs) to a steel truss
arch bridge in near-fault areas is proposed and validated. Firstly, the basic characteristics of near-fault ground motions are identified and distinguished. Furthermore, the seismic response of a
long span steel truss arch bridge in the near fault area is analyzed by elastic-plastic time analysis. Finally, the braces prone to buckling failure are replaced by BRBs to reduce the seismic
response of the arch rib through their energy dissipation properties. Four BRB schemes were proposed with different yield strengths, but the same initial stiffness. The basic period of the
structure remains the same. The results show that near-fault ground motion will not only obviously increase the displacement and internal force response of the bridge, but also cause more
braces to buckle. By replacing a portion of the normal bars with BRBs, the internal forces and displacements of the arch ribs can be reduced to some extent, which is more prominent under
the action of pulsed ground motion. There is a clear correlation between the damping effect and the parameters of BRB, so an optimized solution should be obtained by comparison and
calculation.
Keywords:
near-fault ground motion; forward-directivity effect; fling-step effect; steel truss arch bridge; buckling restrained brace
Graphical Abstract
1. Introduction
In the event of an earthquake, the ground motions in the areas within 20 km of the fault have a super destructive power. In recent years, some historical earthquakes have broken out in some
countries and regions, and some valuable ground motions have been recorded. These seismic data [1] provide conditions for structural engineers to carry out seismic research.
Seismologists and engineers have analyzed the characteristics of near fault ground motions in some ways. Somerville et al. [2] have pointed out that pulse effects in near-fault areas cause
spatial variations in ground motion amplitude and duration. Their characteristics and mechanism have been elaborated by many studies (Wu et al. [3], Yang and Zhou [4], Yan and Chen [5]).
Because of the difference of fault rupture mechanism, pulse-like ground motions can be divided into forward-directivity pulses (F-D pulses) and fling-step pulses (F-S pulses). The velocity
time history of forward-directivity pulses usually contain double or multiple peaks. The ground motions with fling-step pulses usually exhibit two important characteristics: single velocity
pulse and permanent ground displacement, which may make the structure subject to large deformations and internal forces. In terms of research methods, Chopra and Chintanapakdee [6] have
extended well-known concepts of elastic and inelastic response spectra based on far-fault motion to near-fault motion. Mavroeidis and Papageorgiou [7] have proposed a simple analytical
model for the representation of pulse-like ground motions, which adequately describes the impulsive character of near-fault ground motions both qualitatively and quantitatively. Ghahari et
al. [8] have used the moving average filtering method with appropriate cut-off frequency to decompose the near-fault ground motion into two components with different frequency contents.
This method has been promoted in recent years. On this basis, Li et al. [9] have proposed a recorded decomposition integration method to synthesize artificial pulse-like ground motion by
combining high-frequency background records with simple equivalent pulses.
Thus, scientists and engineers now have a mature understanding of the mechanism, characteristics, and research methods of near-fault earthquakes, but their impact on structures needs more
attention. Some researchers (Billah et al. [10], Davoodi et al. [11], Cui and Sheng [12], Losanno et al. [13]) have studied the seismic responses of various structures, including frames, dams,
underground structures, and bridges near faults. Some researchers have tried to find correlations between ground motion parameters and structural responses but there have been no consistent
consensus (Chen et al. [14]). The response spectrum is an important way to investigate the special influence of near-fault ground motion on structures. Yang and Zhao [15] have studied the
influence of near-fault ground motions with forward-directivity pulse and fling-step pulse on the seismic performance of base-isolated buildings with lead rubber bearings. Through time
87.
history and damage analyses of a tested 3-storey reinforced concrete frame under 204 near-fault pulse-type records, some researchers (Vui Van et al. [16], Zaker et al. [17], Upadhyay et al.[18]) found that velocity spectrum intensity is leading parameter demonstrating the best correlation.
In addition to the above studies, the low-frequency pulse effects of near-fault seismic waves lead to the need for more attention to their effects on long-period structures. Adanur et al. [19]
have compared the effects of near-fault and far-fault ground motions on the geometrically non-linear seismic behavior of suspension bridges. Shrestha [20] presented an analytical
investigation on the effect of the near fault ground motions on a long span cable-stayed bridge considering the vertical ground motion. They found that near-fault ground motions produce
greater displacements and internal forces on suspension bridges and cable-stayed bridges compared to far-fault ground motions. However, fewer studies have been conducted on the seismic
response of near-fault arch bridges. The arch bridge has a large span and high material utilization rate, which is especially suitable for solid rocks in mountainous and canyon areas near faults.
So it is necessary to study the near fault seismic response of the arch bridge. Some researchers (Lu et al. [21], Bai et al. [22], Alvarez et al. [23], R. Li et al. [24], Bazaez et al. [25]) studied the
seismic response of arch bridges by means of pushover analysis or time-history analysis, but have not fully considered the special destructiveness of near-fault ground motions to this flexible
structure.
The seismic responses of the arch bridge in the near fault areas need further analysis, and the corresponding seismic mitigation methods are also worthy of attention. Chen et al. [26,27,28]
have pointed out that advanced seismic isolation devices and systems have been recognized as promising measures toward resilient design of bridge structures. Some researchers (Alam et al.
[29], Dezfuli and Alam [30], R. Li et al. [24]) have proposed seismic mitigation methods, such as rubber bearings, elastic-plastic steel dampers, and shape memory alloys, but these devices
are limited and uneconomical in arch bridges. Kim and Choi [31] have pointed that buckling-restrained braces (BRBs) can yield in tension and compression, exhibit stable and predictable
hysteretic behavior, provide significant energy dissipation capacity and ductility, and are an attractive alternative to conventional steel braces. Some researchers (Hoveidae and Rafezy [32], Li
et al. [33], Xing et al. [34]) have optimized its structure and applied it to buildings, obtaining good seismic mitigation effect. Beiraghi and Zhou [35] have designed a braced frame consisting
of steel buckling-restrained braces (BRB model), braces with shape memory alloy (SMA model), or combination of BRB and SMA braces. It is worth mentioning that they have taken
advantage of performance-based design concepts. Concentric braced frames have been combined with moment-resisting frame as a dual system subjected to near-field pulse-like and far-field
ground motions (Wang et al. [36]). To date, BRBs have been used extensively in building structures, but are not as widely used or researched in bridge structures. Dong et al. [37] installed
self-centering buckling-restrained braces on the reinforced concrete double-column bridge piers. Experimental results have demonstrated the obvious advantages of SC-BRB in increasing the
strength and minimizing the residual deformation of the bridge column. Sosorburam and Yamaguchi [38] has conducted a parametric study on the seismic behavior of the truss bridge with
BRB by changing the length, the cross-sectional area, the location, and the inclination. Xiang et al. [39] investigated the effect of BRB distribution on the seismic performance of retrofitted
multi-story reinforced concrete high bridge piers. However, the application of BRB in a steel truss arch bridge is rare (Celik et al. [40]).
The objectives of this paper are to investigate special seismic response of long-period steel truss arch bridge and introduce BRBs into the vibration reduction in steel truss arch bridge in near
fault areas. Firstly, nine ground motions with different characteristics are selected from PEER database [1], and their differences are analyzed by response spectrum. Subsequently, taking a
steel truss arch bridge as the research object, the response law of the bridge under forward-directivity pulsed, fling-step pulsed, and non-pulsed motions is analyzed with an elastic-plastic time
history analysis method. Finally, the seismic mitigation method of using BRB to replace buckling-prone components is proposed and verified. The results show that the internal force and
displacement of the arch ribs can be reduced by replacing a portion of the normal bars with BRBs, which is more prominent under the action of pulsed ground motion.
2. Near-Fault Ground Motions
2.1. Selected Seismic Waves
The Chi-Chi earthquake in Taiwan in 1999 is a typical large earthquake near the fault. In this paper, nine ground motions of different types in this earthquake are taken from the latest
database of the PEER NGA-West 2. The selection principles of ground motion are as follows: (1) the fault is within 20 km; and (2) peak acceleration and velocity are greater than 100 cm/s2
and 30 cm/s, respectively. The three groups of time-history of ground motion velocity with different characteristics are shown in Figure 1a–i. The first group contains three seismic waves,
TCU-051, TCU-082, and TCU-102, representing F-D effect seismic waves; the second group contains three seismic waves, TCU-052, TCU-068, and TCU-075, representing F-S effect
seismic waves; the third group contains three seismic waves, TCU-071, TCU-089, and TCU-079, representing non-pulse effect seismic waves. The basic properties of the ground motions,
such as the closest distance to fault rupture (Rrup), peak ground acceleration (PGA), peak ground velocity (PGV), peak ground displacement (PGD), PGV/PGA, and pulse period (Tp) are
88.
listed in Table 1. PGV/PGA is usually taken as the pulse parameter in the study to preliminarily judge the strength of the velocity pulse. According to the preliminary judgment, the pulseeffect of the selected P-S motions is the strongest, followed by the P-D motions. In contrast, the ordinary non pulse ground motion is gentle.
Figure 1. Velocity time history curve of ground motions.
Table 1. Characteristics of different types of ground motions.
2.2. Response Spectrum of Seismic Waves
From the above-ground motion parameters, it can be seen that there are obvious differences in the motion characteristics of three different types of ground motion (Zaker at el. [41]).
Therefore, further research is needed through response spectrum. The elastic response spectrum of linear elastic single-degree-of-freedom system with 5% damping ratio under three groups of
ground motion is calculated, respectively, and the average value of each group is taken. The calculation results are shown in Figure 2a–c.
89.
Figure 2. The average response spectrum curves of three groups of ground motions.Comparing the response spectrum curves, the differences between the three types of ground motions are obvious. In the short period, the spectral velocity of non-pulse ground motion is the
largest. In the middle period, the acceleration value of the ground motion with forward effect is the largest. In the long period, the acceleration value of ground motion with lightning effect is
the largest. As for velocity spectrum and displacement spectrum, the spectrum value of pulse ground motion is larger than that of non-pulse ground motion in a long period. In general, the
low-frequency components of pulse ground motion are relatively rich, which should be paid attention to in the design of long-period structures near faults.
The peak accelerations of the nine primary seismic waves are adjusted with reference to the Chinese seismic code for bridges (Wu at el. [3]). The rare earthquakes in the Chinese code are
similar to ASCE maximum considered earthquakes. The studied bridge is in the octave zone, so the peak acceleration in rare earthquakes was adjusted to 400 cm/s2.
3. Bridge Prototype and Modelling
3.1. Case Study Bridge for System Response
The prototype bridge is a long-span steel truss arch bridge spanning a valley in a near-fault area. Its net span is 400 m, the vector span ratio is 1/5, and the arch axis is ducted. The main arch
rib adopts steel truss structure, and the beam body is composed of steel and concrete. The height of the steel truss is 10 m, and the spacing of the three transverse arch ribs is 10 m. The arch
rib adopts a steel box structure with equal section, with a height of 1.5 m and a width of 1.0 m. The columns on the arch ribs are steel-bending structures, and the three transverse columns are
equal-section steel boxes. Stiffening ribs and transverse spacers are provided along the height of the columns. The columns are supported by steel bars in the transverse direction to improve
stability and safety. The layout of the bridge is shown in Figure 3. Critical details and parameters are shown in Table 2. The brace members are made from Q345qD steel, with a nominal yield
strength of 345 MPa. The elastic modulus, Poisson’s ratio, density of structural member are listed in Table 3.
90.
Figure 3. General layout of bridge. (unit: cm).Table 2. Section of members.
Table 3. Material parameters.
91.
3.2. Finite Element ModelThe finite element model of the bridge is established by means of the finite element software Midas Civil, as shown in Figure 4. The quality, stiffness, and boundary conditions directly
determine the accuracy of the finite element analysis results. The arch ribs are simulated by the beam element, and the material model is a Menegotto–Pinto theoretical model (Carreño at el.
[42]). To account for non-linearity, lateral braces, vertical bars, cross bars, and braces of columns are embodied by the elasto-plastic hinge element, and the material is simulated by a steel
buckling model. The superstructure of the bridge was assumed to be elastic and was modeled by an elastic beam-column element with a modulus of elasticity of 3.45 × 104 Mpa. A non-linear
beam-column fiber element was adopted to model the non-linear behavior of the columns. The Concrete01 material model, which was developed based on the uniaxial Kent–Scott–Park
model, was used for the concrete of the columns, with compressive strengths of 26.8 and 32.8 MPa for the unconfined and confined concrete, respectively. The reinforcing steel was modeled
with uniaxial bilinear steel material of Steel01. The yield strength, elastic modulus and strain-hardening ratio were assumed to be 400 MPa, 200 GPa and 0.02, respectively.
Figure 4. Finite element model of bridge.
In terms of boundary conditions, the support between the cover beam and the main beam is simulated with fixed support. At the end of the beam, movable supports are used to simulate the
longitudinal constraints of the bridge. The bearing is a basin type rubber bearing, whose construction and model are drawn in Figure 5. The fixed direction of the bearing is restricted and the
movable direction is represented by the bilinear model in Figure 5. The sliding displacement xy is 2 mm.
92.
Figure 5. Composition and model of bearing.4. Bridge Response
The analysis of the dynamic characteristics shows that the first three order periods of the bridge are 1.651 s, 0.921 s, and 0.745 s in the longitudinal direction; 3.927 s, 1.612 s, and 0.809 s in
the transverse direction; and 0.973 s, 0.741 s, and 0.577 s in the vertical direction. Elastoplastic time history analysis is used to simulate the seismic response of bridges under rare
earthquakes. Assume that the bridge is perpendicular to the fault. The seismic waves with the same name are input in the longitudinal, lateral, and vertical directions of the bridge. The
difference is that the PGA of the horizontal seismic wave is 400 cm/s2, while the vertical one is 2/3 of the horizontal one, which is determined by referring to the Chinese code [43]. In Figure
6, the results for the nine working conditions are listed and each seismic wave represents one working condition. The three conditions, TCU-051, TCU-082, and TCU-102, represent the
bridge response under the F-D effect seismic waves, TCU-052, TCU-068, and TCU-075 represent the bridge response under the F-S effect seismic waves, and TCU-071, TCU-089, and TCU079 represent the bridge response under the non-pulsed effect seismic waves. According to the internal force and displacement of key parts, such as arch foot, arch bottom, and 1/4 arch
section, and the buckling of lateral braces, vertical bars, cross bars and braces of columns, the response law of the bridge is summarized.
93.
Figure 6. Envelope results of arch rib response.4.1. Response of Arch Ribs
Under the action of three different types of ground motions, the envelope results of the internal force response of the arch ribs are shown in Figure 6a–c. The arch bridge span is 400 m, the
horizontal coordinates of the graph are the positions of the arch ribs in the axial direction of the bridge and the vertical coordinates are the results of the various seismic responses. Figure 6
shows the envelope results for the axial forces of the arch ribs at each section. Figure 6b shows the results for in-plane bending moments and Figure 6c shows the results for out-of-plane
bending moments. Under various cases, the maximum axial force of the arch rib occurs in the arch foot section, and the bending moment of the arch foot section is also much greater than that
of the arch top and 1/4 arch section. The in-plane bending moment envelopment diagram is not smooth and appears zigzag fluctuation, which is mainly caused by the force change of the
upper column directly connected to the arch ribs.
Compared with non-pulsed ground motions, the internal force of key sections of arch rib is obviously greater under pulsed ground motion. For example, the mean value of peak axial force of
the arch foot under the action of three non-pulsed ground motions is 55,150.9 kN. The mean value under the action of F-D pulsed ground motions is 104,641.9 kN, and that under the action of
F-S pulsed ground motions is 94,825.7 kN, which are increased by 89.7% and 71.9%, respectively, compared with the non-pulsed effect. For arch ribs at different positions, the influence of
pulse effect is also different. The pulsed ground motion has the greatest influence on the peak moment of arch foot surface. Compared with non-pulsed ground motion, the increase rates of FD effect and F-S effect pulse are 207% and 141.2%, respectively. Pulsed ground motions have the least influence on the axial force of the vault, and the increase rates of forward-direction
pulse and fling-step pulse are only 10.5% and 7.6%, respectively.
In terms of deformation, the distribution of longitudinal and vertical deformation is similar. Figure 6d–f show the results of the displacement envelope of the arch rib section relative to the
ground in the longitudinal, transverse, and vertical directions, respectively. The maximum displacement occurs near 1/4 arch section, while the peak value of lateral displacement occurs near
94.
the vault. The displacement responses in all directions under the two kinds of pulsed ground motions are much greater than those of non-pulsed ground motions. On the one hand, it is becausethat the time-domain energy of pulse type ground motion is concentrated and the low-frequency pulse component is rich, which makes it easier to excite the basic mode of arch bridge with
long-period. On the other hand, compared with the ordinary ground motions, the internal force response of the component increases because of the huge velocity pulse. Thus, the braces near
the arch foot are more prone to buckling failure, which reduces the overall stiffness of the structure, and then leads to the increase in displacements.
The influence of the P-S effect on displacement is greater than the F-D effect. The slip effect seismic wave chosen for the study has a larger impulse period than that of the directional effect
seismic wave and is closer to the fundamental period of the steel truss arch bridge. Therefore, the displacement response is greater.
In general, long-period steel arch bridges are more susceptible to the low-frequency impulsive component of near-fault ground vibrations. Therefore, the seismic response of steel truss arch
bridges under impulsive seismic action is much larger than that of non-impulsive ones.
4.2. Buckling of Braces
Under the action of rare ground motion, the various supports of the bridge will buckle to varying degrees. The number of buckling braces under pulse ground motion is much higher than that
under non-pulse ground motion, as shown in Table 4.
Table 4. The number of buckling of braces under rare ground motions.
Due to complex forces near the arch foot, the number and degree of buckling of all kinds of braces near the arch foot are the largest in each working condition. A small part of lateral braces
near the 1/4 arch and the arch roof also suffer from buckling failure. Under the two kinds of pulsed ground motions, the braces buckle in different degrees, but it keeps elastic under three nonpulsed ground motions. Figure 7a–i show the state of the bridge braces under the action of nine seismic waves. Braces in green represent no buckling damage and braces in red represent
buckling damage. In general, the number of buckling braces is proportional to the transverse displacement of the arch rib. The greater the lateral displacement is, the more likely the braces are
to buckle, which will further weaken the lateral stiffness of the bridge.
95.
Figure 7. Distribution of buckling members under rare ground motion. Note: elements in red are the braces where flexural damage occur.Compared with vertical bars, the number and degree of buckling of lateral braces and cross bars are greater. When it comes to reasons, one is that the transverse stiffness of the bridge is
obviously less than that of the longitudinal and vertical directions, which makes the forces of the transverse connecting members more unfavorable. The other is that the design strength of the
transverse and cross bar members is smaller than that of the vertical bars. Therefore, it is necessary to focus on the transverse seismic response and seismic mitigation measures of large span
steel truss arch bridges.
In summary, the axial force, bending moment and displacement response in all three directions of the arch ribs are significantly greater under pulsed seismic waves compared to non-pulsed
seismic waves. From the perspective of the braces, more buckling damage occurs in the braces under the action of pulsed seismic waves.
5. Seismic Mitigation Scheme Using BRB
The above research indicates that the transverse stiffness of steel truss arch bridge is insufficient, which makes it easy to be damaged by the pulse components of pulse-like ground motions.
However, it is neither economical nor reasonable to increase the transverse stiffness singly during the design. Therefore, this paper attempts to introduce the buckling restrained braces (BRBs)
into the seismic mitigation of arch bridge. Some braces are designed as BRBs to improve the overall mechanical performance of the bridge during earthquakes. It is expected that the BRBs
can play the role of ―fuse‖ to provide normal bearing capacity in the normal service condition and help the main structure maintain elasticity under frequent earthquake. Under the action of
rare earthquakes with impulse effect, it yields earlier, but does not fail in buckling and still has considerable stiffness in hysteresis. It can not only prevent the collapse of the overall load
carrying capacity of the bridge caused by buckling damage, but also protect the arch ribs by allowing the braces to fully dissipate the seismic energy under earthquakes.
5.1. Design Parameters of BRB
When determining the design parameters, it needs to be considered that BRBs must keep elastic under frequent earthquake but can yield and consume energy under rare earthquake. Firstly,
considering the condition of frequent earthquakes, the PGA of 9 seismic records is adjusted to 0.1 g. Then, the non-linear time history analysis is carried out. The maximum axial force of
braces under various ground motions is shown in Table 5, and the calculation results are used as the main basis for preliminary design. After the deployment of BRBs, the bridge members
and overall load capacity should not differ much from that of the prototype bridge.
96.
Table 5. Maximum axial force of members under frequent earthquakes (kN).Based on the seismic response data of the bridge, BRBs design and calculation are carried out with reference to technical specification for buckling restrained braces (DBJ/CT105-2011) [44].
In this paper, the structure of TJI (F.F. Sun at el. [45]) steel buckling restrained brace developed by Tongji University is adopted. TJI buckling restrained brace is made of steel, and the
restrained sleeve is made of square steel tube. The restraint effect of outer sleeve on the yield section of core plate is realized by special stiffener. Physical object is shown in Figure 8, and
main components are shown in Figure 9.
97.
Figure 8. Physical object.Figure 9. Main composition and structure.
The calculation of BRBs is similar to that of ordinary brace, the difference is that the designer only need to check whether the strength meets the requirements without considering the
instability. Considering that the stiffness of the brace joint is generally greater than that of the brace itself, the equivalent sectional area (Ae) of the brace in the model is larger than that of the
brace itself (Abe).
The braces of the bridge are over 12 m. According to the design manual for supporting design with the length over 12 m, the yield section area of core plate is A1 = 0.99 Ae. Therefore,
considering the steel area and yield strength of the core plate, the approximate formula for calculating the maximum design bearing capacity is obtained as Equation (1):