Similar presentations:
Построение сечений многогранников. Стереометрия. 10 класс
1. Построение сечений многогранников
Стереометрия 10 класс09.11.2023
Классная работа
Построение сечений
многогранников
2.
Цель урока:Сформировать навык решения задач на
построение сечений тетраэдра и
параллелепипеда
3. «Скажи мне – и я забуду. Покажи мне – и я запомню…»
Древняя китайскаяпословица
4.
Это интересно!Многие художники, искажая законы перспективы,
рисуют необычные картины. Кстати, эти рисунки очень
популярны среди математиков. В сети Internet можно
найти множество сайтов, где публикуются эти
невозможные объекты.
Популярные художники Морис Эшер, Оскар
Реутерсвард, Жос де Мей и другие, удивляли своими
картинами математиков.
5.
"Такое может нарисовать только тот, кто делаетдизайн, не видя перспективы..."
Жос де Мей
6.
Законы геометрии часто нарушаются в компьютерных играх.Поднимаясь по этой лесенке, мы остаёмся на том же этаже.
А2. Если две точки прямой
лежат в плоскости, то все точки
прямой лежат в этой плоскости.
а
Лесенки здесь быть не может!
а
7.
"Те, кто влюбляются впрактику
без
теории,
уподобляются
мореплавателю, садящемуся
на корабль без руля и компаса
и
потому
никогда
не
знающему, куда он плывет".
http://blogs.nnm.ru/page6/
Леонардо да Винчи
8.
АКСИОМЫпланиметрия
Характеризуют взаимное
расположение точек и прямых
1. Каждой прямой
принадлежат по крайней
мере две точки
стереометрия
А1. Через любые три точки, не
лежащие на одной прямой,
проходит плоскость, и притом
только одна
2. Имеются по крайней мере
три точки, не лежащие на
одной прямой
А2. Если две точки прямой
лежат в плоскости, то все
точки прямой лежат в этой
плоскости
3. Через любые две точки
проходит прямая, и притом
только одна.
Основное понятие геометрии
«лежать между»
4. Из трех точек прямой одна и
только одна лежит между двумя
другими.
А3. Если две плоскости
имеют общую точку, то они
имеют общую прямую, на
которой лежат все общие
точки этих плоскостей.
9. Плоскость (в том числе и секущую) можно задать следующим образом
10.
АНет точек пересечения
Одна точка пересечения
А
В
А
В
Пересечением
является отрезок
С
Пересечением
является плоскость
11.
Секущей плоскостьюпараллелепипеда (тетраэдра)
называется любая плоскость, по обе
стороны от которой имеются точки
данного параллелепипеда
(тетраэдра).
L
12.
Построить сечение многогранникаплоскостью – это значит указать
точки пересечения секущей плоскости с
ребрами многогранника и соединить эти
точки отрезками, принадлежащими граням
многогранника.
Для построения сечения многогранника
плоскостью нужно в плоскости каждой
грани указать 2 точки, принадлежащие
сечению, соединить их прямой и найти
точки пересечения этой прямой с ребрами
многогранника.
13.
Секущая плоскость пересекаетграни тетраэдра (параллелепипеда)
по отрезкам.
L
Многоугольник, сторонами которого
являются данные отрезки, называется
сечением тетраэдра
((параллелепипеда).
14.
Секущаяплоскость
Секущая плоскость пересекает
грани тетраэдра по отрезкам.
Многоугольник, сторонами
которого являются эти отрезки –
сечение тетраэдра.
сечение
15. Для решения многих геометрических задач необходимо строить их сечения различными плоскостями.
16. При этом необходимо учитывать следующее:
Для построения сечения нужно построитьточки пересечения секущей плоскости с
ребрами и соединить их отрезками.
При этом необходимо учитывать
следующее:
1. Соединять можно только две точки, лежащие
в плоскости одной грани.
2. Секущая плоскость пересекает
параллельные грани по параллельным
отрезкам.
3.
Если в плоскости грани отмечена только одна
точка, принадлежащая плоскости сечения, то
надо построить дополнительную точку. Для этого
необходимо найти точки пересечения уже
построенных прямых с другими прямыми,
лежащими в тех же гранях.
17.
Какие многоугольники могут получиться в сечении ?Тетраэдр имеет 4 грани
В сечениях могут
получиться:
Треугольники
Четырехугольники
18.
Параллелепипед имеет 6 гранейТреугольники
Пятиугольники
В его сечениях
могут получиться:
Четырехугольник
и
Шестиугольники
19. Блиц - опрос
• Задача блиц – опроса:ответить на вопросы и
обосновать ответ с помощью
аксиом, теорем и свойств
параллельных плоскостей.
20.
Блиц-опрос.D1
С1
K
А1
Верите ли вы, что прямые
НК и ВВ1 пересекаются?
B1
D
А
H
С
В
21.
Блиц-опрос.D1
С1
К
А1
B1
Н
D
А
С
N
В
Верите ли вы, что
прямые НК и ВВ1
пересекаются?
22.
Блиц-опрос.D1
А1
К
А
С1
М
B1
Н
D
В
Верите ли вы, что прямые
НК и МР пересекаются?
Р
С
N
На чертеже есть
ещё ошибка!
23.
Верите ли вы, что прямые НR и NKпересекаются?
D1
С1
Н
А1
R
B1
С
D
На чертеже есть
ещё ошибка!
N
А
Блиц-опрос.
К
В
24.
Пересекаются ли прямые НR и А1В1?Блиц-опрос.
Пересекаются ли прямые НR и С1D1?
С1
D1
Н
R
А1
B1
Пересекаются ли
прямые NK и АD?
С
D
А
N
К
Пересекаются ли
прямые NK и DC?
В
25.
Верите ли вы,что прямые МО и АС
пересекаются?
Блиц-опрос.
D
М
О
С
А
В
Верите ли вы,
что прямые МО и АВ
пересекаются?
26.
Умение решать задачи – практическоеискусство, подобное плаванию, или
катанию на лыжах … : научиться этому
можно лишь подражая избранным образцам
и постоянно тренируясь..
Д. Пойа
27.
Свойствопараллельных плоскостей.
а
Если две параллельные плоскости
пересечены третьей,
то линии их пересечения
параллельны.
b
Это свойство нам поможет
при построении сечений.
28.
1Простейшие задачи.
D1
С1
D
B1
А1
K
М
О
D
А
2
H
С
N
В
Р
С
А
В
29.
D3
Простейшие задачи.
D
4
О
С
С
А
А
О
В
В
30.
Диагональные сечения.5
С1
D1
А1
С
D
А
D1
А1
B1
В
6
С1
B1
С
D
А
В
31.
7D1
С1
K
А1
О
B1
D
А
H
С
N
В
32. Аксиоматический метод
Метод следовСуть метода заключается в построении
вспомогательной прямой, являющейся изображением
линии пересечения секущей плоскости с плоскостью
какой-либо грани фигуры . Удобнее всего строить
изображение линии пересечения секущей плоскости с
плоскостью нижнего основания. Эту линию называют
следом секущей плоскости. Используя след, легко
построить изображения точек секущей плоскости,
находящихся на боковых ребрах или гранях фигуры .
33.
1. Построить сечения параллелепипеда плоскостью, проходящей черезточки В1, М, N
В1
D1
С1
A1
P
К
В
D
А
N
С
M
O
6. КМ
7. Продолжим MN и BD.
1. MN
2.Продолжим
MN,ВА
3.MN ∩ BA=O
8. MN ∩ BD=E
4. В1О
9. В1E
5. В1О ∩ А1А=К
10. B1Е ∩ D1D=P , PN
Е
34.
2S
М
N
Р
А
Y
D
Т
О
В
С
К
X
35.
MM
P
N
P
M
N
N
P
N
M
N
M
P
P
N
P
M
36. Правила для самоконтроля:
• Вершины сечения находятся толькона ребрах.
• Стороны сечения находятся только
на грани многогранника.
• Секущая плоскость пересекает грань
или плоскость грани, то только один
раз.
37.
Составить двезадачи на
построение сечений
многогранников с
использованием
полученных знаний.
38.
Если вы хотите научиться плавать, тосмело входите в воду, а если хотите
научиться решать задачи, то решайте
их
(Д. Пойа)
39.
1.Атанасян Л.С., и др. Геометрия 10-11. – М.: Просвещение, 2008.
2.
Литвиненко В.Н., Многогранники. Задачи и решения. – М.: Вита-Пресс, 1995.
3.
Смирнов В.А., Смирнова И. М., ЕГЭ 100 баллов. Геометрия. Сечение многогранников. – М.:
Экзамен, 2011.
4.
Учебно-методическое приложение к газете «Первое сентября» «Математика». Федотова О.,
Кабакова Т. Интегрированный урок "Построение сечений призмы", 9/2010.
Зив Б.Г. Дидактические материалы по геометрии для 10 класса. – М., Просвещение,
1997.
Электронное издание «1С: Школа. Математика, 5-11 кл. Практикум»
5.
6.
7.
http://www.edu.yar.ru/russian/pedbank/sor_uch/math/legcosh/work.ht
ml
39