Similar presentations:
Комплексные числа в тригонометрической форме и действия над ними
1.
Комплексные числа втригонометрической форме и
действия над ними
2.
Геометрическое изображение комплексных чиселВсякое комплексное число z=x+iy можно изобразить точкой M(x;y)
плоскости xOy такой, что х = Re z, у = Im z. И, наоборот, каждую точку
M(x;y) координатной плоскости можно рассматривать как образ
комплексного числа z=x+iy (рисунок 1).
y
y
M(x; y)
0
x
x
Рисунок 1
Плоскость, на которой изображаются комплексные числа, называется
комплексной плоскостью.
Ось абсцисс называется действительной осью, так как на ней лежат
действительные числа z=x+0i=x .
Ось ординат называется мнимой осью, на ней лежат мнимые
комплексные числа z=0+yi=yi.
3.
rOM ,
Часто вместо точек на плоскости берут их радиус-векторы
т.е. векторы, началом которых служит точка O(0;0), концом M(x;y) .
Длина вектора r , изображающего комплексное число z, называется
модулем этого числа и обозначается | z| или r.
Величина
угла между положительным направлением действительной оси
и вектором r , изображающим комплексное число, называется аргументом
этого комплексного числа, обозначается Arg z или φ.
Аргумент комплексного числа z=0 не определен.
Аргумент комплексного числа z≠0 - величина многозначная
определяется с точностью до слагаемого 2πk (k=0,-1,1,-2,2,..) :
и
Arg z=arg z+2 πk,
где arg z - главное значение аргумента, заключенное в промежутке
(- π, π].
4.
Формы записи комплексных чиселЗапись числа в виде z=x+iy называют
комплексного числа.
алгебраической формой
Из рисунка 1 видно, что x=rcosφ, y=rsinφ, следовательно, комплексное
z=x+iy число можно записать в виде:
z x iy r cos ir sin r (cos i sin ).
Такая форма записи называется тригонометрической
записи комплексного числа.
Модуль r=|z| однозначно определяется по формуле
r x2 y2 .
Аргумент φ определяется из формул
x
y
y
cos ; sin ; tg .
r
r
x
формой
5.
При переходе от алгебраической формы комплексного числа ктригонометрической
достаточно определить лишь главное значение
аргумента комплексного числа, т.е. считать φ=arg z.
y
Так как arg z , то из формулы tg
получаем, что
x
y
- для внутренних точек I, IV четвертей;
arg z arctg
x
y
arg z arctg - для внутренних точек II четверти;
x
y
arg z arctg - для внутренних точек III четверти.
x
1
3
Пример 1. Представить комплексные числа z1 1 i и z 2 i
2
2
тригонометрической форме.
в
6.
Решение.Комплексное число z=x+iy в тригонометрической форме
y
x y , arctg .
x
1) z1=1+i (число z1 принадлежит I четверти), x=1, y=1.
1
2
2
arctg
arctg
1
.
r 1 1 2,
1
4
Таким образом, z1 2 cos i sin .
4
4
1
3
1
3
2) z 2
i (число z2 принадлежит II четверти) x , y
.
2
2
2
2
имеет вид z=r(cosφ +isinφ), где r
2
1 3
r
1,
2 2
2
2
2
arctg 3 .
Так как z2 II ч., то Arg z 2
3
3
2
.
3
2
2
Следовательно, z 2 cos
i sin
.
3
3
2
2
i sin
.
Ответ: z1 2 cos i sin , z 2 cos
4
4
3
3
7.
Действиянад
комплексными
тригонометрической форме
числами,
Рассмотрим два комплексных числа
тригонометрической форме
z1
заданными
и z2 , заданных в
z1 r (cos i sin ), z 2 (cos i sin ).
а) Произведение комплексных чисел
Выполняя умножение чисел z1 и z2 , получаем
z1 z 2 r cos i sin cos i sin
r cos cos i cos sin i sin cos sin sin
r cos cos sin sin i cos sin sin cos ,
z1 z 2 r cos i sin
в
8.
б) Частное двух комплексных чиселПусть заданы комплексные числа
z1 и z2 ≠ 0.
z1
, имеем
Рассмотрим частное
z2
z1 r (cos i sin )
r (cos i sin ) cos i sin
z 2 (cos i sin ) cos i sin cos i sin
r cos cos sin sin i sin cos cos sin
,
2
2
cos sin
z1 r
cos i sin
z2
9.
Пример 5. Даны два комплексных числа z12 cos i sin ,
4
4
z2
2
2
z
z
,
.
Найдите
z 2 2 cos
i sin
.
1
2
z1
3
3
Решение.
1) Используя формулу
получаем
z1 z2 r1r2 cos 1 2 i sin 1 2 ,
2
2
z1 z2 2 2 cos
i sin
.
4
3
4
3
11
11
z
z
2
2
cos
i
sin
.
Следовательно,
1
2
12
12
z1 r1
2) Используя формулу
cos 1 2 i sin 1 2 ,
z 2 r2
получаем
z2
2 2
2
i sin
.
cos
z1
2 3 4
3 4
z1
5
5
2 cos
i sin
.
Следовательно,
z2
12
12
.
4
4 z1
5
5
z
2
cos
i
sin
,
2
cos
i
sin
Ответ:
.
3
3 z2
12
12
.
10.
в)Возведение
комплексного
числа,
тригонометрической форме в n-ю степень
заданного
в
Из операции умножения комплексных чисел следует, что
z 2 zz r 2 (cos 2 i sin 2 ).
В общем случае получим:
r (cos i sin ) n r n (cosn i sin n )
(2)
где n– целое положительное число.
Следовательно, при возведении комплексного числа в степень модуль
возводится в ту же степень, а аргумент умножается на показатель
степени.
Выражение (2) называется формулой Муавра.
11.
Абрахам де Муавр (1667 – 1754) – английский математикфранцузского происхождения.
Заслуги Муавра:
• открыл (1707) формулу Муавра для возведения в степень (и извлечения
корней) комплексных чисел, заданных в тригонометрической форме;
• первый стал использовать возведение в степень бесконечных рядов;
• большой вклад в теорию вероятностей: доказал частный случаи теоремы
Лапласа, провёл вероятностное исследование азартных игр и ряда
статистических данных по народонаселению.
Формулу
Муавра
можно
использовать
для
тригонометрических функций двойного, тройного и т.д. углов.
нахождения
содержание
12.
г) Извлечение корня п-ой степени из комплексного числаКорнем п-ой степени из комплексного числа z называется
n
комплексное число w, удовлетворяющее равенству wn=z, т.е. z w, если
wn=z.
Если положить z r (cos i sin ), а w (cos i sin ),
определению корня и формуле Муавра, получаем
z wn (cos i sin ) r cos i sin .
n
Отсюда имеем
n 2 k , k Z .
2 k
n
.
То есть r ,
n
n
r,
Поэтому равенство
n
z w принимает вид
n z n r cos 2 k i sin 2 k
n
где k 0, n 1 (т.е. от 0 до n-1).
n
то, по
13.
Таким образом, извлечение корня n-ой степени из комплексного числаz всегда возможно и дает n различных значений. Все значения корня n-ой
степени расположены на окружности радиуса
n z с центром в нуле и
делят эту окружность на n равных частей.
Пример 7. Найти все значения 3 1 i 3 .
Решение.
Вначале представим число
z 1 i 3 в тригонометрической форме.
x=1, y 3, таким образом, r 1 3 4 2,
3
arctg
arctg 3 .
1
3
Следовательно, z 2 cos i sin .
3
3
2 k
2 k
n r cos i sin n r cos
i
sin
,
Используя формулу
n
n
где k=0,1,2,…,(n-1), имеем:
В данном случае
14.
2k
2
k
3
3
3
3
, k 0, 1, 2.
z 2 cos
i sin
3
3
Запишем все значения
3
z:
при k 0, z 0 2 cos i sin ;
9
9
3
7
7
при k 1, z1 2 cos
i sin
;
9
9
3
при k 2, z 2 3 2 cos
13
13
i sin
.
9
9
7
7
i sin ; z1 3 2 cos
i sin
;
9
9
9
9
13
13
3
z 2 2 cos
i sin
.
9
9
Ответ: z 0 3 2 cos
15. Вопросы для самоконтроля
1. Сформулируйте определение комплексного числа.2. Какое комплексное число называется чисто мнимым?
3. Какие два комплексных числа называются сопряженными?
4. Объясните, что значит сложить комплексные числа, заданные в
алгебраической форме; умножить комплексное число на действительное.
5.
Объясните
принцип
деления
комплексных
чисел,
заданных
в
алгебраической форме.
6.
Запишите в общем виде целые степени мнимой единицы.
7. Что означает возведение комплексного числа, заданного алгебраической
формой в степень ( n- натуральное число)?
8.
Расскажите как изображаются комплексные числа на плоскости.
16.
9.Какая форма записи называется тригонометрической формой
комплексных чисел?
10. Сформулируйте определение модуля и аргумента комплексного
числа.
11. Сформулируйте правило умножения комплексных чисел, записанных
в тригонометрической форме.
12. Сформулируйте правило нахождения частного двух комплексных
чисел, заданных в тригонометрической форме.
13. Сформулируйте правило возведения в степени комплексных чисел,
заданных в тригонометрической форме.
14. Сформулируйте правило извлечения корня n-ой степени из
комплексного числа, заданного в тригонометрической форме.
15.
Расскажите о значении корня n-ой степени из единицы и о сфере
его применения.