28.56M
Category: ConstructionConstruction
Similar presentations:

Таможенный союз. Декларация о соответствии

1.

Акционерное Общество «Завод им. Гаджиева». Адрес: 368305. РФ, Республика Дагестан, г. Каспийск, ул. Халилова. дом 28, кв32
Адрес места осуществления деятельности: 367013. Российская Федерация. Республика Дагестан, г Махачкала, ул.
Юсупова. 51. ИНН 0541000946 Тел. (8722) 68-13-60. Факс (8722)68-13-59 e-mail: [email protected]
г. Грозный, ул. .им. С.Ш.Лорсанова, д. 6, 364024 ИНН 2014000780 [email protected]
190005, СПб, 2-я Красноармейская ул. д 4 т/ф (812) 694-78-10 [email protected]
Руководителя органа по сертификации продукции ОО «Сейсмофонд» ОГРН: 1022000000824
(921) 407-13-67
Х.Н.Мажиев
Х.Н.Мажиева -Президента ОО "Сейсмофонд" (911) 175-84-65, (996) 798-26-54, (921) 962-67-78
Конденсатоотводчики автоматические до PN 4,0 МПа, ДN 10- 50, выпускаемые АО «Завод им. Гаджиева ", (ПАСПОРТ ЛШТИ.
494654.001 ПС), серийный выпуск, предназначены для работы в сейсмоопасных районах, сейсмичность 9 баллов). Для районов с сейсмичностью 9
баллов и более соединение трубопроводов должно быть выполнено с помощью демпфирующего спиралеобразного компенсаторов на фланцевых
фрикционно-подвижных соединений (ФПС), по изобретению №№ 2413820 , в виде болтовых соединений, расположенных в длинных овальных
отверстиях, согласно изобретениям: №№ 1143895,1174616, 1168755 SU, 2010136746 RU с учетом сдвиговой прочности, согласно заявки на изобретение:
" Фрикционно -демпфирующий
компенсатор
для «Завод
трубопроводов"
рег. №Адрес:
2021134630
(ФИПС),
от 25.11.2021,
"Компенсатор
трубопроводов
" Минск ,
Акционерное
Общество
им. Гаджиева».
368305.
Российская
Федерация,
Республика для
Дагестан,
г.
рег.
№ а 20210354
от 27.12.
Каспийск,
ул. Халилова.
дом2021
28, кв32. Адрес места осуществления деятельности: 367013. Российская Федерация. Республика Дагестан, г
Махачкала, ул. Юсупова. 51. ИНН 0541000946 Тел. (8722) 68-13-60. Факс (8722)68-13-59 e-mail: [email protected]
Конденсатоотводчики автоматические до PN 4,0 МПа, ДN 10- 50, выпускаемые АО «Завод им. Гаджиева ", (ПАСПОРТ ЛШТИ.
494654.001 ПС), серийный выпуск, предназначены для работы в сейсмоопасных районах, сейсмичность 9 баллов). Для районов
с сейсмичностью 9 баллов и более соединение трубопроводов должно быть выполнено с помощью демпфирующего
спиралеобразного компенсаторов на фланцевых фрикционно-подвижных соединений (ФПС), по изобретению №№ 2413820 ,
в виде болтовых соединений, расположенных в длинных овальных отверстиях, согласно изобретениям: №№ 1143895,1174616,
1168755 SU, 2010136746 RU с учетом сдвиговой прочности, согласно заявки на изобретение: " Фрикционно -демпфирующий
компенсатор для трубопроводов" рег. № 2021134630 (ФИПС), от 25.11.2021, "Компенсатор для трубопроводов " Минск , рег. №
а 20210354 от 27.12. 2021
Постановление Правительства Российской Федерации от 27 декабря 1997г. № 1636
Протокола № 571 от 10.03.2022, ОО «Сейсмофонд», ИНН 2014000780, СПб ГАСУ
№ RA.RU.21СТ39 от 27.05.2015, ФГБОУ ВПО ПГУПС № SP01.01.406.045 от
27.05.2014 [email protected] [email protected]
Испытательный центр СПб ГАСУ, аккредитован Федеральной службой по
аккредитации (аттестат № RA.RU.21СТ39, выдан 23.06.2015), ОО "Сейсмофонд"
при СПб ГАСУ ОГРН 1022000000824 [email protected] (911) 175-84-65
RA.RU.21СТ39. Н00571
10. 03. 2022
по 10.03.2025
Х.Н.Мажиев
[email protected]
Подтверждение компетентности Номер решения о прохождении процедуры подтверждения компетентности 8590-гу (А-5824) СПб ГАСУ (ЛИСИ)
http://188.254.71.82/rao_rf_pub/?show=view&id_object=DCB44608D54849B2A27CFEFEBEF970D4
ТС № RA.RU.21СТ39
Н00571
09.11.2021
Ссылка аккредитации ИЦ «ПКТИ Строй-ТЕСТ» http://www.oaontc.ru/services/registers/lri/159626/

2.

21СТ39
Н00571 от 10.03.2022
ЗАЯВИТЕЛЬ (ИЗГОТОВИТЕЛЬ): Акционерное Общество «Завод им. Гаджиева».
Адрес: 368305. Российская Федерация,
Республика Дагестан, г. Каспийск, ул. Халилова. дом 28, кв32. Адрес места осуществления деятельности: 367013. Российская Федерация.
Республика Дагестан, г Махачкала, ул. Юсупова. 51. ИНН 0541000946 Тел. (8722) 68-13-60. Факс (8722)68-13-59 e-mail: [email protected]
Продукция : Конденсатоотводчики автоматические до PN 4,0 МПа, ДN 10- 50, выпускаемые АО «Завод им. Гаджиева ", (ПАСПОРТ ЛШТИ.
494654.001 ПС), серийный выпуск, предназначены для работы в сейсмоопасных районах, сейсмичность 9 баллов). Для районов с
сейсмичностью 9 баллов и более соединение трубопроводов должно быть выполнено с помощью демпфирующего спиралеобразного
компенсаторов на фланцевых фрикционно-подвижных соединений (ФПС), по изобретению №№ 2413820 , в виде болтовых соединений,
расположенных в длинных овальных отверстиях, согласно изобретениям: №№ 1143895,1174616, 1168755 SU, 2010136746 RU с учетом
сдвиговой прочности, согласно заявки на изобретение: " Фрикционно -демпфирующий компенсатор для трубопроводов" рег. № 2021134630
(ФИПС), от 25.11.2021, "Компенсатор для трубопроводов " Минск , рег. № а 20210354 от 27.12. 2021
Генеральный директор Папалашов Абдулвагаб Яхьяевич Акционерное Общество «Завод им. Гаджиева». Адрес: 368305,
Российская Федерация, Республика Дагестан, г. Каспийск, ул. Халилова. дом 28. кв 32. Адрес места осуществления деятелъносги: 367013.
Российская Федерация Республика Дагестан, г.Махачкала ул. Юсупова. 51. ИНН 0541000946
Условия обеспечивающие регламента о безопасности в соответствия по ГОСТ
17516.1 -90, ГОСТ 30546.2-98 ( к сейсмическому воздействию 9 баллов по шкале MSK -64)
и работы во взрывоопасных и взрывопожароопасных производствах категории А и Б и Е
Безопасная работа монтажника обеспечивается
за счет использования демпфирующего спиралеобразного
компенсатора для крепления конденсатоотводчики автоматические до PN 4,0 МПа, ДN 10- 50, выпускаемые АО «Завод им. Гаджиева ",
(ПАСПОРТ ЛШТИ. 494654.001 ПС) с трубопроводами на сейсмоизолирующих опорах изготавливаемые в соответствии с техническими
условиями ТУ 3680-001-04698606-04 "Опоры трубопроводов" , ОСТ 34-10-616-93 , серия 4.903-10, вып. 4, "Опоры трубопроводов неподвижные",
ГОСТ 14911-82 "Опоры подвижные" изготовленные согласно изобретений № 165076 "Опора сейсмостойкая", № 2010136746, 1143895,
1168755, 1174616 предназначенные для сейсмоопасных районов с сейсмичностью 9 баллов (в районах с сейсмичностью 8 баллов и более
необходимо использование демпфирующих опор на фрикционно-подвижных соединениях для противопожарных трубопроводов, с целью
обеспечения многокаскадного демпфирования при динамических нагрузках, согласно изобретениям №№ 165076 "Опора сейсмостойкая", 1143895,
1174616, 1168755, 2010136746 , 2550777. Испытание проводились на соответствие групп механической прочности на вибрационные, ударные
воздействия: М5-М7, М38-М39 по результатам испытаний методом численного моделирования в ПК SCAD на взаимодействие трубопровода с
геологической средой
1. По результатам испытания демпфирующий спиралеобразный компенсатор для крепления на к онденсатоотводчики
автоматические до PN 4,0 МПа, ДN 10- 50, выпускаемые АО «Завод им. Гаджиева ", (ПАСПОРТ ЛШТИ. 494654.001 ПС), изготавливаемые в
соответствии с техническими условиями ТУ 3680-001-04698606-04 "Опоры трубопроводов" , ОСТ 34-10-616-93 , серия 4.903-10, вып. 4, "Опоры
трубопроводов неподвижные", ГОСТ 14911-82 "Опоры подвижные" изготовленные согласно изобретений № 165076 "Опора сейсмостойкая",
№ 2010136746, 1143895, 1168755, 1174616, выдерживает расчетную пожарную нагрузку для трубопроводов и нефтегазовой
арматур, может быть использована в сейсмоопасных районах с сейсмичностью до 9 баллов по шкале MSK-64 (для
районов с сейсмичностью более 8 баллов необходимо применять демпфирующий спиралеобразный компенсатор на
фланцевых, фрикционно-подвижные соединения с латунными фрикционными болтами) на основании протокола №
391 и 394 от 09.08.2018 ОО «Сейсмофонд», СПб ГАСУ №RA.RU.21СТ39 от 27.05.2015, ФГБОУ ВПО ПГУПС
№SP01.01.406.045 от 27.05.2014, действ. 27.05.2019, свидетельство НП «СРО «ЦЕНТРСТРОЙПРОЕКТ» № 0223.012010-2010000211-П-29 от 27.03.2012 и свид. СРО «ИНЖГЕОТЕХ» № 281-2010-2014000780-П-29 от 22.04.2010 и
протокола № 1516-2 от 25.03. 2018 в ИЦ "ПКТИ-СтройТЕСТ" (испытания математических моделей
металлоконструкций и моделирование пожарной нагрузки на конструкции проводились методом математического и
компьютерного моделирования в механике деформируемых сред и конструкций в ПК SKAD, ANSYS).
2. Конденсатоотводчики автоматические до PN 4,0 МПа, ДN 10- 50, выпускаемые АО «Завод им. Гаджиева ", (ПАСПОРТ ЛШТИ. 494654.001 ПС)
изготавливаемые в соответствии с техническими условиями ТУ 3680-001-04698606-04 "Опоры трубопроводов" , ОСТ 34-10-616-93 , серия 4.90310, вып. 4, "Опоры трубопроводов неподвижные", ГОСТ 14911-82 "Опоры
подвижные" изготовленные согласно изобретений № 165076
"Опора сейсмостойкая", № 2010136746, 1143895, 1168755, 1174616 для трубопроводов ( ГОСТ Р 55989-2014), серийный выпуск,
предназначенная для сейсмоопасных районов с сейсмичностью до 9 баллов по шкале MSK-64, проходила испытания на
соответствие требованиям ГОСТ Р 53309-2009, ГОСТ 30247.0-94, ГОСТ 30247.1 -94, ГОСТ 30403-96, ГОСТ 31251-2008, 1 кат. по
НП- 031-01, НП-071-06 класса безопасности 3Н по ОПБ 88/97 при сейсмических воздействиях 9 баллов по шкале MSK-64
включительно при уровне установок над нулевой отметкой 70 м по ГОСТ 30546.1-98, ГОСТ 30546.2-98, ГОСТ 30546.3-98, ГОСТ
30631-99, ГОСТ Р 51371-99, ГОСТ 17516.1-90, МЭК 60068-3-3 (1991), МЭК 60980, ANSI/IEEEStd. 344-1987, ПМ 04-2014, РД
26.07.23-99 и РД 25818-87 (синусоидальная вибрация–5,0-100 Гц с ускорением до 2g) СП 14.13330. 2014,п.9.2, СП 16.13330.2011
п.14,3 -15.2.4, ТКТ 45-5.04-274-2012( 02250), п.10.3.2 -10.10.3 ,СН 471-75, ОСТ 36-72-82,( протокол № 391, 394 от 09.08.2018 ОО
«Сейсмофонд», СПб ГАСУ №RA.RU.21СТ39 от 27.05.2015, ФГБОУ ВПО ПГУПС №SP01.01.406.045 от 27.05.2014, действ.
27.05.2019
Президент ОО "Сейсмофонд" при СПб ГАСУ, руководитель Обособленного подразделения ООО ФПГ "РОССТРО"-"ПКТИ",
Испытательный Центр "ПКТИ- Строй-ТЕСТ"
/ Х.Н.Мажиев / [email protected]
(имеет свидетельство об аккредитации № ИЛ /ЛРИ -00804 от 25.03.2016 действующий на основании устава и свидетельство об
аккредитации испытательной лаборатории , аккредитованной с 25.03.2016 до 25.03.2021, выданное ОАО "НТЦ
"Промышленная безопасность" выданное с 25.03.2016 и действует 25.03.2021, http://www.oaontc.ru/
http://www.oaontc.ru/services/registers/lri/159626)
Зам. Президента организации "Сейсмофонд" при СПб ГАСУ, имеет бессрочный аттестат аккредитации РОСАККРЕДИТАЦИИ
" № RA.RU.21 СТ 39 выдана 23 июня 2015 ) проф. дтн СПб ГАСУ / Ю.М.Тихонов /
188.254.71.82/rao_rf_pub/?show=view&id_object=DCB44608D54849B2A27CFEFEBEF970D4 )

3.

СПб ГАСУ Приложение к протоколу номер 571 от 10 03 2022
испытания на осевое статическое усилия сдвиг дугообразного
зажима с анкерной шпилькой № 1516-2 от 25.11 2020 и
математическому моделированию в ПК SCAD от 10.03.2022
скользящих фланцевых узлов соединения, в овальных отверстиях, с
контролируемым натяжением болтовых соединений для
демпфирующих опор и тросовые креплений трубопроводов, для
демпфирующего спиралеобразного компенсатора, для конденсатоотводчики
автоматические до PN 4,0 МПа, ДN 10- 50, выпускаемые АО «Завод им. Гаджиева ",
(ПАСПОРТ ЛШТИ. 494654.001 ПС), с в креплениям к трубопроводу , в
критически важных системах, трубопровода пожаротушения и
рекомендации для использования в сейсмоопасных районах, на
основании опыта инженеров американских организация,
расположенных в г. Анкоридж ( Аляска, США ) с использованием
демпфирующих опор, для конденсатоотводчики автоматические до PN 4,0
МПа, ДN 10- 50, выпускаемые АО «Завод им. Гаджиева ", (ПАСПОРТ ЛШТИ.
494654.001 ПС), серийный выпуск, предназначены для работы в
сейсмоопасных районах, сейсмичность 9 баллов, для районов с
сейсмичностью 8 баллов и более соединение трубопроводы должны
быть выполнены с помощью протяжных демпфирующих
фланцевых фрикционно-подвижных соединений (ФПС), с
демпфирующими косыми компенсаторами , по изобретению №№
2413820 Е04В1/58, 887748 Е04В1/38, в виде болтовых соединений,
расположенных в длинных овальных отверстиях, согласно
изобретениям: №№ 1143895,1174616, 1168755 SU, 2010136746 RU.
Участки соединения трубопровода с конденсатоотводчики

4.

автоматические до PN 4,0 МПа, ДN 10- 50, выпускаемые АО «Завод им. Гаджиева ",
(ПАСПОРТ ЛШТИ. 494654.001 ПС), должны быть выполнены в виде
«змейки» или «зиг-зага» и уложенные на сейсмоизолирующих
опорах, согласно изобретения № 165076 RU "Опора
сейсмостойкая", опубликованного в Бюл. № 28 от 10.10.2016
ФИПС , с трубопроводами ( ГОСТ Р 55989-2014), и
предназначенное для сейсмоопасных районов с сейсмичностью более
9 баллов, серийный выпуск (в районах с сейсмичностью 8 баллов и
выше, для установки оборудования и трубопроводов необходимо
использование сейсмостойких демпфирующих опорах СПб ГАСУ, а
соединение трубопроводов необходимо выполнять на сдвиговыхдемпфирующих фланцевых фрикционно- подвижных соединений,
работающих на сдвиг, с использованием фрикци -болта,
состоящего из латунной шпильки с пропиленным в ней пазом и с
забитым в паз шпильки медным обожженным клином, согласно
рекомендациям ЦНИИП им Мельникова, ОСТ 36-146-88, ОСТ
108.275.63-80,РТМ 24.038.12-72, ОСТ 37.001.050- 73,альбома 1-4871997.00.00 и изобрет. №№ 1143895, 1174616,1168755 SU, 4,094,111
US, TW201400676 Restraintanti-windandanti-seismic-friction-dampingdevice и согласно изобретения «Опора сейсмостойкая» Мкл E04H
9/02, патент № 165076 RU, Бюл.28, от 10.10.2016, а в местах
подключения трубопроводов к системе противопожарной защиты
ООО "ПОЖТЕХПРОМА" должны быть уложены в виде
"спиралевидной змейки" или " винтового зиг-зага "), предназначены
для работы в сейсмоопасных районах, сейсмичность более 9 баллов
и для взрывопожароопасных производств категории А, Б и Е),
закрепленных на основании фундамента с помощью опор
организации "Сейсмофонд" при СПбГАСУ ( № 165076" Опора
сейсмостойкая" на фрикционно-подвижных соединений (ФПС),
выполненных согласно изобретениям №№ 1143895,1174616,
1168755 SU, 165076 RU "Опора сейсмостойкая", 2010136746,
2413098, 2148805, 2472981, 2413820, 2249557, 2407893, 2467170,
4094111 US, TW201400676 (участки соединения промышленного
трубопровода, выполнены в виде «змейки» или «зиг-зага»), для
повышения надежности, виброустойчивости и
термоустойчивости промышленных трубопроводов, которые

5.

соответствует группе механического исполнения М13 (в районах с
сейсмичностью 8 баллов и более комплектные распределительные
устройства должны быть закреплены на основания с помощью
демпфирующих , сейсмостойких опор на фрикционно-подвижных
соединениях с контролируемым натяжением (ФПС), выполненных в
виде болтовых косых или демпфирующих соединениях с
использованием латунной шпильки -болта, с пропиленным в ней
пазом и забитым в паз шпильки упруго-пластичным медным
обожженным клином, с использованием тросовой гильзы
(обмотки) вокруг шпильки, согласно изобретениям: патенты
№№1143895, 1168755, 1174616, «Опора сейсмостойкая», патент №
165076 Е04Н 9/02) и внедренные в г. Анкоридж, Аляска , США.
Более подробно о внедрении в сейсмоопасных районах в
США,Канады, Японии, Китае демпфирующих опор ЛИСИ , для
магистральных трубопроводов на Аляске, изобретенных в СССР
№№ 1143895 US , 1168755 US, 1174616 US про дтн ЛИИЖТ
А.М.Уздиным а внедренных в USA ;
Introduction to Pipe Supports Types of Pipe Supports Pipe Supports for
Critical Piping Systems. This video explains the basics of pipe supports,
pipe support types, functions, requirements, and supporting
guidelines.Pipe Support Types of Pipe Supports Primary and
Secondary pipe Supports Piping Mantra
https://ok.ru/video/3306247162582
https://www.youtube.com/watch?v=U4aUmrOeVbc
https://disk.yandex.ru/i/6fYbE0M9Z1_F8Q
https://ok.ru/video/3306263022294
https://disk.yandex.ru/i/TttSRnFkHfIX9g
Fire Sprinkler Installation - BCA- Singapore
https://ok.ru/video/3306312764118
https://disk.yandex.ru/i/PcwhOMxy4yD6cQ
Eaton-s TOLCO Seismic Bracing OSHPD Pre-approval(1)

6.

https://ok.ru/video/editor/3306401696470
How to Install Cable Sway Bracing - 4-Way Brace
https://ok.ru/video/3306431122134
SB 4 Seismic Bracing Value Proposition
https://ok.ru/video/3306475031254
Seismic Cable Bracing Systems - Product Focus
https://ok.ru/video/3306504981206
Understanding Pipe Supports Webinar
https://ok.ru/video/3306548628182
https://www.youtube.com/watch?v=ygg1X5qI-0w
PIPING THERMAL EXPANSION PIPING FLEXIBILITY - ANCHOR
LOCATION PIPING MANTRA WITH EXAMPLES
https://ok.ru/video/editor/3306596797142
How to select spring hanger - for piping engineers
https://ok.ru/video/3306645424854
piping support typeisometric pipe drawing support symbolspipe fitter
training in hindi
https://ok.ru/video/3306633235158
Использования гасителе динамических колебаний, для обеспечения
сейсмостойкости, за счет демпфирующего компенсатора для
трубопроводов , при импульсных растягивающих нагрузках, с
использованием протяжных фрикционно-подвижных соединений с

7.

контролируемым натяжением из латунных ослабленных болтов, в
поперечном сечении резьбовой части с двух сторон с образованными
лысками, по всей длине резьбы латунного болта и их программная
реализация расчета, в среде вычислительного комплекса SCAD Office c
использованием изобретений проф .дтн ПГУПС А.М.Уздина № 154506
«Панель противовзрывная», № 165076 «Опора сейсмостойкая» , №
2010136746, 1143895, 1168755, 1174616 ( При сбрасывании навесных панелей, масса
здания уменьшается, частота собственных колебаний увеличивается, а сейсмическая
нагрузка падает) СТУ ЛСК Специальные технические условия с
использованием изобретений проф .дтн ПГУПС А.М.Уздина № 154506
«Панель противовзрывная», № 165076 «Опора сейсмостойкая» , №
2010136746, 1143895, 1168755, 1174616
А.М.Уздин докт. техн. наук, проф. кафедры «Теоретическая механика» ПГУПС [email protected]
Х.Н.Мажиев -. Президент ОО «СейсмоФонд», ИНН 2014000780 [email protected]
(921) 962-67-78
Б.А.Андреев - зам През орг. «Сейсмофонд» ОГРН 1022000000824 [email protected] (812) 694-78-10
Е.И.Андреева зам Президента организации «СейсмоФонд» (996) 798-26-54 [email protected]
https://disk.yandex.ru/d/jsuUAp-0Un_GkA https://ppt-online.org/941232
https://ru.scribd.com/document/515600203/Ispolzovaniy-Gasiteley-Dinamicheskix-Kolebaniy-Obrusheniem-Pyatogo-Etaja-ObespecheniyaSeismostoykosti-351-Str
Приложение к сертификату опыт зарубежных стран США :

8.

Сейсмостойкая ПРОДУКЦИЯ Конденсатоотводчики автоматические до PN 4,0 МПа, ДN 10- 50, выпускаемые АО
«Завод им. Гаджиева ", (ПАСПОРТ ЛШТИ. 494654.001 ПС),
изготавливаемые в соответствии с
техническими условиями ТУ 3680-001-04698606-04 "Опоры
трубопроводов" , ОСТ 34-10-616-93 , серия 4.903-10, вып. 4,
"Опоры трубопроводов неподвижные", ГОСТ 14911-82 "Опоры
подвижные" изготовленные согласно изобретений № 165076
"Опора сейсмостойкая", № 2010136746, 1143895, 1168755, 1174616
предназначенные для сейсмоопасных районов с сейсмичностью 9
баллов (в районах с сейсмичностью 8 баллов и более необходимо
использование демпфирующих опор на фрикционно-подвижных
соединениях для противопожарных трубопроводов, с целью
обеспечения многокаскадного демпфирования при динамических
нагрузках, согласно изобретениям №№ 165076 "Опора
сейсмостойкая", 1143895, 1174616, 1168755, 2010136746 , 2550777.
Испытание проводились на соответствие групп механической
прочности на вибрационные, ударные воздействия: М5-М7, М38М39 по результатам испытаний методом численного
моделирования в ПК SCAD на взаимодействие трубопровода с
геологической средой
https://ppt-online.org/1011935
https://disk.yandex.ru/i/bK5p2mKJTbiECA
Зарубежный опыт использования фрикционно- демпфирующих
компенсаторов для трубопроводов в сейсмоопасных районах
США, Канады, Японии , Италии
см. научную публикацию на английском языке : Piping Support
Types, Purpose, Design, Codes, Optimization Rules (PDF)
https://whatispiping.com/supporting-of-piping-systems/
Специальные технические условия разработанные на основании
использования опыта инженеров американских организация,
расположенных в г. Анкоридж ( Аляска, США ) с использованием
демпфирующих компенсаторов Конденсатоотводчики автоматические до PN 4,0 МПа, ДN 10- 50, выпускаемые АО «Завод им.
Гаджиева ", (ПАСПОРТ ЛШТИ. 494654.001 ПС), серийный выпуск, предназначены для работы в
сейсмоопасных районах, сейсмичность 9 баллов, для районов с
сейсмичностью 8 бал лов и более соединение трубопроводов? должно

9.

быть выполнено с помощью протяжных демпфирующих фланцевых
фрикционно-подвижных соединений (ФПС), косой стык, по изобретению
№№ 2413820 Е04В1/58, 887748 Е04В1/38, в виде болтовых соединений,
расположенных в длинных овальных отверстиях, согласно изобретениям:
№№ 1143895,1174616, 1168755 SU, 2010136746 RU, участки соединения
трубопровода с емкостями, должны быть выполнены в виде «змейки» или
«зиг-зага» и уложенные на сейсмоизолирующих опорах, согласно
изобретения № 165076 RU "Опора сейсмостойкая", опубликованного в
Бюл. № 28 от 10.10.2016 ФИПС , с трубопроводами ( ГОСТ Р 55989-2014),
и предназначенное для сейсмоопасных районов с сейсмичностью до 9
баллов, серийный выпуск (в районах с сейсмичностью 8 баллов и выше для
установки оборудования и трубопроводов необходимо использование
сейсмостойких демпфирующих опорах , а соединение трубопроводов
необходимо на фланцевых фрикционно- подвижных соединений,
работающих на сдвиг, с использованием фрикци -болта, состоящего из
латунной шпильки с пропиленным в ней пазом и с забитым в паз шпильки
медным обожженным клином, согласно рекомендациям ЦНИИП им
Мельникова, ОСТ 36-146-88, ОСТ 108.275.63-80,РТМ 24.038.12-72, ОСТ
37.001.050- 73,альбома 1-487-1997.00.00 и изобрет. №№ 1143895,
1174616,1168755 SU, 4,094,111 US, TW201400676 Restraintanti-windandantiseismic-friction-damping-device и согласно изобретения «Опора
сейсмостойкая» Мкл E04H 9/02, патент № 165076 RU, Бюл.28, от
10.10.2016, а в местах подключения трубопроводов к системе Конденсатоотводчики
автоматические до PN 4,0 МПа, ДN 10- 50, выпускаемые АО «Завод им. Гаджиева ", (ПАСПОРТ ЛШТИ. 494654.001 ПС), должны быть
уложены в виде "змейки" или "зиг-зага "), предназначены для работы в
сейсмоопасных районах, сейсмичность 9 баллов и для
взрывопожароопасных производств категории А, Б и Е), закрепленных на
основании фундамента с помощью фрикционно-подвижных соединений
(ФПС), выполненных согласно изобретениям №№ 1143895,1174616,
1168755 SU, 165076 RU "Опора сейсмостойкая", 2010136746, 2413098,
2148805, 2472981, 2413820, 2249557, 2407893, 2467170, 4094111 US,
TW201400676 (участки соединения промышленного трубопровода,
выполнены в виде «змейки» или «зиг-зага»), для повышения надежности,
виброустойчивости и термоустойчивости промышленных трубопроводов,
которые соответствует группе механического исполнения М13 (в районах
с сейсмичностью 8 баллов и более комплектные распределительные
устройства должны быть закреплены на основания с помощью
демпфирующих , сейсмостойких опор на фрикционно-подвижных
соединениях с контролируемым натяжением (ФПС), выполненных в виде
болтовых косых или демпфирующих соединениях с использованием

10.

латунной шпильки -болта, с пропиленным в ней пазом и забитым в паз
шпильки упруго-пластичным медным обожженным клином, с
использованием тросовой гильзы (обмотки) вокруг шпильки, согласно
изобретениям: патенты №№1143895, 1168755, 1174616, «Опора
сейсмостойкая», патент № 165076 Е04Н 9/02). https://pptonline.org/1014521 https://disk.yandex.ru/d/it910e0K9eXdrA
С инженерными расчетами в ПК SCAD и лабораторными испытания фрагментов и узлов демпфирующего спиралеобразного
компенсатора из трубчатых латунных уголков в СПб ГАСУ демпфирующего спиралеобразного компенсатора , на фланцевых
фрикционно--подвижных соединений ( ФПС)с учетом сдвиговой прочности (жесткости) , выполненных в виде болтовых соединений,
расположенных в длинных овальных отверстиях с контролируемым натяжением, с зазором не менее 50 мм или более 100-150 мм для
нефтегазовой арматуры (трубопроводов) на Украинских перекачивающих станций, по транзиту газа в Европу , чтобы исключить взрыв газа
от многокаскадных динамических и растягивающих нагрузки !!!, за счет сдвига по длинным закругленным овальным отверстиям, по
линии нагрузки !!!, между торцами стыкуемых элементов, обеспечивающих многокаскадное демпфирование участка
нефтегазотрубопроводов, при импульсной растягивающей нагрузке, можно ознакомиться кафедре ТСМиМ (Технологии строительных
материалов и метрологии) СПб ГАСУ д.т.н. проф Юрий Михайловича Тихонова ( аудитория 305С ) или см.изобретения: №№ 1143895,
1174616,1168755 SU, 4,094,111 US, TW 201400676 estraintanti-windandanti-seismicfrictiondampingdevice, 165076 RU «Опора сейсмостойкая»
Мкл E04H9/02, Бюл.28, от 10.10.2016 ,СП 16.13330.2011 ( СНиП II-23-81*), п.14,3 -15.2.4, ТКТ 45-5.04-274-2012( 02250), п.10.3.2 -10.10.3 ,СН
471-75, ОСТ 36-72-82, Руководство по проектированию, изготовлению и сборке монтаж. фланцевых соединений стропильных ферм с
поясом из широкополочных двутавров, Рекомендации по расчету, проектированию, изготовлению и монтажу фланцевых соединений
стальных строительных конструкций, ЦНИПИпроектстальконструкция, ОСТ 37.001.050-73 «Затяжка резьбовых соединений», Руководство
по креплению технологического оборудования фундаментными болтами, ЦНИИПРОМЗДАНИЙ, альбом, серия 4.402-9 «Анкерные болты»,
вып.5, ЛЕНГИПРОНЕФТЕХИМ, Инструкция по применению высокопрочных болтов в эксплу-атируемых мостах, ОСТ108.275.80,
ОСТ37.001.050-73, ВСН 144-76, СТП 006-97, Инстр. по проект соедин. на высокопр. болтах. в стальных конструкций мостов»
[email protected]
[email protected] [email protected]
ПРОДУКЦИЯ. Конденсатоотводчики автоматические до PN 4,0 МПа, ДN 10- 50, выпускаемые АО «Завод им. Гаджиева ",
(ПАСПОРТ ЛШТИ. 494654.001 ПС), серийный выпуск, предназначены для работы в сейсмоопасных районах, сейсмичность 9 баллов).
Для районов с сейсмичностью 9 баллов и более соединение трубопроводов должно быть выполнено с помощью демпфирующего
спиралеобразного компенсаторов на фланцевых фрикционно-подвижных соединений (ФПС), по изобретению №№ 2413820 , в виде
болтовых соединений, расположенных в длинных овальных отверстиях, согласно изобретениям: №№ 1143895,1174616, 1168755 SU,
2010136746 RU с учетом сдвиговой прочности, согласно заявки на изобретение: " Фрикционно -демпфирующий компенсатор для
трубопроводов" рег. № 2021134630 (ФИПС), от 25.11.2021, "Компенсатор для трубопроводов " Минск , рег. № а 20210354 от 27.12. 2021
СООТВЕТСТВУЕТ ТРЕБОВАНИЯМ: СП 14.13330-2011 п. 4.6. «Обеспечение демпфированности»,
ASTM
C1513; ASTM, E488-96, ГОСТ 17516.1-90 (сейсмические воздействия 9 баллов по шкале MSK-64) п.5, СП 16.13330.2011. п.14.3, ТКП 45-5.04-274-2012,
ГОСТ 22520-85, ГОСТ 16078 -70, СП 14.13330.2014 «Строительство в сейсмических районах, п.4.7, п. 9.2, ГОСТ 16962.2-90. ГОСТ 30546.1-98, ГОСТ
30546.2-98 (в части сейсмостойкости до 9 баллов по шкале MSK-64), I категории по НП-031-01, СТО Нострой 2.10.76-2012, МР 502.1-05, МДС 531.2001(к СНиП 3.03.01-87), ГОСТ Р 57574-2017 «Землетрясения»,ТКП 45-5.04-41-3006 (02250), ГОСТ Р 54257-2010, ОСТ 37.001.050-73, СН-471-75,
ОСТ 108.275.80, СП 14.13330.2014, ОСТ 37.001.050-73, СП 16.13330.2011 (СНиП II -23-81*), СТО -031-2004, РД 26.07.23-99, СТП 006-97, ВСН 144-76,
ТКТ 45-5.04-274-2012, серия 4.402-9, ТП ШИФР 1010-2с.94, вып 0-2 «Фундаменты сейсмостойкие»
НА ОСНОВАНИИ : Протокола № 571 от 10.03.2022 (Исп. лаборатория ФГБОУ СПб ГАСУ, № RA.RU. 21СТ39 от 27.05.2015, ФГБОУ
ВПО
ПГУПС № SP01.01. 406.045 от 27.05.2014, действ. 27.05.2022, ИЛ ОО «Сейсмофонд») и на основании протокола № 1516-2/3 от 20.02.2017 в ИЦ
"ПКТИ-Строй ТЕСТ", адрес:197341, СПб, Афонская ул., д. 2, свид. об аккред № ИЛ/ЛРИ-00804 от 25.03.2021 ОАО «НТЦ «Промышленная
безопасность»
Ссылка протокол испытаний в СПб ГАСУ :https://ppt-online.org/861718 https://pptonline.org/1114006 https://disk.yandex.ru/d/0g7w06w427MovQ
https://disk.yandex.ru/i/DwslRXv30zBZqA https://ppt-online.org/1114022
https://disk.yandex.ru/d/NL1jpE6RHpazmA https://ppt-online.org/1114180
https://disk.yandex.ru/i/6w29e4EFa1lteQ https://disk.yandex.ru/i/ybOOPBLDkLGoSw

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

93.

94.

95.

96.

97.

98.

99.

100.

101.

102.

103.

104.

105.

106.

107.

108.

109.

110.

111.

112.

113.

114.

115.

116.

117.

118.

119.

120.

121.

122.

123.

124.

125.

126.

127.

128.

129.

130.

131.

132.

133.

134.

135.

136.

137.

138.

139.

140.

141.

142.

143.

Заявка на изобретение "Фрикционно - демпфирующий
компенсатор для трубопроводов"
Фиг 1 Фрикционно демпфирующий компенсатор для трубопроводов

144.

Фиг 2 Фрикционно демпфирующий компенсатор для трубопроводов
Фиг 3 Фрикционно демпфирующий компенсатор для трубопроводов
Фиг 4 Фрикционно демпфирующий компенсатор для трубопроводов
Фиг 5 Фрикционно демпфирующий компенсатор для трубопроводов
Фиг 6 Фрикционно демпфирующий компенсатор для трубопроводов
Фиг 7 Фрикционно демпфирующий компенсатор для трубопроводов

145.

Фиг 8 Фрикционно демпфирующий компенсатор для трубопроводов
Фиг 9 Фрикционно демпфирующий компенсатор для трубопроводов
Фиг 10 Фрикционно демпфирующий компенсатор для трубопроводов
Фиг 11 Фрикционно демпфирующий компенсатор для трубопроводов
Фиг 12 Фрикционно демпфирующий компенсатор для трубопроводов
Фиг 13 Фрикционно демпфирующий компенсатор для трубопроводов

146.

Фиг 14 Фрикционно демпфирующий компенсатор для трубопроводов
Описание изобретение Фрикционно - демпфирующий компенсатор для трубопроводов F0416L
для крепления на опорах скользящих для системы противопожарной защиты ОС-25,ОС-32, ОС 50, ОС-80, ОС-100 организации ООО "ПОЖТЕХПРОМ" тел 8 800 60054 94
Предлагаемое техническое решение предназначено для защиты магистральных
трубопроводов, агрегатов, оборудования, зданий, мостов, сооружений, линий
электропередач, рекламных щитов от сейсмических воздействий за счет использования
фланцевого соединение растянутых элементов трубопровода, с упругими демпферами сухого
трения установленных на пружинистую гофру с ломающимися демпфирующими ножками
при при многокаскадном демпфировании и динамических нагрузках на протяжных
фрикционное- податливых соединений проф. ПГУПС дтн Уздина А М "Болтовое соединение"
№№ 1143895 , 1168755 , 1174616 "Болтовое соединение плоских деталей".
Известны фрикционные соединения для защиты объектов от динамических воздействий.
Известно, например, болтовое соединение плоских деталей встык, патент Фланцевое
соединение растянутых элементов замкнутого профиля № 2413820, «Стыковое соединение
растянутых элементов» № 887748 и RU №1174616, F15B5/02 с пр. от 11.11.1983, RU 2249557 D
66C 7/00 " Узел упругого соединения трехглавного рельса с подкрановой балкой ", RU № 2148
805 G 01 L 5/24 "Способ определения коэффициента закручивания резьбового соединения "
Изобретение относится к области строительства и может быть использовано для
фланцевых соединение растянутых элементов трубопровода для технологических ,
магистральных трубопроводов. Система содержит фланцевое соединение растянутых
элементов трубопровода с разной жесткостью, демпфирующий элемент стального
листа свитого по спирали. Использование изобретения позволяет повысить
эффективность сейсмозащиты и виброизоляции в резонансном режиме фланцевые
соединения в растянутых элементов трубопровода
Изобретение относится к строительству и машиностроению и может быть
использовано для виброизоляции магистральных трубопроводов, технологического
оборудования, агрегатов трубопроводов и со смещенным центром масс и др.
Наиболее близким техническим решением к заявляемому объекту является фланцевое
соединение растянутых элементов замкнутого профиля № 2413820 , Стыковое
соединение растянутых элементов № 887748 система по патенту РФ (прототип),
содержащая и описание работы фланцевого соединение растянутых элементов
трубопровода

147.

Недостатком известного устройства является недостаточная эффективность на
резонансе из-за отсутствия демпфирования колебаний. Технический результат повышение эффективности демпфирующей сейсмоизоляции в резонансном режиме и
упрощение конструкции и монтажа сейсмоизолирующей опоры.
Это достигается тем, что в демпфирующем фланцевом соединение растянутых
элементов трубопровода , содержащей по крайней мер, за счет демпфирующего
фланцевого соединение растянутых элементов трубопровода трубопровод и сухого трения
установлена с использованием фрикци-болта с забитым обожженным медным
упругопластичным клином, конце демпфирующий элемент, а демпфирующий элемент
выполнен в виде медного клина забитым в паз латунной шпильки с медной втулкой, при
этом нижняя часть штока соединена с основанием спиральной опоры , жестко
соединенным с демпирующей спиральной стальной лентой на фрикционно –подвижных
болтовых соединениях для обеспечения демпфирования фланцевого соединение растянутых
элементов трубопровода
На фиг. 1 представленk фланцевого соединение растянутых элементов трубопровода
Фрикционно демпфирующий компенсатор для трубопроводов с упругими демпферами сухого
трения с пружинистыми демпферами сухого трения в овальных отверстиях
Фланцевое соединение растянутых элементов трубопровода с упругими демпферами сухого
трения, виброизолирующая система для зданий и сооружений, содержит основание 3 и 2 –
овальные отверстия , для болтов по спирали и имеющих одинаковую жесткость и
связанных с опорными элементами верхней части пояса зданий или сооружения я.
Система дополнительно содержит фланцевого соединение растянутых элементов
трубопровода , к которая крепится фрикци-болтом с пропиленным пазов в латунной
шпильки для забитого медного обожженного стопорного клина ( не показан на фигуре 2 ) и
которая опирается на нижний пояс основания и демпфирующий элемент 1 в виде
спиральновидной сейсмоизолирующей опоры с упругими демпферами сухого трения за
счет применения фрикционно –подвижных болтовых соединениях, выполненных по
изобретению проф дтн ПУГУПС №1143895, 1168755, 1174616, 2010136746 «Способ защиты
зданий», 165076 «Опора сейсмостойкая» В спиралевидную трубчатую опору , после сжатия
расчетной нагрузкой , внутрь заливается тощий по расчету фибробетон по нагрузкой ,
сжатой спиральной сейсмоизолирующей опоры
Демпфирующий элемент фланцевого соединение растянутых элементов трубопровода , с
упругими демпферами сухого трения за счет фрикционно-подвижных соединениях (ФПС)
При колебаниях грунта сейсмоизолирующая и виброизолирующее фланцевое соединение
растянутых элементов трубопровода , для демпфирующей сейсмоизоляции трубопровода
(на чертеже не показан) с упругими демпферами сухого трения , для спиралевидной
сейсмоизолирующей опоры с упругими демпферами сухого трения , элементы 1 и 4
воспринимают как вертикальные, так и горизонтальные нагрузки, ослабляя тем самым
динамическое воздействие на демпфирующею сейсмоизоляцию объект, т.е.
обеспечивается пространственную сейсмозащиту, виброзащиту и защита от ударной
нагрузки воздушной волны
Фрикционно демпфирующий компенсатор для трубопроводов с упругими демпферами сухого
трения, как виброизолирующая система работает следующим образом.

148.

При колебаниях виброизолируемого объекта , фланцеве соединение растянутых элементов
трубопровода на основе фрикционо-подвижных болтовых соединениях , расположенные в
длинных овальных отверстиях воспринимают вертикальные нагрузки, ослабляя тем
самым динамическое воздействие на здание, сооружение, трубопровод.
Горизонтальные нагрузки воспринимаются спиральными сейсмоизоляторами 1, и
разрушение тощего фибробетона 4 расположенного внутри спиральной демпфирующей
опоры .
Предложенная виброизолирующая система является эффективной, а также отличается
простотой при монтаже и эксплуатации.
Упругодемпфирующая фланцевого соединение растянутых элементов трубопровода со с
упругими демпферами сухого трения работает следующим образом.
При колебаниях объекта фланцевое соединение растянутых элементов трубопровода со с
упругими демпферами сухого трения , которые воспринимает вертикальные нагрузки,
ослабляя тем самым динамическое воздействие на здание , сооружение . Горизонтальные
колебания гасятся за счет фрикци-болта расположенного в при креплении опоры к
основанию фрикци-болтом , что дает ему определенную степень свободы колебаний в
горизонтальной плоскости.
При малых горизонтальных нагрузках фланцевого соединение растянутых элементов
трубопровода и силы трения между листами пакета и болтами не преодолеваются. С
увеличением нагрузки происходит взаимное проскальзывание листов фланцевого соединение
растянутых элементов трубопровода или прокладок относительно накладок контакта
листов с меньшей шероховатостью.
Взаимное смещение листов происходит до упора болтов в края длинных овальных отверстий
для скольжения при многокаскадном демпфировании и после разрушения при импульсных
растягивающих нагрузках или при многокаскадном демпфировании , уже не работают
упруго. После того как все болты соединения дойдут до упора края, в длинных овальных
отверстий, соединение начинает работать упруго за счет трения, а затем происходит
разрушение соединения за счет смятия листов и среза болтов, что нельзя допускать . Сдвиг
по вертикали допускается 1 - 2 см или более
Недостатками известного решения аналога являются: не возможность использовать
фланцевого соединение растянутых элементов трубопровода, ограничение демпфирования
по направлению воздействия только по горизонтали и вдоль овальных отверстий; а также
неопределенности при расчетах из-за разброса по трению. Известно также устройство для
фрикционного демпфирования антиветровых и антисейсмических воздействий, патент
TW201400676(A)-2014-01-01. Restraint anti-wind and anti-seismic friction damping device, E04B1/98,
F16F15/10, патент США Structural stel bulding frame having resilient connectors № 4094111 E 04
B 1/98, RU № 2148805 G 01 L 5/24 "Способ определения коэффициента закручивания резьбового
соединения" , RU № 2413820 "Фланцевое соединение растянутых элементов замкнутого
профиля", Украина № 40190 А "Устройство для измерения сил трения по поверхностям
болтового соединения" , Украина патент № 2148805 РФ "Способ определения коэффициента
закручивания резьбового соединения"

149.

Таким образом получаем фланцевого соединение растянутых элементов трубопровода с
упругими демпферами сухого трения и виброизолирующею конструкцию кинематической
или маятниковой опоры, которая выдерживает вибрационные и сейсмические нагрузки но,
при возникновении динамических, импульсных растягивающих нагрузок, взрывных,
сейсмических нагрузок, превышающих расчетные силы трения в сопряжениях, смещается от
своего начального положения
недостатками указанной конструкции являются: сложность конструкции и сложность
расчетов из-за наличия большого количества сопрягаемых трущихся поверхностей и
надежность болтовых креплений
Целью предлагаемого решения является упрощение конструкции, уменьшение количества
сопрягаемых трущихся поверхностей до одного или нескольких сопряжений отверстий
фланцевого соединение растянутых элементов трубопровода , а также повышение
точности расчета при использования тросовой втулки (гильзы) на фрикци- болтовых
демпфирующих податливых креплений и прокладки между контактирующими
поверхностями упругую обмотку из тонкого троса ( диаметр 2 мм ) в пластмассовой
оплетке или без оплетки, скрученного в два или три слоя пружинистого троса.
Сущность предлагаемого решения заключается в том, что фланцевого соединение
растянутых элементов трубопровода с упругими демпферами сухого трения, выполнена из
разных частей: нижней - корпус, закрепленный на фундаменте с помощью подвижного фрикци
–болта с пропиленным пазом, в который забит медный обожженный клин, с бронзовой
втулкой (гильзой) и свинцовой шайбой и верхней - шток сборный в виде, фланцевого
соединение растянутых элементов трубопровода с упругими демпферами сухого трения,
установленный с возможностью перемещения вдоль оси и с ограничением перемещения за
счет деформации и виброизолирующего фланцевого соединение растянутых элементов
трубопровода , под действием запорного элемента в виде стопорного фрикци-болта с
тросовой виброизолирующей втулкой (гильзой) с пропиленным пазом в стальной шпильке и
забитым в паз медным обожженным клином.
В верхней и нижней частях фланцевого соединение растянутых элементов трубопровода
выполнены овальные длинные отверстия, и поперечные отверстия (перпендикулярные к
центральной оси), в которые скрепляются фланцевыми соединениями в растянутых
элементов трубопровода с установлением запирающий элемент- стопорный фрикци-болт с
контролируемым натяжением, с медным клином, забитым в пропиленный паз стальной
шпильки и с бронзовой или латунной втулкой ( гильзой), с тонкой свинцовой шайбой.
Кроме того во фланцевом соединении растянутых элементов трубопровода, параллельно
центральной оси, выполнены восемь открытых длинных пазов, которые обеспечивают
корпусу возможность деформироваться за счет протяжных соединений с фрикци- болтовыми
демпфирующими, виброизолирующими креплениями в радиальном направлении.
В теле фланцевого соединение растянутых элементов трубопровода с упругими демпферами
сухого трения
Фланцевое соединение растянутых элементов трубопровода , вдоль центральной оси,
выполнен длинный паз ширина которого соответствует диаметру запирающего элемента
(фрикци- болта), а длина соответствует заданному перемещению трубчатой, квадратной
или крестообразной опоры. Запирающий элемент создает нагрузку в сопряжении опоры -

150.

корпуса, с продольными протяжными пазами с контролируемым натяжением фрикци-болта с
медным клином обмотанным тросовой виброизолирующей втулкой (пружинистой гильзой) ,
забитым в пропиленный паз стальной шпильки и обеспечивает возможность деформации
корпуса и «переход» сопряжения из состояния возможного перемещения в состояние
«запирания» с возможностью перемещения только под вибрационные, сейсмической
нагрузкой, взрывные от воздушной волны.
Сущность предлагаемой конструкции поясняется чертежами, где на
фиг.1 изображено Фрикционно демпфирующий компенсатор для трубопроводов с упругими
демпферами сухого трения на фрикционных соединениях с контрольным натяжением ;
на фиг.2 изображен вид с боку Фрикционно демпфирующий компенсатор для трубопроводов с
упругими демпферами сухого трения со стопорным (тормозным) фрикци –болт с забитым в
пропиленный паз стальной шпильки обожженным медным стопорным клином;
фиг 3 изображен вид с боку , Фрикционно демпфирующий компенсатор для трубопроводов
фиг. 4 изображено крепление тросовое Фрикционно демпфирующий компенсатор для
трубопроводов с упругими демпферами сухого трения виброизолирующею, сейсмоизлирующею
опору;
фиг. 5 изображена крепление сдвиговыми болтами Фрикционно демпфирующий компенсатор
для трубопроводов вид с боку фланцевого соединение растянутых элементов трубопровода
фиг. 6 изображен демпфирующие фрикци –болты с тросовой гильзой (пружинистой втулкой)
фиг 7 Фрикционно демпфирующий компенсатор для трубопроводов с затяжкой медным
клином обожженным
фиг. 8 изображена вид с верху Фрикционно демпфирующий компенсатор для трубопроводов ,
а именно фланцевого соединение с овальными отверстиями растянутых элементов
трубопровода
фиг. 9 изображены Фрикционно демпфирующий компенсатор для трубопроводов
фиг. 10 изображено фланцевого соединение растянутых элементов трубопровода для
Фрикционно демпфирующий компенсатор для трубопроводов
фиг. 12 изображен способ определения коэффициента закручивания резьбового соединения"
по изобретении. № 2148805 МПК G 01 L 5/25 " Способ определения коэффициента
закручивания резьбового соединения" и № 2413098 "Способ для обеспечения несущей
способности металлических конструкций с высокопрочными болтами"
фиг. 13 изображено Украинское устройство для определения силы трения по подготовленным
поверхностям для болтового соединения по Украинскому изобретению № 40190 А, заявление
на выдачу патента № 2000105588 от 02.10.2000, опубликован 16.07.2001 Бюл 8 и в статье
Рабера Л.М. Червинский А.Е "Пути соевршенствоания технологии выполнения фрикционных
соединений на высокопрочных болтах" Национальная металлургический Академия Украины ,
журнал Металлургическая и горная промышленность" 2010№ 4 стр 109-112
фиг. 14 изображен образец для испытания и Определение коэффициента трения в ПК SCAD
между контактными поверхностями соединяемых элементов СТП 006-97 Устройство
соединений на высокопрочных болтах в стальных конструкциях мостов, СТАНДАРТ
ПРЕДПРИЯТИЯ УСТРОЙСТВО СОЕДИНЕНИЙ НА ВЫСОКОПРОЧНЫХ БОЛТАХ В СТАЛЬНЫХ
КОНСТРУКЦИЯХ МОСТОВ КОРПОРАЦИЯ «ТРАНССТРОЙ» МОСКВА 1998, РАЗРАБОТАНого Научно-

151.

исследовательским центром «Мосты» ОАО «ЦНИИС» (канд. техн. наук А.С. Платонов,канд.
техн. наук И.Б. Ройзман, инж. А.В. Кручинкин, канд. техн. наук М.Л. Лобков, инж. М.М.
Мещеряков) для испытаний на вибростойкость, сейсмостойкость образца, фрагмента,
узлов крепления протяжных фрикционно подвижных соединений (ФПС) по изобретениям проф
ПГУПС А .М Уздина №№ 1143895, 1168755, 1174616, 165076 «Опора сейсмостойкая»
Фрикционно демпфирующий компенсатор для трубопроводов с упругими демпферами сухого
трения, состоит из двух фланцев (нижний целевой), (верхний составной), в которых
выполнены вертикальные длинные овальные отверстия диаметром «D», шириной «Z» и
длиной . Нижний фланец охватывает верхний корпус трубы (трубопровода) . При монтаже
демпфирующего компенсатора, поднимается до верхнего предела, фиксируется фрикциболтами с контрольным натяжением, со стальной шпилькой болта, с пропиленным в ней
пазом и предварительно забитым в шпильке обожженным медным клином. и тросовой
пружинистой втулкой (гильзой) В стенке корпусов виброизолирующей, сейсмоизолирующей
кинематической опоры перпендикулярно оси корпусов опоры выполнено восемь или более
длинных овальных отверстий, в которых установлен запирающий элемент-калиброванный
фрикци –болт с тросовой демпирующей втулкой, пружинистой гильзой, с забитым в паз
стальной шпильки болта стопорным ( пружинистым ) обожженным медным многослойным
упругопластичнм клином, с демпфирующей свинцовой шайбой и латунной втулкой (гильзой).
Во фланцевом соединении растянутых элементов трубопровода , с упругими демпферами
сухого трения, трубно вида в виде скользящих пластин , вдоль оси выполнен продольный
глухой паз длиной «h» (допустимый ход болта –шпильки ) соответствующий по ширине
диаметру калиброванного фрикци - болта, проходящего через этот паз. В нижней части
демпфирующего компенсатора, выполнен фланец для фланцевого подвижного соединения с
длинными овальными отверстиями для крепления на фундаменте, а в верхней части корпуса
выполнен фланец для сопряжения с защищаемым объектом, сооружением, мостом
Сборка фланцевого соединение растянутых элементов трубопровода , заключается в том,
что составной ( сборный) фланцевое соединение растянутых элементов трубопровода , в
виде основного компенсатора по подвижной посадке с фланцевыми фрикционно- подвижными
соединениям (ФФПС). Паз фланцевого соединение растянутых элементов трубопровода ,,
совмещают с поперечными отверстиями трубчатой спиралевидной опоры в трущихся
спиралевидных стенок опоры , скрепленных фрикци-болтом (высота опоры максимальна).
После этого гайку затягивают тарировочным ключом с контрольным натяжением до
заданного усилия в зависимости от массы трубопровода,агрегата. Увеличение усилия
затяжки гайки на фрикци-болтах приводит к деформации корпуса и уменьшению зазоров от
«Z» до «Z1» в демпфирующем компенсаторе , что в свою очередь приводит к увеличению
допустимого усилия сдвига (усилия трения) в сопряжении отверстие в крестообразной,
трубчатой, квадратной опоре корпуса.
Величина усилия трения в сопряжении внутреннего и наружного корпусов для фланцевого
соединение растянутых элементов трубопровода , зависит от величины усилия затяжки
гайки (болта) с контролируемым натяжением и для каждой конкретной конструкции и
фланцевого соединение растянутых элементов трубопровода (компоновки, габаритов,
материалов, шероховатости и пружинистости стального тонкого троса уложенного
между контактирующими поверхностями деталей поверхностей, направления нагрузок и др.)
определяется экспериментально или расчетным машинным способом в ПК SCAD.

152.

Виброизоляция, сейсмоизолирующая фланцевого соединение растянутых элементов
трубопровода демпфирующего компенсатора , сверху и снизу закреплена на фланцевых
фрикционо-подвижных соединениях (ФФПС). Во время вибрационных нагрузок или взрыве за
счет трения между верхним и нижним фланцевым соединением растянутых элементов
трубопровода , происходит поглощение вибрационной, взрывной и сейсмической энергии.
Фрикционно- подвижные соединения состоят из скрученных пружинистых тросовдемпферов сухого трения и свинцовыми (возможен вариант использования латунной втулки
или свинцовых шайб) поглотителями вибрационной , сейсмической и взрывной энергии за счет
демпфирующих фланцевых соединений в растянутых элементов трубопровода с тросовой
втулки из скрученного тонкого стального троса, пружинистых многослойных медных
клиньев и сухого трения, которые обеспечивают смещение опорных частей фрикционных
соединений на расчетную величину при превышении горизонтальных вибрационных, взрывных,
сейсмических нагрузок от вибрационных воздействий или величин, определяемых расчетом на
основные сочетания расчетных нагрузок, сама кинематическая опора при этом начет
раскачиваться, за счет выхода обожженных медных клиньев, которые предварительно
забиты в пропиленный паз стальной шпильки при креплении опоры к нижнему и верхнему
виброизолирующему поясу .
Податливые демпферы фланцевого соединение растянутых элементов трубопровода ,
представляют собой двойную фрикционную пару, имеющую стабильный коэффициент трения
по упругой многослойной .
Сжимающее усилие создается высокопрочными шпильками, натягиваемыми
динамометрическими ключами или гайковертами на расчетное усилие. Количество болтов
определяется с учетом воздействия собственного веса трубопровода
Сама составное фланцевое соединение растянутых элементов трубопровода с фланцевыми
фрикционно - подвижными болтовыми соединениями должна испытываться на сдвиг 1- 2 см
Сжимающее усилие создается высокопрочными шпильками с обожженными медными клиньями
забитыми в пропиленный паз стальной шпильки, натягиваемыми динамометрическими
ключами или гайковертами на расчетное усилие с контрольным натяжением.
Количество болтов определяется с учетом воздействия собственного веса (массы)
оборудования, сооружения, здания, моста, Расчетные усилия рассчитываются по СП
16.13330.2011 ( СНиП II -23-81* ) Стальные конструкции п. 14.4, Москва, 2011, ТКТ 45-5.04-2742012 (02250), «Стальные конструкции» Правила расчет, Минск, 2013. п. 10.3.2
Фрикци-болт для стыкового демпфирующего фланцевого соединение растянутых элементов
трубопровода, является энергопоглотителем пиковых ускорений (ЭПУ), с помощью
которого, поглощается вибрационная, взрывная, ветровая, сейсмическая, вибрационная
энергия. Фрикци-болт снижает на 2-3 балла импульсные растягивающие нагрузки при
землетрясении и при взрывной, ударной воздушной волне. Фрикци –болт повышает
надежность работы трубопровода, за счет уменьшения пиковых ускорений, за счет
использования протяжных фрикционных соединений, работающих на растяжение на фрикциболтах, установленных в длинные овальные отверстия с контролируемым натяжением в
протяжных соединениях согласно ТКП 45-5.04-274-2012 (02250) п. 10.3.2 стр. 74 , Минск, 2013,
СП 16.13330.2011,СНиП II-23-81* п. 14.3- 15.2.

153.

Тросовая скрученная из стального тонкого троса ( диаметр 2 мм) втулка (гильза) фрикциболта при виброизоляции нагревается за счет трения между верхней составной и нижней
целевой пластинами (фрагменты опоры) до температуры плавления и плавится, при этом
поглощаются пиковые ускорения взрывной, сейсмической энергии и исключается разрушение
оборудования, ЛЭП, опор электропередач, мостов, также исключается разрушение
теплотрасс горячего водоснабжения от тяжелого автотранспорта и вибрации от ж/д.
В основе виброзащиты с использованием фланцевого соединение растянутых элементов
трубопровода , с упругими демпферами сухого трения на фрикционных соединениях, на
фрикци-болтах с тросовой втулкой, лежит принцип который, на научном языке называется
"рассеивание", "поглощение" сейсмической, взрывной, вибрационной энергии.
Фрикционно демпфирующий компенсатор для трубопроводов рассчитана на одну
сейсмическую нагрузку (9 баллов), либо на одну взрывную нагрузку. После взрывной или
сейсмической нагрузки необходимо заменить смятые или сломанные гофрированное
виброиозирующее основание, в паз шпильки фрикци-болта, демпфирующего узла забить
новые демпфирующий и пружинистый медные клинья, с помощью домкрата поднять,
выровнять опору и затянуть болты на проектное контролируемое протяжное натяжение.
При воздействии вибрационных, взрывных нагрузок , сейсмических нагрузок превышающих
силы трения в сопряжении в фланцевом соединение растянутых элементов трубопровода, с
упругими демпферами сухого трения, трубчатого вида , происходит сдвиг трущихся
элементов типа шток, корпуса опоры, в пределах длины спиралевидных паза выполненного в
составных частях нижней и верхней трубчатой опоры, без разрушения оборудования,
здания, сооружения, моста.
О характеристиках виброизолирующего демпфирующего компенсатора - фланцевого
соединение растянутых элементов трубопровода, сообщалось на научной XXVI
Международной конференции «Математическое и компьютерное моделирование в механике
деформируемых сред и конструкций», 28.09 -30-09.2015, СПб ГАСУ: «Испытание
математических моделей установленных на сейсмоизолирующих фланцевых фрикционноподвижных соединениях (ФФПС) и их реализация в ПК SCAD Office» (руководитель
испытательной лабораторией ОО "Сейсмофонд" можно ознакомиться на сайте:
https://www.youtube.com/watch?v=B-YaYyw-B6s&t=779s
С решениями Фрикционно демпфирующий компенсатор для трубопроводов на фланцевых
фрикционно-подвижных соединений (ФПС) и демпфирующих узлов крепления (ДУК) (без
раскрывания новизны технического решения) можно ознакомиться: см. изобретения №№
1143895, 1174616,1168755 SU, № 4,094,111 US Structural steel building frame having resilient
connectors, TW201400676 Restraint anti-wind and anti-seismic friction damping device (Тайвань).
https://www.maurer.eu/fileadmin/mediapool/01_products/Erdbebenschutzvorrichtungen/Broschueren_
TechnischeInfo/MSO_Seismic-Brochure_A4_2017_Online.pdf
Сопоставление с аналогами демпфирующего Фрикционно демпфирующий компенсатор для
трубопроводов с упругими демпферами сухого трения, показаны следующие существенные
отличия:

154.

1. Фрикционно демпфирующий компенсатор для трубопроводов с упругими демпферами
сухого трения выдерживает термические нагрузки от перепада температуры при
транспортировке по трубопроводу газа, кислорода в больницах
2. Упругая податливость демпфирующего фланцевого соединение растянутых элементов
трубопровода регулируется прочностью втулки тросовой
4. В отличие от резиновых неметаллических прокладок, свойства которой ухудшаются со
временем, из-за старения резины, свойства фланцевое демпфирующее соединение
растянутых элементов трубопровода, остаются неизменными во времени, а долговечность
их такая же, как у магистрального трубопровода.
Экономический эффект достигнут из-за повышения долговечности демпфирующей упругого
фланцевого соединение растянутых элементов трубопровода , так как прокладки на
фланцах быстро изнашивающаяся и стареющая резина , пружинные сложны при расчет и
монтаже. Экономический эффект достигнут также из-за удобства обслуживания узла при
эксплуатации фланцевого компенсатора соединение растянутых элементов трубопровода
Литература которая использовалась для составления заявки на изобретение: Фрикционно
демпфирующий компенсатор для трубопроводов с упругими демпферами сухого трения
1. Сабуров В.Ф. Закономерности усталостных повреждений и разработка методов
расчетной оценки долговечности подкрановых путей производственных зданий.
Автореферат диссертации докт. техн. наук. - ЮУрГУ, Челябинск, 2002. - 40 с.
2. Подкрановые конструкции. Патент 2067075. Россия МКИ В 66 С 7/00, 18.10.93. Бюл.№27,
1997.
3. Нежданов К.К., Туманов В.А., Нежданов А.К., Карев М.А. Патент России. RU №2192383 С1
(Заявка №2000 119289/28 (020257), Подкрановая транспортная конструкция. Опубликован
10.11.2002.
1. "СПОСОБ ЗАЩИТЫ ЗДАНИЯ И СООРУЖЕНИЯ ПРИ ВЗРЫВЕ С ИСПОЛЬЗОВАНИЕМ
СДВИГОУСТОЙЧИВЫХ И ЛЕГКОСБРАСЫВАЕМЫХ СОЕДИНЕНИЙ, ИСПОЛЬЗУЮЩИЕ СИСТЕМУ
ДЕМПФИРОВАНИЯ ФРИКЦИОННОСТИ И СЕЙСМОИЗОЛЯЦИЮ ДЛЯ ПОГЛОЩЕНИЯ ВЗРЫВНОЙ И
СЕЙСМИЧЕСКОЙ ЭНЕРГИИ" № 2010136746 E 04 C 2/09 Дата опубликования 20.01.2013
2. Патент на полезную модель № 165 076 " Опора сейсмостойкая" 10.10.2016 Б.л 28
3. Патент на полезную модель № 154506 "Панель противовзрывная" 27.08.2015 бюл № 28
4.Изобретение № 1760020 "Сейсмостойкий фундамент" 07.09.1992
5. Изобретение № 1011847 "Башня" 30.08.1982
6. Изобретение № 1038457 "Сферический резервуар" 30.08.1982
7. Изобретение № 1395500 "Способ изготовления ячеистобетонных изделий на пористых
заполнителях" 15.05.1988 8. Изобретение № 998300 "Захватное устройство для колонн"
23.02.1983
9. Захватное устройство
сэндвич-панелей № 24717800 опуб 05 05.2011
10. Стена и способ ее возведения № 1728414 опул 19.06.1989
11. Заявки на изобретение № 20181229421/20(47400) от 10.08.2018 «Опора сейсмоизолирующая
«гармошка». Используется Японии.
12. Заявки на изобретение № 2018105803/20 (008844) от 11.05.2018 «Антисейсмическое
фланцевое фрикционно-подвижное соединение для трубопроводов» F 16L 23/02 ,
13. Заявка на изобретение № 2016119967/20 ( 031416) от 23.05.2016 «Опора
сейсмоизолирующая маятниковая» E04 H 9/02.
1.. Журнал «Сельское строительство» № 9/95 стр.30 «Отвести опасность»
2. Журнал «Жилищное строительство» № 4/95 стр.18 «Использование сейсмоизолирующего
пояса для существующих зданий».

155.

3. Журнал «Жилищное строительство» № 9/95 стр.13 «Сейсмоизоляция малоэтажных жилых
зданий»,
4. Журнал «Монтажные и специальные работы в строительстве» № 4/95 стр. 24-25
«Сейсмоизоляция малоэтажных зданий»,
5. Российская газета от 26.07.95 стр.3 «Секреты сейсмостойкости». .
6. Российская газета от 11.06.95 «Землетрясение: предсказание на завтра»
8. Газета «Грозненский рабочий» № 5 февраль 1996 «Честь мундира или сэкономленные
миллиарды»,
9. «Голос Чеченской Республики» 1 февраль 1996 «Башни и баллы» .
10. Республика ЧР № 7 август 1995 «Удар невиданной звезды или через четыре года».
11. Газета «Земля России» за октябрь 1998 стр. 3 «Уникальные технологии возведения
фундаментов без заглубления – дом на грунте. Строительство на пучинистых и
просадочных грунтах»
12. Газета «Земля России» № 2 ( 26 ) стр. 2-3 « Предложение ученых общественной
организации инженеров «Сейсмофонд» –
Фонда «Защита и безопасность городов» в
области реформы ЖКХ.
13. Журнал «Жизнь и безопасность « № 3/96 стр. 290-294 «Землетрясение по графику» Ждут
ли через четыре года планету
«Земля глобальные и разрушительные потрясения
«звездотрясения» .
14. Журнал «Монтажные и специальные работы в строительстве» № 11/95 стр. 25 «Датчик
регистрации электромагнитных
волн, предупреждающий о землетрясении - гарантия
сохранения вашей жизни!» и другие зарубежные научные издания и
журналах за 19942004 гг. изданиях С брошюрой «Как построить сейсмостойкий дом с учетом народного
опыта сейсмостойкого строительства горцами Северного
Кавказа сторожевых башен»
с.79 г. Грозный –1996. в ГПБ им Ленина г. Москва и РНБ СПб пл. Островского, д.3 .
Специальные технические условия подтверждающие пригодность
демпфирующих скользящих опор ОС-25, ОС-32, ОС-50, ОС-80, ОС-100, для
системы противопожарной защиты для работы в сейсмоопасных районах с
сейсмичностью более 9 баллов: Опоры скользящие для системы
противопожарной защиты ООО "ПОЖТЕХПРОМ" СПб ГАСУ № RA.RU.21СТ39 от
27.05.2015, 190005, 2-я Красноармейская ул. дом 4 СПб
ГАСУ [email protected] ppt-online.org/998146 ; disk.yandex.ru/d/Cc3DQn68RLZJjw
Таможенный сертификат Опора скользящая для системы противопожарной
защиты ОС-25, ОС-32, ОС-50, ОС-80, ОС-100, серийный выпуск , (предназначены для
работы в сейсмоопасных районах, сейсмичность 9 баллов), (для районов с
сейсмичностью 8 бал лов и более соединение трубопроводов должно быть
выполнено с помощью протяжных демпфирующих фланцевых фрикционноподвижных соединений (ФПС), косой стык, по изобретению №№ 2413820
Е04В1/58, 887748 Е04В1/38, в виде болтовых соединений, расположенных в длинных
овальных отверстиях, согласно изобретениям: №№ 1143895,1174616, 1168755 SU,
2010136746 RU, участки соединения трубопровода с емкостями, должны быть
выполнены в виде «змейки» или «зиг-зага» и уложенные на сейсмоизолирующих
опорах, согласно изобретения № 165076 RU "Опора сейсмостойкая",

156.

опубликованного в Бюл. № 28 от 10.10.2016
ФИПС. disk.yandex.ru/i/MV15xDDoWdc5NA ; ppt-online.org/996502
Опора скользящая для системы противопожарной защиты ОС-25, ОС-32, ОС-50,
ОС-80, ОС-100, изготавливаемые в соответствии с техническими условиями ТУ
3680-001-04698606-04 "Опоры трубопроводов" , ОСТ 34-10-616-93 , серия 4.903-10,
вып. 4, "Опоры трубопроводов неподвижные", ГОСТ 14911-82 "Опоры
подвижные" изготовленные
согласно изобретений № 165076 "Опора
сейсмостойкая", № 2010136746, 1143895, 1168755, 1174616 предназначенные для
сейсмоопасных районов с сейсмичностью 9 баллов (в районах с сейсмичностью 8
баллов и более необходимо использование демпфирующих опор на фрикционноподвижных соединениях для противопожарных трубопроводов, с целью
обеспечения многокаскадного демпфирования при динамических нагрузках, согласно
изобретениям №№ 165076 "Опора сейсмостойкая", 1143895, 1174616, 1168755,
2010136746 , 2550777. Испытание проводились на соответствие групп
механической прочности на вибрационные, ударные воздействия: М5-М7, М38-М39
по результатам испытаний методом численного моделирования в ПК SCAD на
взаимодействие трубопровода c демпфирующими спиралевидными
компенсаторами с геологической средой ). disk.yandex.ru/i/C-sHN-_8GGTTXQ ; pptonline.org/999138
Смотри ссылки лабортаорных исптаний СПб
ГАСУ www.youtube.com/watch?v=846q_badQzk www.youtube.com/watch?v=6OkUs_IOT
0I www.youtube.com/watch?v=XCQl5k_637E www.youtube.com/watch?v=B-YaYywB6s www.youtube.com/watch?v=YR1q5Atg784 www.youtube.com/watch?v=dRuDDMSHT
wM www.youtube.com/watch?v=p_EWnIC8e9E www.youtube.com/watch?v=UajKvKd8F8
8 www.youtube.com/watch?v=19QKnIA0EnM
Требование к промышленной безопасности для опор скользящих для системы
противопожарной защиты ОС-25, ОС-32, ОС-50, ОС-80, ОС-100, серийный выпуск
, (предназначены для работы в сейсмоопасных районах, сейсмичность 9 баллов), (для
районов с сейсмичностью
8 бал лов и более соединение трубопроводов друг
должно быть выполнено с помощью протяжных фланцевых фрикционноподвижных соединений (ФПС) (косой стык, изобретения №№ 2413820Е04В1/58,
887748 Е04В1/38) в виде болтовых соединений, расположенных в длинных овальных
отверстиях, согласно изобретениям: №№ 1143895,1174616, 1168755 SU,
2010136746 RU, участки соединения трубопровода с камерами
и емкостями
выполнены в виде «змейки» или «зиг-зага» и уложенные на сейсмоизолирующих
опорах, согласно изобретения № 165076 RU "Опора сейсмостойкая", опубликовано
в Бюл. № 28 от 10.10.2016). disk.yandex.ru/d/5K1JHuz_m67SSw ppt-online.org/996263
Протокола № 564 от 09.11.2021, ОО «Сейсмофонд», ИНН 2014000780 СПб ГАСУ №
RA.RU.21СТ39 от 27.05.2015 об обеспечении высокой надежности критически

157.

важных систем автоматического пожаротушения, за счет увеличения
демпфирующей способности трубопровода с косым демпфирующим
компенсатором автор проф дтн ПГУПС А.М.Уздин https://pptonline.org/994767 https://disk.yandex.ru/d/TAr9533qD8d27Q
ЗАКЛЮЧЕНИЕ экспертиза О пригодности демпфирующих скользящих опор ,
повышенной на
ЗАКЛЮЧЕНИЕ экспертиза О пригодности демпфирующих скользящих опор ,
повышенной надежности при динамических нагрузках и при многокаскадном
демпфировании для системы противопожарной защиты ОС-25, ОС-32, ОС-50, ОС80, ОС-100 для сейсмоопасных районов ООО "Пожтехпром", изготовленных на
основе изобретений проф дтн ПГУПС Уздина А. М. № 165076 "Опора
сейсмостойкая"
№№
1143895,
1168755,
1174626
,
2010136746 pptonline.org/995496 disk.yandex.ru/i/i0FtJESBujeY-A
Сертификат на изготовление опор скользящих для системы противопожарной
защиты ОС-25, ОС-32, ОС-50,
ОС-80,
ОС-100,
изготавливаемые в
соответствии с техническими условиями ТУ 3680-001-04698606-04 "Опоры
трубопроводов" , ОСТ 34-10-616-93 , серия 4.903-10, вып. 4, "Опоры трубопроводов
неподвижные", ГОСТ 14911-82 "Опоры
подвижные" изготовленные согласно
изобретений № 165076 "Опора сейсмостойкая", № 2010136746, 1143895, 1168755,
1174616 предназначенные для сейсмоопасных районов с сейсмичностью 9 баллов (в
районах с сейсмичностью 8 баллов и более необходимо использование демпфирующих
опор на фрикционно-подвижных соединениях для противопожарных трубопроводов,
с целью обеспечения многокаскадного демпфирования при динамических нагрузках,
согласно изобретениям №№ 165076 "Опора сейсмостойкая", 1143895, 1174616,
1168755, 2010136746 , 2550777. (заявка на изобретение № а20210217 от 15.07.21
"Фланцевое соединение растянутых элементов трубопровода со скошенными
торцами", Минск )Испытание проводились на соответствие групп механической
прочности на вибрационные, ударные воздействия: М5-М7, М38-М39 по результатам
испытаний методом численного моделирования в ПК SCAD на взаимодействие
трубопровода с геологической средой ).
disk.yandex.ru/d/LCZjwWvKqznWxw ; ppt-online.org/995177 Ссылка аккредитации
: pub.fsa.gov.ru/ral/view/26088/applicant
ЛИСИ Обеспечение высокой надежности критически важных систем
автоматического пожаротушения, за счет увеличения демпфирующей
способности трубопровода с косым демпфирующим компенсатором (заявка №
а20210217 от 15.07.21 "Фланцевое соединение растянутых элементов
трубопровода со скошенными торцами", Минск ) и сейсмостойких опор (
изобретение № 165076 «Опора сейсмостойкая» № 2010136746 ), для обеспечения
многокаскадного демпфирования, при импульсных растягивающих нагрузках (

158.

патенты №№ 1143895, 1168755, 1174616), автор проф дтн ПГУПС
А.М.Уздин https://ppt-online.org/994767 https://disk.yandex.ru/d/TAr9533qD8d27Q
Опора скользящая для системы противопожарной защиты ОС-25, ОС-32, ОС-50,
ОС-80, ОС-100, изготавливаемые в соответствии с техническими условиями ТУ
3680-001-04698606-04 Опоры трубопроводов , ОСТ 34-10-616-93 , серия 4.903-10, вып.
4, Опоры трубопроводов неподвижные, ГОСТ 14911-82 "Опоры подвижные"
изготовленные согласно изобретений № 165076 "Опора сейсмостойкая", №
2010136746, 1143895, 1168755, 1174616 предназначенные для сейсмоопасных
районов с сейсмичностью более 9 баллов. Серийный
выпуск disk.yandex.ru/i/hWgBjaSQzU00yA ; ppt-online.org/993335
СПб ГАСУ Обеспечение высокой надежности критически важных систем
автоматического пожаротушения, за счет увеличения демпфирующей
способности трубопровода с косым демпфирующим компенсатором (заявка №
а20210217 от 15.07.21 "Фланцевое соединение растянутых элементов
трубопровода со скошенными торцами" Минск ) и сейсмостойких опор (
изобретение № 165076), для обеспечения многокаскадного демпфирования, при
импульсных растягивающих нагрузках ( патенты №№ 1143895, 1168755,
1174616), автор проф дтн ПГУПС А.М.Уздин pptonline.org/994767 ; disk.yandex.ru/d/TAr9533qD8d27Q ;
Опора скользящая для системы противопожарной защиты ОС-25, ОС-32, ОС-50,
ОС-80, ОС-100, изготавливаемые в соответствии с техническими условиями ТУ
3680-001-04698606-04 "Опоры трубопроводов" , ОСТ 34-10-616-93 , серия 4.903-10,
вып. 4, "Опоры трубопроводов неподвижные", ГОСТ 14911-82 "Опоры
подвижные" изготовленные
согласно изобретений № 165076 "Опора
сейсмостойкая", № 2010136746, 1143895, 1168755, 1174616 предназначенные для
сейсмоопасных районов с сейсмичностью 9 баллов (в районах с сейсмичностью 8
баллов и более необходимо использование демпфирующих опор на фрикционноподвижных соединениях для противопожарных трубопроводов с целью
обеспечения многокаскадного демпфирования при динамических нагрузках, согласно
изобретениям №№ 165076 "Опора сейсмостойкая", 1143895, 1174616, 1168755,
2010136746 , 2550777. Испытание проводились на соответствие групп
механической прочности на вибрационные, ударные воздействия: М5-М7, М38-М39
по результатам испытаний методом численного моделирования в ПК SCAD на
взаимодействие трубопровода с геологической
средой. disk.yandex.ru/i/m4qDUNChAm-o4A ; ppt-online.org/993756
СООТВЕТСТВУЕТ ТРЕБОВАНИЯМ: СП 14.13330.2014
«Строительство в
сейсмических районах, п.4.7, п. 9.2, ГОСТ 16962.2-90. ГОСТ 17516.1-90,
ГОСТ 30546.1-98, ГОСТ 30546.2-98 (в части сейсмостойкости до 9 баллов по шкале
MSK-64), I категории по НП-031-01, СТО Нострой 2.10.76-2012, МР 502.1-05, МДС

159.

53-1.2001(к СНиП 3.03.01-87), ГОСТ Р 57574-2017 «Землетрясения»,ТКП 45-5.04-413006 (02250), ГОСТ Р 54257-2010, ОСТ 37.001.050-73, СН-471-75, ОСТ 108.275.80,
СП 14.13330.2014, ОСТ 37.001.050-73, СП 16.13330.2011 (СНиП II -23-81*), СТО 031-2004, РД 26.07.23-99, СТП 006-97, ВСН 144-76, ТКТ 45-5.04-274-2012, серия
4.402-9,
ТП
ШИФР
1010-2с.94,
вып
0-2
«Фундаменты
сейсмост.» disk.yandex.ru/i/Vg4Sp8-q5NDzYg ; ppt-online.org/993337
Опора скользящая для системы противопожарной защиты ОС-25, ОС-32, ОС-50,
ОС-80, ОС-100, изготавливаемые в соответствии с техническими условиями ТУ
3680-001-04698606-04 Опоры трубопроводов , ОСТ 34-10-616-93 , серия 4.903-10, вып.
4, Опоры трубопроводов неподвижные, ГОСТ 14911-82 "Опоры подвижные"
изготовленные
согласно изобретений №
165076 "Опора сейсмостойкая", № 2010136746, 1143895, 1168755, 1174616
предназначенные для сейсмоопасных районов с сейсмичностью более 9 баллов.
Серийный выпуск disk.yandex.ru/i/hWgBjaSQzU00yA ; ppt-online.org/993335
Демпфирующие косые термостойкие вибростойкие компенсаторы на
фрикционно- подвижных болтовых соединениях, со скошенными торцами,
согласно изобретения №№ 2423820, 887743, для восприятия термических
усилий, за счет трения, при растягивающих нагрузках в крепежных элементах с
овальными отверстиями, по линии нагрузки ( изобретения №№ 1143895,
1168755, 1174616 ,165076, 2010136746, выполненных по изобретению проф дтн
ПГУПС А.М.Уздина № 2010136746 "СПОСОБ ЗАЩИТЫ ЗДАНИЯ И СООРУЖЕНИЯ ПРИ
ВЗРЫВЕ С ИСПОЛЬЗОВАНИЕМ СДВИГОУСТОЙЧИВЫХ И ЛЕГКОСБРАСЫВАЕМЫХ
СОЕДИНЕНИЙ, ИСПОЛЬЗУЮЩИЕ СИСТЕМУ ДЕМПФИРОВАНИЯ ФРИКЦИОННОСТИ И
СЕЙСМОИЗОЛЯЦИЮ ДЛЯ ПОГЛОЩЕНИЯ ВЗРЫВНОЙ И СЕЙСМИЧЕСКОЙ ЭНЕРГИИ",
№№ 1143895, 1168755,1174616, заявка на изобртение № а20210217 от 15 июля
2021 "фланцевое соединение растянутых элементов трубопровода со
скошенными торцами",
Минск [email protected] disk.yandex.ru/d/UbjzM3qGyO_Ang ; ppt-online.org/992340
езисы доклада на НТС Минэнерго России - научное сообщение редактора газеты
"Земля РОССИИ" Данилика Павел Викторовича и Быченка Владимир Сергеевича
от организации "Сейсмофонд" при СПб ГАСУ ОГРН 1022000000824 ИНН
2014000780 [email protected] на заседании НТС Министерства энергетики РФ
в присутствии Министра энергетики Шульгина Николай Григорьевича и
Минстроя ЖКХ РФ в присутствии Министра Файзуллина Ирек Энваровича , и в
Жилищном комитета СПб и Ленинградской области по адресу; пл. Островского
, д 11 ( для Петухова А.И. 576-04-13, Ивановой С.М. 576-04-25 [email protected] и по
адресe Админитсрации Ленингрдской области, 191311, СПб ул.Смольного д.3,
тел 539-41-08 В.Хабаровой [email protected] disk.yandex.ru/d/MTNAChOxLSrkNw
ppt-online.org/992260 ;

160.

Формула изобретения Фрикционно демпфирующий компенсатор для трубопроводов
F0416L
1. Фрикционно демпфирующий компенсатор для трубопроводов с упругими демпферами
сухого трения, демпфирующего компенсатора для магиастрального
трубопровода , содержащая: фланцевое соединение растянутых элементов
трубопровода с упругими демпферами сухого трения на фрикционно-подвижных
болтовых соединениях, с одинаковой жесткостью с демпфирующий элементов
при многокаскадном демпфировании, для сейсмоизоляции трубопровода и
поглощение сейсмической энергии, в горизонтальной и вертикальной плоскости по
лини нагрузки, при этом упругие демпфирующие компенсаторы , выполнено в виде
фланцевого соединение растянутых элементов трубопровода со скошенными
торцами
2. Фрикционно демпфирующий компенсатор для трубопроводов с упругими демпферами
сухого трения , повышенной надежности с улучшенными демпфирующими
свойствами, содержащая , сопряженный с ним подвижный узел с фланцевыми
фрикционно-подвижными соединениями и упругой втулкой (гильзой), закрепленные
запорными элементами в виде протяжного соединения контактирующих
поверхности детали и накладок выполнены из пружинистого троса между
контактирующими поверхностями, с разных сторон, отличающийся тем, что с
целью повышения надежности демпфирующее сейсмоизоляции, с демпфирующим
эффектом с сухим трением, соединенные между собой с помощью фрикционноподвижных соединений с контрольным натяжением фрикци-болтов с тросовой
пружинистой втулкой (гильзы) , расположенных в длинных овальных отверстиях , с
помощью фрикци-болтами с медным упругоплатичном, пружинистым
многослойным, склеенным клином или тросовым пружинистым зажимом ,
расположенной в коротком овальном отверстии верха и низа компенсатора для
трубопроводов
3. Способ Фрикционно демпфирующий компенсатор для трубопроводов с упругими
демпферами сухого трения, для обеспечения несущей способности трубопровода
на фрикционно -подвижного соединения с высокопрочными фрикци-болтами с
тросовой втулкой (гильзой), включающий, контактирующие поверхности которых
предварительно обработанные, соединенные на высокопрочным фрикци- болтом и
гайкой при проектном значении усилия натяжения болта, устанавливают на
элемент сейсмоизолирующей опоры ( демпфирующей), для определения усилия
сдвига и постепенно увеличивают нагрузку на накладку до момента ее сдвига,
фиксируют усилие сдвига и затем сравнивают его с нормативной величиной
показателя сравнения, далее, в зависимости от величины отклонения,
осуществляют коррекцию технологии монтажа сейсмоизолирующей опоры,
отличающийся тем, что в качестве показателя сравнения используют проектное
значение усилия натяжения высокопрочного фрикци- болта с медным обожженным

161.

клином забитым в пропиленный паз латунной шпильки с втулкой -гильзы из
стального тонкого троса , а определение усилия сдвига на образце-свидетеле
осуществляют устройством, содержащим неподвижную и сдвигаемую детали, узел
сжатия и узел сдвига, выполненный в виде рычага, установленного на валу с
возможностью соединения его с неподвижной частью устройства и имеющего
отверстие под нагрузочный болт, а между выступом рычага и тестовой накладкой
помещают самоустанавливающийся сухарик, выполненный из закаленного
материала.
4. Способ по п.1, отличающийся тем, что при отношении усилия сдвига к
проектному усилию натяжения высокопрочного фрикци-болта с втулкой и
тонкого стального троса в оплетке, диапазоне 0,54-0,60 корректировку
технологии монтажа сейсмоизолирующег антисейсмического и
антивибрационного демпфирующего компенсатора , не производят, при
отношении в диапазоне 0,50-0,53 при монтаже увеличивают натяжение болта, а
при отношении менее 0,50, кроме увеличения усилия натяжения, дополнительно
проводят обработку контактирующих поверхностей фланцевого соединение
растянутых элементов трубопровода с использованием цинконаполненной
грунтовокой ЦВЭС , которая используется при строительстве мостов
https://vmp-anticor.ru/publishing/265/2394/ http://docs.cntd.ru/document/1200093425.
Р Е Ф Е Р А Т изобретения на полезную модель Фрикционно демпфирующий
компенсатор для трубопроводов МПК F16L 23/00
Фланцевое соединение растянутых элементов трубопровода с упругими
демпферами сухого трения предназначена для сейсмозащиты , виброзащиты
трубопроводов , оборудования, сооружений, объектов, зданий от сейсмических,
взрывных, вибрационных, неравномерных воздействий за счет использования
спиралевидной сейсмоизолирующей опоры с упругими демпферами сухого
трения и упругой гофры, многослойной втулки (гильзы) из упругого троса в
полимерной из без полимерной оплетке и протяжных фланцевых фрикционноподатливых соединений отличающаяся тем, что с целью повышения
сеймоизолирующих свойств спиральной демпфирующей опоры или корпус опоры
выполнен сборным с трубчатым сечением в виде раздвижного демпфирующего
«стакан» и состоит из нижней целевой части и сборной верхней части
подвижной в вертикальном направлении с демпфирующим эффектом,
соединенные между собой с помощью фрикционно-подвижных соединений и
контактирующими поверхностями с контрольным натяжением фрикциболтов с упругой тросовой втулкой (гильзой) , расположенных в длинных
овальных отверстиях, при этом пластины-лапы верхнего и нижнего корпуса
расположены на упругой перекрестной гофры (демпфирующих ножках) и
крепятся фрикци-болтами с многослойным из склеенных пружинистых медных

162.

пластин клином, расположенной в коротком овальном отверстии верха и низа
корпуса опоры. https://findpatent.ru/patent/241/2413820.html
Фланцевое соединение растянутых элементов трубопровода с упругими
демпферами сухого трения , содержащая трубообразный спиралевидный
корпус-опору в виде перевернутого «стакан» заполненного тощим фиробетоно
и сопряженный с ним подвижный узел из контактирующих поверхностях между
которыми проложен демпфирующий трос в пластмассой оплетке с
фланцевыми фрикционно-подвижными соединениями с закрепленными
запорными элементами в виде протяжного соединения.
Кроме того в трубопроводе , параллельно центральной оси, выполнено восемь
симметричных или более открытых пазов с длинными овальными
отверстиями, расстояние от узла крепления трубопровода , больше расстояния
до нижней точки паза фланцевого крепления.
Увеличение усилия затяжки фланцевое соединение растянутых элементов
трубопровода, фрикци-болта приводит к уменьшению зазора <Z> корпуса,
увеличению сил трения в сопряжении составных частей корпуса спиралевидной
опоры и к увеличению усилия сдвига при внешнем воздействии.
Податливые демпферы фланцевое соединение растянутых элементов
трубопровода с упругими демпферами сухого трения, представляют собой
двойную фрикционную пару, имеющую стабильный коэффициент трения по
свинцовому листу в нижней и верхней части виброизолирующих,
сейсмоизолирующих поясов, вставкой со свинцовой шайбой и латунной гильзой
для создания протяжного соединяя.
Сжимающее усилие создается высокопрочными шпильками в спиральной
фланцевом соединение растянутых элементов трубопровода Фрикционно
демпфирующий компенсатор для трубопроводов, с упругими демпферами
сухого трения, с вбитыми в паз шпилек обожженными медными клиньями,
натягиваемыми динамометрическими ключами или гайковертами на расчетное
усилие. Количество болтов определяется с учетом воздействия собственного
веса ( массы) оборудования, сооружения, здания, моста и расчетные усилия
рассчитываются по СП 16.13330.2011 ( СНиП II -23-81* ) Стальные конструкции п.
14.4, Москва, 2011, ТКТ 45-5.04-274-2012 (02250), «Стальные конструкции»
Правила расчет, Минск, 2013. п. 10.3.2
Сама составное стыковое соединение фланцевого стыка растянутых
элементов трубопровода с упругими демпферами , выполнено в виде ,
трубной петли по винту их шести трубчатых уголков на фланцевых,
фрикционно – подвижных соединениях с фрикци-болтами .
Фрикционно демпфирующий компенсатор для трубопроводов фланцевого
соединения растянутых элементов трубопровода а изготовлено из фрикци-

163.

болтах, с тросовой втулкой (гильзой) - это вибропоглотитель пиковых
ускорений (ВПУ) с помощью которого поглощается вибрационная, взрывная,
ветровая, сейсмическая, вибрационная энергия. Фрикци-болт снижает на 2-3
балла импульсные растягивающие нагрузки при землетрясениях и взрывной
нагрузки от ударной воздушной волны. Фрикци–болт повышает надежность
работы вентиляционного оборудования, сохраняет каркас здания, мосты, ЛЭП,
магистральные трубопроводы за счет уменьшения пиковых ускорений, за счет
протяжных фрикционных соединений, работающих на растяжение. ( ТКП 455.04-274-2012 (02250) п. 10.3.2 стр. 74 , Минск, 2013, СП 16.13330.2011,СНиП II-23-81*
п. 14.3- 15.2).
Упругая втулка (гильза) фрикци-болта использующая для фланцевое соединение
растянутых элементов трубопровода , закрепленного фрикци -болтом
обмотанного стальным тросом в пластмассовой оплетке или без
пластмассовой оплетки, пружинит за счет трения между тросами, поглощает
при этом вибрационные, взрывной, сейсмической нагрузки , что исключает
разрушения сейсмоизолирующего основания , опор под агрегатов, мостов ,
разрушении теплотрасс горячего водоснабжения от тяжелого
автотранспорта и вибрации от ж/д .
Надежность friction-bolt на виброизолирующих опорах достигается путем
обеспечения многокаскадного демпфирования при динамических нагрузках,
преимущественно при импульсных растягивающих нагрузках на здание,
сооружение, оборудование,труопровоы, которое устанавливается на
спиральных сейсмоизолирующих опорах, с упругими демпферами сухого
трения, на фланцевых фрикционно- подвижных соединениях (ФФПС) по
изобретению "Опора сейсмостойкая" № 165076 E 04 9/02 , опубликовано:
10.10.2016 № 28 от 22.01.2016 ФИПС (Роспатент) Авт. Андреев. Б.А. Коваленко
А.И, RU 2413098 F 16 B 31/02 "Способ для обеспечения несущей способности
металлоконструкций с высокопрочными болтами"
В основе Фрикционно демпфирующий компенсатор для трубопроводов, с
упругими демпферами сухого трения, на фрикционных фланцевых соединениях,
на фрикци-болтах (поглотители энергии) лежит принцип который называется
"рассеивание", "поглощение" вибрационной, сейсмической, взрывной, энергии.
Использования Фрикционно демпфирующий компенсатор для трубопроводов на
фланцевых фрикционно - подвижных соединений (ФФПС) для Фланцевое
соединение растянутых элементов трубопровода с упругими демпферами
сухого трения, на фрикционно –болтовых и протяжных соединениях с
демпфирующими узлами крепления (ДУК с тросовым зажимом-фрикци-болтом
), имеет пару структурных элементов, соединяющих эти структурные
элементы со скольжением, разной шероховатостью поверхностей в виде

164.

демпфирующих тросов или упругой гофры ( обладающие значительными
фрикционными характеристиками, с многокаскадным рассеиванием
сейсмической, взрывной, вибрационной энергии. Совместное скольжение
включает зажимные средства на основе friktion-bolt ( аналог американского
Hollo Bolt ), заставляющие указанные поверхности, проскальзывать, при
применении силы !!!.
В результате взрыва, вибрации при землетрясении, происходит перемещение
(скольжение) фрагментов фланцевых фрикционно-подвижных соединений (
ФФПС) фланцевого соединение растянутых элементов трубопровода на
Фрикционно демпфирующий компенсаторах для трубопроводов с упругими
демпферами сухого трения, скользящих и демпфирующих закрепленных на
спиральной тоже демпфирующей опоры , по продольным длинным овальным
отверстиям .
Происходит поглощение энергии, за счет трения частей корпуса опоры при
сейсмической, ветровой, взрывной нагрузки, что позволяет перемещаться и
раскачиваться спирально-демпфирующей и пружинистого фланцевого
соединение растянутых элементов трубопровода на расчетное допустимое
перемещение, до 1-2 см или более согласно овального отверстия во фланце !!! (
по расчету на сдвиг в SCAD Office , и фланцевое соединение растянутых
элементов трубопровода , рассчитана на одно, два землетрясения или на одну
взрывную нагрузку от ударной взрывной волны.
После длительной вибрационной, взрывной, сейсмической нагрузки, на
фланцевое соединение растянутых элементов трубопровода с упругими
демпферами сухого трения, необходимо заменить, смятые троса ,вынуть из
контактирующих поверхностей, вставить опять в новые втулки (гильзы) ,
забить в паз латунной шпильки демпфирующего узла крепления, новые
упругопластичный стопорные обожженные медный многослойный клин
(клинья), с помощью домкрата поднять и выровнять фланцевое соединение
растянутых элементов трубопровода трубопровод и затянуть новые
фланцевые фрикци- болтовые соединения, с контрольным натяжением, на
начальное положение конструкции с фрикционными соединениями,
восстановить протяжного соединения на фланцевое соединение растянутых
элементов трубопровода , для дальнейшей эксплуатации после взрыва, аварии,
землетрясения для надежной сейсмозащиты, виброизоляции от
многокаскадного демпфирования фланцевого соединение растянутых
элементов трубопровода с упругими демпферами сухого трения и усилить
основания под трубопровод, теплотрассу, агрегаты, оборудования, задний и
сооружений

165.

Заявление в Государственный комитет по науке и технологиям Республики
Беларусь Национальный центр интеллектуальной собственности 220034 г
Минск ул Козлова 20 (017) 285-26-05 [email protected]
Для ведущего специалиста центра экспертизы промышленной собственности Н.М.Бортнику от 18 ноября 2021
Фланцевого соединение растянутых элементов трубопровода
со скошенными торцами ветеран боевых действий Мажиев Хасан Нажоеевич ,
Авторы изобретения
Уздин Александр Михайлович и др
Фрикционно демпфирующий компенсатор для трубопроводов
Фиг 1 Фрикционно демпфирующий компенсатор для трубопроводов
Фиг 2 Фрикционно демпфирующий компенсатор для трубопроводов
Фиг 3 Фрикционно демпфирующий компенсатор для трубопроводов

166.

Фиг 4 Фрикционно демпфирующий компенсатор для трубопроводов
Фиг 5 Фрикционно демпфирующий компенсатор для трубопроводов
Фиг 6 Фрикционно демпфирующий компенсатор для трубопроводов
Фиг 7 Фрикционно демпфирующий компенсатор для трубопроводов
Фиг 8 Фрикционно демпфирующий компенсатор для трубопроводов
Фиг 9 Фрикционно демпфирующий компенсатор для трубопроводов
Фиг 10 Фрикционно демпфирующий компенсатор для трубопроводов

167.

Фиг 11 Фрикционно демпфирующий компенсатор для трубопроводов
Фиг 12 Фрикционно демпфирующий компенсатор для трубопроводов
Фиг 13 Фрикционно демпфирующий компенсатор для трубопроводов
Фиг 14 Фрикционно демпфирующий компенсатор для трубопроводов
Заявка на полезную модель Опора сейсмоизолирующая маятниковая Г
Авторы
Коваленко Александр Иванович
04 B 1/58 E 02 D 27/34
Опора сейсмоизолирующая маятниковая
Предлагаемое техническое решение предназначено для защиты оборудования, зданий, мостов, сооружений, магистральных трубопроводов, линий электропередач, рекламных щитов от
сейсмических воздействий за счет использования фрикционное- податливых соединений. Известны фрикционные соединения для защиты объектов от динамических воздействий. Известно,
например, болтовое соединение плоских деталей встык, патент RU №1174616, F15B5/02 с пр. от 11.11.1983.
Соединение содержит металлические листы, накладки и прокладки. В листах, накладках и прокладках выполнены длинные овальные отверстия, через которые пропущены болты,
объединяющие листы, прокладки и накладки в пакет. При малых горизонтальных нагрузках силы трения между листами пакета и болтами не преодолеваются. С увеличением нагрузки
происходит взаимное проскальзывание листов или прокладок относительно накладок контакта листов с меньшей шероховатостью.
Взаимное смещение листов происходит до упора болтов в края длинных овальных отверстий после чего соединения при импульсных растягивающих нагрузках при многокаскадном
демпфировании работают упруго. После того как все болты соединения дойдут до упора края в длинных овальных отверстий, соединение начинает работать упруго, а затем происходит
разрушение соединения за счет смятия листов и среза болтов.

168.

Недостатками известного решения являются: ограничение демпфирования по направлению воздействия только по горизонтали и вдоль овальных отверстий; а также неопределенности при
расчетах из-за разброса по трению. Известно также устройство для фрикционного демпфирования антиветровых и антисейсмических воздействий, патент TW201400676(A)-2014-01-01. Restraint
anti-wind and anti-seismic friction damping device, E04B1/98, F16F15/10.
Устройство содержит базовое основание, поддерживающее защищаемый объект, нескольких сегментов (крыльев) и несколько внешних пластин. В сегментах выполнены продольные пазы. Трение
демпфирования создается между пластинами и наружными поверхностями сегментов. Перпендикулярно вертикальной поверхности сегментов, через пазы, проходят запирающие элементыболты, которые фиксируют сегменты и пластины друг относительно друга. Кроме того, запирающие элементы проходят через блок поддержки, две пластины, через паз сегмента и фиксируют
конструкцию в заданном положении.
Таким образом получаем конструкцию опоры, которая выдерживает сейсмические нагрузки но, при возникновении динамических, импульсных растягивающих нагрузок, взрывных,
сейсмических нагрузок, превышающих расчетные силы трения в сопряжениях, смещается от своего начального положения, при этом сохраняет конструкцию без разрушения.
Недостатками указанной конструкции являются: сложность конструкции и сложность расчетов из-за наличия большого количества сопрягаемых трущихся поверхностей и надежность болтовых
креплений
Целью предлагаемого решения является упрощение конструкции, уменьшение количества сопрягаемых трущихся поверхностей до одного ил нескольких сопряжений отверстий корпусакрестообразной, трубной, квадратной опоры, типа штока, а также повышение точности расчета при использования фрикци- болтовых демпфирующих податливых креплений.
Сущность предлагаемого решения заключается в том, что сейсмоизолирующая маятниковая опора (крестовидная, квадратная, трубчатая) выполнена из разных частей: нижней - корпус,
закрепленный на фундаменте с помощью подвижного фрикци –болта с пропиленным пазом, в который забит медный обожженный клин, с бронзовой втулкой (гильзой) и свинцовой шайбой и
верхней - шток сборный в виде Г-образных стальных сегментов (для опор с квадратным сечением), в виде С- образных (для трубчатых опор), установленный с возможностью перемещения вдоль
оси и с ограничением перемещения за счет деформации корпуса под действием запорного элемента в виде стопорного фрикци-болта с пропиленным пазом в стальной шпильке и забитым в паз
медным обожженным клином.
В верхней и нижней частях опоры корпуса выполнены овальные длинные отверстия, (сопрягаемые с цилиндрической поверхностью опоры) и поперечные отверстия (перпендикулярные к
центральной оси), в которые устанавливают запирающий элемент- стопорный фрикци-болт с контролируемым натяжением, с медным клином, забитым в пропиленный паз стальной шпильки и с
бронзовой или латунной втулкой ( гильзой), с тонкой свинцовой шайбой. Кроме того в квадратных трубчатых или крестовидных корпусах, параллельно центральной оси, выполнены восемь
открытых длинных пазов, которые обеспечивают корпусу возможность деформироваться за счет протяжных соединений с фрикци- болтовыми демпфирующими креплениями в радиальном
направлении.
В теле квадратной, трубчатой, крестовидной опоры, вдоль центральной оси, выполнен длинный паз ширина которого соответствует диаметру запирающего элемента (фрикци- болта), а длина
соответствует заданному перемещению трубчатой, квадратной или крестообразной опоры. Запирающий элемент создает нагрузку в сопряжении опоры - корпуса, с продольными протяжными
пазами с контролируемым натяжением фрикци-болта с медным клином, забитым в пропиленный паз стальной шпильки и обеспечивает возможность деформации корпуса и «переход»
сопряжения из состояния возможного перемещения в состояние «запирания» с возможностью перемещения только под сейсмической нагрузкой, вибрационной, взрывной и взрывной от
воздушной волны.
Сущность предлагаемой конструкции поясняется чертежами, где на фиг.1 изображена крестовидная опора на фрикционных соединениях с контрольным натяжением ; на фиг.2 изображен
стопорный (тормозной) фрикци –болт с забитым в пропиленный паз стальной шпильки обожженным медным стопорным клином; на фиг.3 изображены квадратные сейсмоизолирующие
маятниковые опоры на фрикционных соединениях; на фиг.4 изображен фрагмент квадратной опоры с длинными овальными отверстиями для протяжных соединений ; на фиг. 5 изображена
квадратная опора сейсмоизолирующая маятниковая на протяжных фрикционных соединениях; фиг. 6 изображена квадратная опора сейсмоизолирующая маятниковая с поднятым корпусом с
длинными овальными отверстиями; фиг.7 изображена квадратная опора сейсмоизолирующая маятниковая с фрикционным креплением фрикци-болтами с контрольным натяжением -разрез–вид
с верху с поднятым корпусом; фиг. 8 изображена квадратная опора сейсмоизолирующая маятниковая установленная на свинцовый лист –вид с верху; фиг. 9 изображена трубчатая опора, в
разрезе с поднятым внутренним состоящим из двух С-образных фрагментов штоком, установленная на свинцовый лист; фиг. 10 изображена трубчатая опора сейсмоизолирующая маятниковая
состоящая из двух частей штоков, для транспортировки; фиг. 11 изображена трубчатая сейсмоизолирующая опора маятниковая установленная на свинцовый лист –вид с верху; фиг. 12
изображена трубчатая опора сейсмоизолирующая маятниковая с протяжными соединениями -вид с верху; фиг 13 изображен фрагмент крестообразной опоры сейсмоизолирующей
маятниковой установленный на свинцовый лист нижнего сейсмоизолирующего пояса – вид с верху; фиг 14 изображена крестовидная опора сейсмоизолирующая маятниковая с поднятым
крестообразным штоком, установленная на свинцовый лист; фиг. 15 изображена крестообразная опора сейсмоизоли-рующая маятниковая, установленная на свинцовый лист с фрикционными
соединениями, вид сверху; фиг. 16 изображена трубчатая опора сейсмоизолирующая маятниковая с опущенным трубчатым корпусом; фиг. 17 изображен свинцовый лист толщиной 3 мм под
трубчатую опору сейсмоизолирующую маятниковую; фиг 18 изображена трубчатая опора сейсмо-изолирующая маятниковая с опущенным корпусом с длинными овальными отверстиями; фиг. 19
изображена трубчатая опора сейсмоизолирующая маятниковая с поднятым внутренним корпусом с длинными овальными протяжными отверстиями; фиг. 20 изображена квадратная опора
сейсмоизолирующая маятниковая с фрикционными соединениями, вид с боку и разрез опоры; фиг. 21 изображены разные демпфирующие фрикци –болты с тросовым зажимом, пружинистой
многослойной шайбой и стопорным медным обожженном клином для опор сейсмоизолирующих маятниковых; фиг. 22 изображены два демпфирующих фрикци –болта с забитыми
обожженными медными стопорными клиньями, забитыми в пропиленные пазы стальных шпилек для опор сейсмоизолирующих маятниковых; фиг. 23 изображены демпфирующие фрикци –
болты с бронзовой или латунной втулкой (гильзой) для опор сейсмоизолирующих маятниковых; фиг. 24 изображены демпфирующие фрикци –болты с демпфирующей стальной гофрой и
фрикци –болт с латунной втулкой для опор сейсмоизоли-рующих маятниковых; фиг. 25 изображены модификации демпфирующих фрикци –болтовых креплений с тросовым зажимом и
многослойной гнутой шайбой для монтажа опор сейсмо-изолирующих маятниковых; фиг. 26 изображено протяжное овальное отверстие для демпфирующих фрикци –болтовых креплений для
опор сейсмоизолирующих маятниковых; фиг. 27 изображено протяжное овальное отверстие с бронзовой или латной гильзой для протяжных фрикци –болтовых креплений, вид сверху; фиг. 28
изображено протяжное овальное отверстие для протяжных фрикци –болтовых креплений с фрикци –болтом со стопорным тросовым зажимом, с латунной или бронзовой втулкой- гильзой, со
свинцовой сминаемой шайбой в разрезе; фиг. 29 изображен фрикци- болт с обожженным медным клином, забитым в пропиленный паз стальной шпильки для протяжных овальных отверстий;
фиг. 30 изображена латунная гильза- втулка с отогнутыми частями под свинцовую шайбу и фотографии лабораторных испытаний на сейсмостойкость оборудования, фрагментов демпфирующих
узлов крепления (ОО «Сейсмофонд»); фиг. 31 изображена латунная втулка с отогнутыми частями под свинцовую шайбу для фрикционных соединений, вид с боку; фиг. 32 изображен узел
фрикционного соединения с латунной втулкой и со свинцовой шайбой, вид с боку; фиг. 33 изображен демпфирующий хомут с длинными овальными отверстиями для фланцево –фрикционных
соединений для магистральных трубопроводов; фиг. 34 изображено демпфирующее фрикционное фланцевое соединение с фланцевым фрикционным узлом без сварки, демпфирующих
податливых соединений магистральных трубопроводов фиг 35 изображен демпфирующий узел соединения с овальными отверстиями для фланцевых фрикционных соединений, опор,
трубопроводов, стальных конструкций; фиг. 36 изображен демпфирующий узел с длинными овальными отверстиями, с бронзовой втулкой до землетрясения с протяжными соединения, с
овальными отверстиями, с контрольным натяжением, для фланцевых фрикционных соединений опор, трубопроводов, стальных конструкций; фиг. 37 изображен смещенный демпфирующий
узел, со смещением в протяжных соединениях, с овальными отверстиями с контрольным натяжением для фланцевых фрикционных соединений опор трубопроводов, стальных конструкций;
фиг. 38 изображен демпфирующий узел с протяжными соединениями с длинными овальными отверстиями, с контрольным натяжением для фланцевых фрикционных соединений опор
трубопроводов, стальных конструкций; фиг. 39 изображен фрагмент демпфирующего узла квадратной опоры с протяжными соединениями с овальными отверстиями, с контрольным
натяжением для фланцевых фрикционных соединений опор трубопроводов, стальных конструкций, вид сверху; фиг. 40 изображен демпфирующий узел с фрикци -болтом обмотанным медной
лентой, со свинцовой амортизирующей шайбой, с овальными отверстиями, с контрольным натяжением для фланцевых фрикционных соединений опор трубопроводов, стальных конструкций;
фиг. 41 изображена энергопоглощающая затяжка с демпфирующим упругим стальным кольцом, с шайбами и с фрикци –болтами, с овальными отверстиями, с контрольным натяжением для
фланцевых фрикционных соединений опор трубопроводов, стальных конструкций; фиг. 42 изображено энергопогло-щающее кольцо без затяжек с демпфирующими шайбами; фиг. 43 изображен
фрагмент энергопоглощающего демпфирующего кольца с демпфирующими узлами крепления с фрикци –болтами, с контрольным натяжением для фланцевых фрикционных соединений для
опор; фиг. 44 изображено фрикционное демпфирующее соединение с фрикци –болтами, с овальными отверстиями, с контрольным натяжением для фланцевых фрикционных подвижных
соединений (ФФПС) трубопроводов, стальных конструкций, вертикальных опор гнущихся линий электропередач (ЛЭП); фиг. 45 изображено фрикционное соединение (стык) с фрикци –
болтами, с овальными отверстиями, с контрольным натяжением для фланцевых фрикционно-подвижных соединений (ФФПС) для опор линий электропередач (ЛЭП), трубопроводов, стальных
раскачивающихся мачт, вышек; фиг. 46 изображен демпфирующий стальной хомут –затяжка, с фрикци –болтами, с овальными отверстиями, с контрольным натяжением для фланцевых
фрикционно-подвижных соединений (ФФПС), для линий ветроустойчивых электропередач , трубопроводов, высотных опор, мачт; фиг. 47 изображена стальная затяжка с демпфирующим
энергопоглощающим кольцом с фрикци –болтами, с овальными отверстиями, с контрольным натяжением для фланцевых фрикционно-подвижных соединений (ФФПС) опор трубопроводов,
стальных конструкций; фиг. 47 изображена стальная растяжка с демпфирующим энергопоглощающим стальным кольцом с фрикци –болтами, с овальными отверстиями, с контрольным
натяжением для фланцево –фрикционных подвижных соединений (ФФПС) опор трубопроводов, стальных каркасов; фиг. 48 изображена сейсмостойкая опора под колонны со сминаемой
гильзой, заполненной свинцовой дробью со стопорной затяжкой, тросовым зажимом, с демпфирующими свинцовыми шайбами, с овальными отверстиями, с контрольным натяжением для
фланцевых фрикционных соединений для сейсмоизолирующих стальных опор трубопроводов, стальных сейсмостойких каркасов; фиг. 49 изображен тросовой зажим с подпиленной гайкой для
фланцевых фрикционно- податливых соединений (ФФПС) для сейсмоизолирующих фундаментных опор трубопроводов, стальных каркасов; фиг. 50 изображена демпфирующая
сейсмоизолирующая стальная «лапа» для растяжек, стойка-опора с тросовым зажимом, с забитым медным клином, стержнями скользящими по направляющим, с латунной шайбой,
установленной под трубу, полиэтиленовой муфтой, с овальными отверстиями, с контрольным натяжением для фланцевых фрикционно- податливых соединений (ФФПС), для
сейсмоизолирующих фундаментных опор, для демпфирующего крепления оборудования к фундаменту, для опор линий электропередач, рекламных щитов, мачт, наружного освещения в
сейсмоопасных районах.
Опора сейсмостойкая состоит из двух корпусов 1 (нижний целевой), 2 (верхний составной), в которых выполнены вертикальные длинные овальные отверстия диаметром «D», шириной «Z» и
длиной «l». Нижний корпус1 опоры охватывает верхний корпус 2 опоры (трубная, квадратная, крестовидная). При монтаже опоры верхняя часть корпуса 2 опоры подн имается до верхнего
предела, фиксируется фрикци-болтами с контрольным натяжением, со стальной шпилькой болта, с пропиленным в ней пазом и предварительно забитым в шпильке обожженным медным
клином. В стенке корпусов 1,2 маятниковой сейсмоизолирующей опоры перпендикулярно оси корпусов 1,2 опоры выполнено восемь или более длинных овальных отверстий, в которых
установлен запирающий элемент-калиброванный фрикци –болт с забитым в паз стальной шпильки болта стопорным (тормозным) обожженным медным клином, с демпфирующей свинцовой
шайбой и латунной втулкой (гильзой), (фигура 3).

169.

В теле крестовиной, трубчатой, квадратной опоры, штока вдоль оси выполнен продольный глухой паз длиной «h» (допустимый ход штока) соответствующий по ширине диаметру
калиброванного фрикци - болта, проходящего через этот паз. В нижней части опоры, корпуса 1 выполнен фланец для фланцевого подвижного соединения с длинными овальными отверстиями
для крепления на фундаменте, а в верхней части корпуса 2 выполнен фланец для сопряжения с защищаемым объектом, оборудованием, сооружением, мостом.
Сборка опоры заключается в том, что составной ( сборный) крестовидный, трубчатый, квадратный корпус сопрягается с монолитной крестовидной, трубчатой, квадратной опорой, основного
корпуса по подвижной посадке с фланцевыми фрикционно- подвижными соединениям (ФФПС). Паз крестовидной, трубчатой, квадратной опоры, совмещают с поперечными отверстиями
монолитной крестовидной, трубчатой, квадратной поверхностью фрикци-болта (высота опоры максимальна). После этого гайку 3 ( фигура 2) затягивают тарировочным ключом с контрольным
натяжением до заданного усилия в зависимости от массы оборудования, моста, здания. Увеличение усилия затяжки гайки на фрикци-болтах приводит к деформации корпуса и уменьшению
зазоров от «Z» до «Z1» в корпусе, что в свою очередь приводит к увеличению допустимого усилия сдвига (усилия трения) в сопряжении отверстие в крестообразной, трубчатой, квадратной
опоре корпуса. На прилагаемых фигурах графически подробно показаны элемнты фрикуциооно –подвижных соединений (ФПС) и энергопоголлощающих узлов , фрагменты, элементов ,
пояснений на ссылках в интрнете и сайтах Сейсмофонда seismofond.ru и новых нормативных документах СП 16.13330.2011 ( СНиП II -23-81*) Стальные конструкции ТПК 45-5.04-2742012(02250) «Стальные конструкции» , Минск , 2013, которые содержат требования для обеспечения многокаскадного демпфирования, при динамических импульсных растягивающих нагрузках
описанных в изобретении проф. дтн А.М.Уздина №№ 1143895, 1174616, 1168755
Величина усилия трения в сопряжении внутреннего и наружного корпусов для крестовидной, трубчатой, квадратной опоры зависит от величины усилия затяжки гайки (болта) с
контролируемым натяжением и для каждой конкретной конструкции сейсмоизолирующей маятниковой опоры (компоновки, габаритов, материалов, шероховатости поверхностей, направления
нагрузок и др.) определяется экспериментально или расчетным машинным способом в ПК SCAD.
Сейсмоизолирующая опора установленная на свинцовом листе, сверху и снизу закреплена на фланцевых фрикционо-подвижных соединениях (ФФПС). Во время землетрясения или взрыве за
счет трения между верхним и нижним корпусом опоры происходит поглощение сейсмической, вибрационной, взрывной энергии. Фрикционно- подвижные соединения состоят из демпферов
сухого трения с энергопоглощающей гофрой и свинцовыми (возможен вариант использования латунной втулки или свинцовых шайб) поглотителями сейсмической и взрывной энергии за счет
сухого трения, которые обеспечивают смещение опорных частей фрикционных соединений на расчетную величину при превышении горизонтальных сейсмических нагрузок от сейсмических
воздействий или величин, определяемых расчетом на основные сочетания расчетных нагрузок, сама опора при этом начет раскачиваться за счет выхода обожженных медных клиньев, которые
предварительно забиты в пропиленный паз стальной шпильки.
Податливые демпферы представляют собой двойную фрикционную пару, имеющую стабильный коэффициент трения по свинцовой шайбе и свинцовому прокладочному тонкому листу .
Сжимающее усилие создается высокопрочными шпильками, натягиваемыми динамометрическими ключами или гайковертами на расчетное усилие. Количество болтов определяется с учетом
воздействия собственного веса оборудования, здания, сооружения, моста.
Сама составная опора выполнена крестовидной, квадратной (состоит из двух П-образных элементов) либо стаканчато-трубного вида с фланцевыми фрикционно - подвижными болтовыми
соединениями.
Сжимающее усилие создается высокопрочными шпильками с обожженными медными клиньями забитыми в пропиленный паз стальной шпильки, натягиваемыми динамометрическими ключами
или гайковертами на расчетное усилие с контрольным натяжением.
Количество болтов определяется с учетом воздействия собственного веса (массы) оборудования, сооружения, здания, моста, Расчетные усилия рассчитываются по СП 16.13330.2011 ( СНиП II 23-81* ) Стальные конструкции п. 14.4, Москва, 2011, ТКТ 45-5.04-274-2012 (02250), «Стальные конструкции» Правила расчет, Минск, 2013. п. 10.3.2
Фрикци-болт, является энергопоглотителем пиковых ускорений (ЭПУ), с помощью которого, поглощается взрывная, ветровая, сейсмическая, вибрационная энергия. Фрикци-болт снижает на 2-3
балла импульсные растягивающие нагрузки при землетрясении и при взрывной, ударной воздушной волне. Фрикци –болт повышает надежность работы оборудования, сохраняет каркас здания,
моста, ЛЭП, магистрального трубопровода, за счет уменьшения пиковых ускорений, за счет использования протяжных фрикционных соединений, работающих на растяжение на фрикци- болтах,
установленных в длинные овальные отверстия с контролируемым натяжением в протяжных соединениях согласно ТКП 45-5.04-274-2012 (02250) п. 10.3.2 стр. 74 , Минск, 2013, СП
16.13330.2011,СНиП II-23-81* п. 14.3- 15.2.
Втулка (гильза) фрикци-болта при землетрясении нагревается за счет трения между верхней составной и нижней целевой пластинами (фрагменты опоры) до температуры плавления и плавится,
при этом поглощаются пиковые ускорения взрывной, сейсмической энергии и исключается разрушение оборудования, ЛЭП, опор электропередач, мостов, также исключается разрушение
теплотрасс горячего водоснабжения от тяжелого автотранспорта и вибрации от ж/д.
Надежность friction-bolt на опорах сейсмоизолирующих маятниковых достигается путем обеспечения многокаскадного демпфирования при динамических нагрузках, преимущественно при
импульсных растягивающих нагрузках на здание, сооружение, оборудование, которое устанавливается на маятниковых сейсмоизолирующих опорах с фланцевыми фрикционно- подвижными
соединениями (ФФПС) по изобретению "Опора сейсмостойкая" рег. № 2016102130 от 22.01.2016 ФИПС (Роспатент), авторы: Андреев. Б.А. Коваленко А.И.
В основе фрикционного соединения на фрикци-болтах, ( поглотителя энергии), лежит принцип который, на научном языке называется "рассеивание", "поглощение" сейсмической, взрывной,
вибрационной энергии.
Использование фланцево- фрикционно - подвижных соединений (ФФПС), с фрикци-болтом в протяжных соединениях с демпфирующими узлами крепления (ДУК с тросовыми зажимами), имеет
пару структурных элементов, соединяющей эти структурные элементы со скольжением энергопоглащиющихся соединение, разной шероховатостью поверхностей, обладающие
значительными фрикционными характеристики, с многокаскадным рассеиванием сейсмической, взрывной, вибрационной энергии.
Совместное скольжение, включает зажимные средства на основе friktion-bolt ( аналог американского Hollo Bolt ), заставляющие указанные поверхности, проскальзывать, при применении силы,
стремящейся вызвать такую, чтобы движение большой величины.
В результате взрыва, вибрации при землетрясении происходит перемещение (скольжение) фрагментов фланцевого фрикционно-подвижного соединения ( ФФПС) сейсмоизолирующей
маятниковой опоры (фрагментов опоры). Происходит скольжение стальных пластин опоры в продольных длинных овальных отверстиях нижней и верхней частях сейсмоизолирующей опоры,
происходит поглощение энергии за счет трения (фрикционности) при сейсмической, ветровой, взрывной нагрузке, что позволяет перемещаться и раскачиваться сейсмоизоли-рующей
маятниковой опоре с маятниковым эффектом с оборудованием, зданием, мостом, сооружением на расчетное допустимое перемещение.
Податливые демпферы представляют собой двойную фрикционную пару, имеющую стабильный коэффициент трения по свинцовым листам со свинцовыми шайбами и латунными втулками в
нижней и верхней части сейсмоизолирующих поясов для создания протяжного соединяя.
В результате взрыва, вибрации при землетрясении происходит перемещение (скольжение) фрагментов фрикционно-подвижного соединения (ФПС) опоры (фрагменты опоры скользят по
продольному овальному отверстию опоры), происходит поглощение энергии за счет трения между двумя стальными с разной шероховатостью пластинами при сейсмической, ветровой, взрывной
нагрузки, что позволяет перемещаться сейсмоизолирующей опоре с оборудованием на расчетное перемещение.
Сейсмоизолирующая опора рассчитана на одну сейсмическую нагрузку (9 баллов), либо на одну взрывную нагрузку. После взрывной или сейсмической нагрузки необходимо заменить свинцовые
шайбы, в паз шпильки демпфирующего узла крепления забить новые стопорные медные клинья, с помощью домкрата поднять, выровнять опору и затянуть болты на проектное натяжение.
При воздействии сейсмических, вибрационных, взрывных нагрузок превышающих силы трения в сопряжении в крестообразной, трубчатой, квадратной сейсмоизолирующей маятниковых опор ,
происходит сдвиг трущихся элементов типа шток, корпуса опоры, в пределах длины паза выполненного в составных частях нижней и верхней крестовидной, трубчатой, квадратной опоры, без
разрушения оборудования, здания, сооружения, моста.
Ознакомиться с инструкцией по применению фланцевых фрикционно-подвижных соединений (ФФПС) можно по ссылке: https://vimeo.com/123258523
http://youtube.com/watch?v=76EkkDHTvgM&feature=youtu.be
О характеристиках опоры сейсмоизлирующей (без раскрывания новизны технического решения) маятниковой сообщалось на научной XXVI Международной конференции «Математическое и
компьютерное моделирование в механике деформируемых сред и конструкций», 28.09 -30-09.2015, СПб ГАСУ: «Испытание математических моделей установленных на сейсмоизолирующих
фланцевых фрикционно-подвижных соединениях (ФФПС) и их реализация в ПК SCAD Office» (руководитель испытательной лабораторией ОО "Сейсмофонд" (инж. Александр Иванович
Коваленко) можно ознакомиться на сайте: http://www.youtube.com/watch?v=MwaYDUaFNOk https://youtu.be/MwaYDUaFNOk https://www.youtube.com/watch?v=GemYe2Pt2UU
https://www.youtube.com/watch?v=TKBbeFiFhHw https://www.youtube.com/watch?v=PmhfJoPlKUw https://www.youtube.com/watch?v=TKBbeFiFhHw
https://www.youtube.com/watch?v=2N0hp-3FAUs https://www.youtube.com/watch?v=eB1r8F7zkSw
https://www.youtube.com/watch?v=ulXjYw7fyJA https://www.youtube.com/watch?v=V7HKMKUujT4
Другие технические решения сейсмоизолирующей опоры описаны в полученном положительном решении на изобретение "Опора сейсмостойкая" Мкл. Е04H 9/02(работает на основе
фланцевых фрикционно- подвижных соединений (ФФПС)) согласно заявке на изобретение № 2016102130/039003016 от 22.01.2016, авторы : Андреев Б.А., Коваленко А.И..

170.

С решениями фланцевых фрикционно-подвижных соединений (ФПС) и демпфирующих узлов крепления (ДУК) (без раскрывания новизны технического решения) можно ознакомиться: dwg.ru,
rutracker.org. www1.fips.ru. dissercat.comhttp://doc2all.ru, см. изобретения №№ 1143895, 1174616,1168755 SU, № 4,094,111 US Structural steel building frame having resilient connectors,
TW201400676 Restraint anti-wind and anti-seismic friction damping device (Тайвань).
С лабораторными испытаниями фланцевых фрикционно –подвижных соединений для опоры сейсмоизолирующей маятниковой в испытательном центре ОО «Сейсмофонд», адрес: 197371,СПб,
а/я газета «Земля РОССИИ» (без раскрывания новизны технического решения) можно ознакомиться по ссылке :
http://www.youtube.com/my_videos?o=U https://www.youtube.com/watch?v=846q_badQzk https://www.youtube.com/watch?v=EM9zQmHdBSU https://www.youtube.com/watch?v=3Xz--TFGSYY
https://www.youtube.com/watch?v=HTa1SzoTwBc https://www.youtube.com/watch?v=PlWoLu4Zbdk https://www.youtube.com/watch?v=f4eHILeJfnU https://www.youtube.com/watch?v=a6vnDSJtVjw
Фигуры Опора сейсмоизолирующая маятниковая
Фиг 1
Опора сейсмоизолирующая маятниковая
Фиг 2
Опора сейсмоизолирующая маятниковая
Фиг 3
Опора сейсмоизолирующая маятниковая
Фиг 4
Опора сейсмоизолирующая маятниковая
Фиг 5
Опора сейсмоизолирующая маятниковая
Фиг 6
Опора сейсмоизолирующая маятниковая
Фиг 7
Опора сейсмоизолирующая маятниковая

171.

Фиг 8
Опора сейсмоизолирующая маятниковая
Фиг 9
Опора сейсмоизолирующая маятниковая
Фиг 10
Опора сейсмоизолирующая маятниковая
Фиг 11
Опора сейсмоизолирующая маятниковая
Фиг 12
Опора сейсмоизолирующая маятниковая
Фиг 13
Опора сейсмоизолирующая маятниковая
Фиг 14
Опора сейсмоизолирующая маятниковая

172.

Фиг 15
Опора сейсмоизолирующая маятниковая
Фиг 16
Опора сейсмоизолирующая маятниковая
Фиг 17
Опора сейсмоизолирующая маятниковая
Фиг 18
Опора сейсмоизолирующая маятниковая
Фиг 19
Опора сейсмоизолирующая маятниковая
Фиг 20
Опора сейсмоизолирующая маятниковая
Фиг 21
Опора сейсмоизолирующая маятниковая

173.

Фиг 22
Опора сейсмоизолирующая маятниковая
Фиг 23
Опора сейсмоизолирующая маятниковая
Фиг 24
Опора сейсмоизолирующая маятниковая
Фиг 25
Опора сейсмоизолирующая маятниковая
Фиг 26
Опора сейсмоизолирующая маятниковая
Фиг 27
Опора сейсмоизолирующая маятниковая
Фиг 28
Опора сейсмоизолирующая маятниковая

174.

Фиг 29
Опора сейсмоизолирующая маятниковая
Фиг 30
Опора сейсмоизолирующая маятниковая
Фиг 31
Опора сейсмоизолирующая маятниковая
Фиг 32
Опора сейсмоизолирующая маятниковая
Фиг 33
Опора сейсмоизолирующая маятниковая
Фиг 34
Опора сейсмоизолирующая маятниковая
Фиг 35
Опора сейсмоизолирующая маятниковая

175.

Фиг 36
Опора сейсмоизолирующая маятниковая
Фиг 37
Опора сейсмоизолирующая маятниковая
Фиг 38
Опора сейсмоизолирующая маятниковая
Фиг 39
Опора сейсмоизолирующая маятниковая
Фиг 40
Опора сейсмоизолирующая маятниковая
Фиг 41
Опора сейсмоизолирующая маятниковая
Фиг 42
Опора сейсмоизолирующая маятниковая
Фиг 43
Опора сейсмоизолирующая маятниковая
Фиг 44
Опора сейсмоизолирующая маятниковая

176.

Фиг 45
Опора сейсмоизолирующая маятниковая
Фиг 46
Опора сейсмоизолирующая маятниковая
Фиг 47
Опора сейсмоизолирующая маятниковая
Фиг 48
Опора сейсмоизолирующая маятниковая
Фиг 49
Опора сейсмоизолирующая маятниковая
Фиг 50
РЕФЕРАТ
Опора сейсмоизолирующая маятниковая сейсмостойкая предназначена для защиты оборудования, сооружений, объектов, зданий от сейсмических, взрывных, вибрационных , неравномерных
воздействий за счет использования фланцевых - фрикционно податливых соединений с целью повышения надежности соединения путем, за счет обеспечения многокаскадного
демпфирования, при динамических, вибрационных, сейсмических, взрывных нагрузках при импульсных растягивающихся нагрузках .
Опора сейсмоизолирующая маятниковая , содержащая крестовидный, трубообразный, квадратный корпус -опору и сопряженный с ним подвижный узел с фланцево- фрикционно-подвижными
соединениями закрепленный запорным элементом в виде протяжного соединения отличающийся тем, что в крестовидном, трубчатом, квадратном корпусе-опоре выполнено из нижнего
крестовидного , трубчатого, квадратного замкнутого по периметру стальной опоры и верхнего составного внутреннего из двух или четырех частей, скользящего крестовидного , трубчатого ,
подвижного штока , сопряженное с нижней опорой, при этом верхняя составная крестовидная, трубчатая, квадратная фрикционно-подвижная часть штока зафиксирован запорным элементом
в виде демпфирующего фрикци –болта с забитым в пропиленный паз шпильки с обожженным медным клином , выполненным в виде калиброванного болта фрикционного соединения
работающего на растяжением с фрикционным соединением с контрольным натяжением , проходящего через поперечные длинные овальные отверстия корпуса крестовидной, трубчатой,
квадратной опоры, через вертикальный паз, выполненный в теле крестовидной, трубчатой, квадратной опоры и закрепленный гайкой контролируемым с заданным усилием натяжением,
работающим на растяжением.

177.

Кроме того в корпусе, параллельно центральной оси, выполнено восемь или более открытых паза с длинными овальными отверстиями которых, от торца корпуса, больше расстояния до нижней
точки паза опоры-штока.
Увеличение усилия затяжки фрикци-болта приводит к уменьшению зазора <Z> корпуса, увеличению сил трения в сопряжении корпус-шток и к увеличению усилия сдвига при внешнем
воздействии.
Податливые демпферы представляют собой двойную фрикционную пару, имеющую стабильный коэффициент трения по свинцовому листу в нижней и верхней части сейсмоизолирующих поясов
и вставкой свинцовой шайбы и латунной гильзой в работу с фрикци-болтовым соединением для создания протяжного соединяя.
Сжимающее усилие создается высокопрочными шпильками с вбитым обожженным медным клином в пропиленный паз стальной шпильки , натягиваемыми динамометрическими ключами или
гайковертами на расчетное усилие фрикционным соединением с контрольным натяжением . Количество болтов определяется с учетом воздействия собственного веса ( массы) оборудования,
сооружения, здания, моста и расчетные усилия рассчитываются по СП 16.13330.2011 ( СНиП II -23-81* ) Стальные конструкции п. 14.4, Москва, 2011, ТКТ 45-5.04-274-2012 (02250), «Стальные
конструкции» Правила расчет, Минск, 2013. п. 10.3.2
Сама составная сейсмоизолирующая маятниковая опора, выполнена крестовидной, о квадратной , либо стаканчата -трубного вида с фланцевыми, фрикционно - подвижными фрикци-болтовыми
соединениями.
Фрикци-болт , это энергопоглотитель пиковых ускорений (ЭПУ), с помощью которого, поглощается взрывная, ветровая, сейсмическая, вибрационная энергию. Фрикци-болт снижает на 2-3
балла на импульсные растягивающие нагрузки при землетрясений и взрывную от ударной воздушной волны. Фрикци –болт повышет надежность работы оборудования, сохраняет каркас
здания, мосты, ЛЭП, магистральные трубопроводы, за счет уменьшения пиковых ускорений, за счет протяжных фрикционных соединений, работающие на растяжением на фрикци- ботах,
установленные в длинные овальных отверстиях, с контролируемым натяжением в протяжных соедиениях. ( ТКП 45-5.04-274-2012 (02250) п. 10.3.2 стр. 74 , Минск, 2013, СП 16.13330.2011,СНиП II23-81* п. 14.3- 15.2).
Втулка (гильза) фрикци-болта, нагреваясь до температуры плавления за счет трения, свинцовая шайба расплавляется, поглощает пиковые ускорения взрывной, сейсмической энергии, и исключает
разрушения ЛЭП, опор электропередач, мостов, разрушении теплотрасс горячего водоснабжения от тяжелого автотранспорта и в ибрации от ж/д . Надежность friction-bolt на опорах
сейсмоизолирующих маятниковых, достигается, путем обеспечения многокаскадного демпфирования, при динамических нагрузках, преимущественно при импульсных растягивающих нагрузках
на здание, сооружение, оборудование, которое устанавливается на маятниковых сейсмоизолирующих опорах, на фланцево-фрикционно- подвижных соединениях (ФФПС) по изобретению
"Опора сейсмостойкая" рег. № 2016102130 от 22.01.2016 ФИПС (Роспатент) Авт. Андреев. Б.А. Коваленко А.И.
В основе фрикционного соединения на фрикци-болтах, ( поглотителя энергии), лежит принцип который, на научном языке называется "рассеивание", "поглощение" сейсмической, взрывной,
вибрационной энергии.
Использования фланцево- фрикционно - подвижных соединений (ФФПС), с фрикци-болтом в протяжных соединениях с демпфирующими узлами крепления (ДУК с тросовым зажимом), имеет
пару структурных элементов, соединяющей эти структурные элементы со скольжением энергопоглащиющихся соединение, разной шероховатостью поверхностей, обладающие значительными
фрикционными характеристики, с многокаскадным рассеиванием сейсмической, взрывной, вибрационной энергии. Совместное скольжение, включает зажимные средства на основе friktionbolt ( аналог американского Hollo Bolt ), заставляющие указанные поверхности, проскальзывать, при применении силы, стремящейся вызвать такую, чтобы движение большой величины.
В результате взрыва, вибрации при землетрясении, происходит перемещение (скольжение) фрагментов фланцево, фрикционно-подвижного соединения ( ФФПС), сейсмоизолирующей
маятниковой опоры (фрагменты опоры) скользящие, по продольному длинным овальном отверстиям, нижней сейсмоизолирующей опоры. Происходит поглощение энергии, за счет трения (
фрикционности) сейсмической, ветровой, взрывной нагрузки, что позволяет перемещаться и раскачиваться сейсмоизолирующей маятниковой опоре с оборудованием, зданием, мостом,
сооружением на расчетное допустимое перемещение. Сейсмоизолирующая опора рассчитана на одну, два землетрясения или взрывные, вибрационные нагрузки, либо на одну взрывную
нагрузку от ударной взрывной волны.
После взрывной или сейсмической нагрузки, необходимо заменить свинцовые смятые шайбы, в паз шпильки демпфирующего узла крепления забить новые стопорные обожженные медные
клинья, с помощью домкрата поднять и выровнять опору, оборудование, сооружение, здание, мост и затянуть болты на проектное, фрикционное соединение, работающее на растяжением с
контрольным натяжением восстановленного протяжного соединения.
Формула
Опора сейсмоизолирующая маятниковая, повышенной надежности с улучшенными демпфирующими свойствами, содержащая крестовидный, трубообразный, квадратный корпус -опору и
сопряженный с ним подвижный узел с фланцевыми фрикционно-подвижными соединениями, закрепленные запорными элементами в виде протяжного соединения отличающийся тем, что с
целью повышения надежности опоры корпус опоры выполнен сборным и выполнен с круглым и квадратным сечением и состоит из нижней целевой части и сборной верхней части подвижной в
вертикальном направле-нии с маятниковым эффектом, которые соединены между собой с помощью фрикцион-но-подвижных соединений с контрольным натяжением фрикци-болтов,
расположенных в длинных овальных отверстиях, при этом пластины-лапы верхнего и нижнего корпуса расположены на свинцовом листе и крепятся фрикци-болтами с медным клином или
тросовым зажимом во втулке, расположенной в коротком овальном отверстии верха и низа корпуса опоры.
Виброизолирующая опора
опора
Е04Н 9 02
РЕФЕРАТ
изобретения полезная модель виброизолирующая
Коваленко Александр Иванович,
Виброизолирующая опора предназначена для защиты оборудования, сооружений, объектов, зданий от
сейсмических, взрывных, вибрационных, неравномерных воздействий за счет использования упругой гофры,
стержневых струнных виброизоляторов, многослойной втулки (гильзы) из упругого троса в полимерной из без
полимерной оплетке и протяжных фланцевых фрикционно- податливых соединений отличающаяся тем, что с
целью повышения виброизолирующих свойств опоры корпус опоры выполнен сборным с круглым и квадратным
сечением и состоит из нижней целевой части и сборной верхней части подвижной в вертикальном направлении с
кинематическим эффектом, соединенные между собой с помощью фрикционно-подвижных соединений и
контактирующими поверхностями с контрольным натяжением фрикци-болтов с упругой тросовой втулкой
(гильзой) , расположенных в длинных овальных отверстиях, при этом пластины-лапы верхнего и нижнего корпуса
расположены на упругой перекрестной гофры (демпфирующих ножках) и крепятся фрикци-болтами с
многослойным из склеенных пружинистых медных пластин клином, расположенной в коротком овальном
отверстии верха и низа корпуса опоры.
Опора виброизолирующая , содержащая трубообразный, квадратный корпус-опору и сопряженный с ним
подвижный узел из контактирующих поверхностях между которыми проложен демпфирующий трос в
пластмассой оплетке с фланцевыми фрикционно-подвижными соединениями с закрепленными запорными
элементами в виде протяжного соединения.
Кроме того в корпусе, параллельно центральной оси, выполнено восемь или более открытых пазов с длинными
овальными отверстиями, расстояние от торца корпуса, больше расстояния до нижней точки паза опоры.
Увеличение усилия затяжки фрикци-болта приводит к уменьшению зазора <Z> корпуса, увеличению сил трения в
сопряжении составных частей корпуса опоры и к увеличению усилия сдвига при внешнем воздействии.

178.

Податливые демпферы представляют собой двойную фрикционную пару, имеющую стабильный коэффициент
трения по свинцовому листу в нижней и верхней части виброизолирующих, сейсмоизолирующих поясов, вставкой со
свинцовой шайбой и латунной гильзой для создания протяжного соединяя.
Сжимающее усилие создается высокопрочными шпильками с вбитыми в паз шпилек обожженными медными
клиньями, натягиваемыми динамометрическими ключами или гайковертами на расчетное усилие. Количество
болтов определяется с учетом воздействия собственного веса ( массы) оборудования, сооружения, здания, моста и
расчетные усилия рассчитываются по СП 16.13330.2011 ( СНиП II -23-81* ) Стальные конструкции п. 14.4, Москва,
2011, ТКТ 45-5.04-274-2012 (02250), «Стальные конструкции» Правила расчет, Минск, 2013. п. 10.3.2
Сама составная виброизолирующая кинематическая опора выполнена квадратной либо стаканчата-трубного вида с
фланцевыми, фрикционно - подвижными соединениями с фрикци-болтами установленная на перекрестную
виброизолирующею упругою гофру ( демпфирующие ножки) на свинцовых листах .
Фрикци-болт с тросовой втулкой (гильзой) - это вибропоглотитель пиковых ускорений (ВПУ) с помощью которого
поглощается вибрационная, взрывная, ветровая, сейсмическая, вибрационная энергия. Фрикци-болт снижает на
2-3 балла импульсные растягивающие нагрузки при землетрясениях и взрывной нагрузки от ударной воздушной
волны. Фрикци–болт повышает надежность работы вентиляционного оборудования, сохраняет каркас здания,
мосты, ЛЭП, магистральные трубопроводы за счет уменьшения пиковых ускорений, за счет протяжных
фрикционных соединений, работающих на растяжение. ( ТКП 45-5.04-274-2012 (02250) п. 10.3.2 стр. 74 , Минск, 2013,
СП 16.13330.2011,СНиП II-23-81* п. 14.3- 15.2).
Упругая втулка (гильза) фрикци-болта состоящая из стального троса в пластмассовой оплетке или без
пластмассовой оплетки, пружинит за счет трения между тросами, поглощает при этом вибрационные , взрывной,
сейсмической нагрузки , что исключает разрушения вибрационного основания , опор под вентиляционный агрегат,
мостов, разрушении теплотрасс горячего водоснабжения от тяжелого автотранспорта и вибрации от ж/д .
Надежность friction-bolt на виброизолирующих опорах достигается путем обеспечения многокаскадного
демпфирования при динамических нагрузках, преимущественно при импульсных растягивающих нагрузках на
здание, сооружение, вентиляционного оборудование, которое устанавливается на маятниковых
сейсмоизолирующих опорах на фланцевых фрикционно- подвижных соединениях (ФФПС) по изобретению "Опора
сейсмостойкая" № 165076 E 04 9/02 , опубликовано: 10.10.2016 № 28 от 22.01.2016 ФИПС (Роспатент) Авт. Андреев.
Б.А. Коваленко А.И, RU 2413098 F 16 B 31/02 "Способ для обеспечения несущей способности металлоконструкций
с высокопрочными болтами" .
В основе фрикционного соединения на фрикци-болтах (поглотители энергии) лежит принцип который называется
"рассеивание", "поглощение" вибрационной, сейсмической, взрывной, энергии.
Использования фланцевых фрикционно - подвижных соединений (ФФПС), с фрикци-болтом в протяжных
соединениях с демпфирующими узлами крепления (ДУК с тросовым зажимом-фрикци-болтом ), имеет пару
структурных элементов, соединяющих эти структурные элементы со скольжением, разной шероховатостью
поверхностей в виде демпфирующих тросов или упругой гофры ( обладающие значительными фрикционными
характеристиками, с многокаскадным рассеиванием сейсмической, взрывной, вибрационной энергии.
Совместное скольжение включает зажимные средства на основе friktion-bolt ( аналог американского Hollo Bolt ),
заставляющие указанные поверхности, проскальзывать, при применении силы.
В результате взрыва, вибрации при землетрясении, происходит перемещение (скольжение) фрагментов фланцевых
фрикционно-подвижных соединений ( ФФПС), виброизолирующей кинематической опоры (фрагменты опоры)
скользящих, по продольным длинным овальным отверстиям виброиолирующей и сейсмоизолирующей опоры.
Происходит поглощение энергии за счет трения частей корпуса опоры при сейсмической, ветровой, взрывной
нагрузки, что позволяет перемещаться и раскачиваться виброизолирующей и сейсмоизолирующей кинематической
опоре с оборудованием на расчетное допустимое перемещение. Виброизолирующая опора рассчитана на одно,
два землетрясения или на одну взрывную нагрузку от ударной взрывной волны.
После длительной вибрационной, взрывной, сейсмической нагрузки необходимо заменить сломанные упругие
гофрированные ножки, смятые троса или гофру вынуть из контактирующих поверхностей, обмотать скользящий
двигающий шток новой тросовой обмоткой и вставить опять в квадратный или трубчатый стакан , забить в паз
латунной шпильки демпфирующего узла крепления, новые упругопластичный стопорные обожженные медный
многослойный клин (клинья), с помощью домкрата поднять и выровнять виброизолирующею опору под

179.

вентиляционным агрегатом, оборудования, сооружения, здание и затянуть фрикци- болт с контрольным
натяжением, на начальное положение конструкции с фрикционными соединениями, восстановить протяжного
соединения на виброизолирующей опоре основании для дальнейшей эксплуатации после взрыва, аварии,
землетрясения для дальнейшей эксплуатации для надежной виброизоляции от многокаскадного
демпфирования вентиляционного агрегата , сооружения, опоры, основания под вентиляционные агрегаты
Описание изобретения на полезную модель
Виброизолирующая опора Е04Н 9/02
Предлагаемое техническое решение предназначено для защиты вентиляторных, вентиляционных агрегатов,
оборудования, зданий, мостов, сооружений, магистральных трубопроводов, линий электропередач, рекламных
щитов от сейсмических воздействий за счет использования виброизолирующего основания (опор) установленных
на пружинистую гофру с ломающимися демпфирующими ножками при при многокаскадном демпфировании и
динамических нагрузках на протяжных фрикционное- податливых соединений проф. ПГУПС дтн Уздина А М
"Болтовое соединение" №№ 1143895 , 1168755 , 1174616 "Болтовое соединение плоских деталей".
Известны фрикционные соединения для защиты объектов от динамических воздействий. Известно, например,
болтовое соединение плоских деталей встык, патент RU №1174616, F15B5/02 с пр. от 11.11.1983, RU 2249557 D
66C 7/00 " Узел упругого соединения трехглавного рельса с подкрановой балкой ", RU № 2148 805 G 01 L 5/24
"Способ определения коэффициента закручивания резьбового соединения "
Соединение содержит металлические листы, накладки и прокладки. В листах, накладках и прокладках
выполнены длинные овальные отверстия, через которые пропущены болты, объединяющие листы, прокладки и
накладки в пакет. При малых горизонтальных нагрузках силы трения между листами пакета и болтами не
преодолеваются. С увеличением нагрузки происходит взаимное проскальзывание листов или прокладок
относительно накладок контакта листов с меньшей шероховатостью.
Взаимное смещение листов происходит до упора болтов в края длинных овальных отверстий после чего
соединения при импульсных растягивающих нагрузках при многокаскадном демпфировании работают упруго.
После того как все болты соединения дойдут до упора края в длинных овальных отверстий, соединение
начинает работать упруго, а затем происходит разрушение соединения за счет смятия листов и среза болтов.
Недостатками известного решения являются: не возможность использовать опору как виброизолирующее
основание, ограничение демпфирования по направлению воздействия только по горизонтали и вдоль овальных
отверстий; а также неопределенности при расчетах из-за разброса по трению. Известно также устройство для
фрикционного демпфирования антиветровых и антисейсмических воздействий, патент TW201400676(A)-2014-0101. Restraint anti-wind and anti-seismic friction damping device, E04B1/98, F16F15/10, патент США Structural stel
bulding frame having resilient connectors № 4094111 E 04 B 1/98, RU № 2148805 G 01 L 5/24 "Способ определения
коэффициента закручивания резьбового соединения" , RU № 2413820 "Фланцевое соединение растянутых
элементов замкнутого профиля", Украина № 40190 А "Устройство для измерения сил трения по поверхностям
болтового соединения" , Украина патент № 2148805 РФ "Способ определения коэффициента закручивания
резьбового соединения"
Устройство содержит базовое основание, поддерживающее защищаемый объект, нескольких сегментов (крыльев)
и несколько внешних пластин установленных на пружинистое гофрированной основание. В сегментах выполнены
продольные пазы. Демпфирующее виброизолирующее трение создается между пластинами и наружными
поверхностями сегментов, за счет проложенного между контактирующими поверхностями деталей
виброизолирующего троса в пластмассой оплетке или без пластмассовой оплетке пружинистого скрученного
тонкого троса. Перпендикулярно вертикальной поверхности сегментов, через пазы, проходят запирающие
элементы-болты, которые фиксируют сегменты и пластины друг относительно друга. Кроме того, запирающие
элементы проходят через блок поддержки, две пластины, через паз сегмента и фиксируют конструкцию в
заданном положении.
Таким образом получаем виброизолирующею конструкцию кинематической или маятниковой опоры, которая
выдерживает вибрационные и сейсмические нагрузки но, при возникновении динамических, импульсных
растягивающих нагрузок, взрывных, сейсмических нагрузок, превышающих расчетные силы трения в

180.

сопряжениях, смещается от своего начального положения, при этом сохраняет конструкцию без разрушения,
частично ломая упругие гофрированные демпфирующие "ножки"
Недостатками указанной конструкции являются: сложность конструкции и сложность расчетов из-за наличия
большого количества сопрягаемых трущихся поверхностей и надежность болтовых креплений
Целью предлагаемого решения является упрощение конструкции, уменьшение количества сопрягаемых трущихся
поверхностей до одного или нескольких сопряжений отверстий корпуса- крестообразной, трубной, квадратной
опоры, типа штока, а также повышение точности расчета при использования демпфирующей гофры, тросовой
втулки (гильзы) на фрикци- болтовых демпфирующих податливых креплений и прокладки между
контактирующими поверхностями упругую обмотку из тонкого троса ( диаметр 2 мм ) в пластмассовой оплетке
или без оплетки, скрученного в два или три слоя пружинистого троса .
Сущность предлагаемого решения заключается в том, что виброизолирующая , сейсмоизолирующая
кинематическая опора (крестовидная, квадратная, трубчатая) выполнена из разных частей: нижней - корпус,
закрепленный на фундаменте с помощью подвижного фрикци –болта с пропиленным пазом, в который забит
медный обожженный клин, с бронзовой втулкой (гильзой) и свинцовой шайбой и верхней - шток сборный в виде
Г-образных стальных сегментов (для опор с квадратным сечением), в виде С- образных (для трубчатых опор),
установленный с возможностью перемещения вдоль оси и с ограничением перемещения за счет деформации и
виброизолирующего корпуса под действием запорного элемента в виде стопорного фрикци-болта с тросовой
виброизолирующей втулкой (гильзой) с пропиленным пазом в стальной шпильке и забитым в паз медным
обожженным клином.
В верхней и нижней частях опоры корпуса выполнены овальные длинные отверстия, (сопрягаемые с
цилиндрической поверхностью опоры) и поперечные отверстия (перпендикулярные к центральной оси), в
которые устанавливают запирающий элемент- стопорный фрикци-болт с контролируемым натяжением, с
медным клином, забитым в пропиленный паз стальной шпильки и с бронзовой или латунной втулкой ( гильзой), с
тонкой свинцовой шайбой. Кроме того в квадратных трубчатых или крестовидных корпусах, параллельно
центральной оси, выполнены восемь открытых длинных пазов, которые обеспечивают корпусу возможность
деформироваться за счет протяжных соединений с фрикци- болтовыми демпфирующими, виброизолирующими
креплениями в радиальном направлении.
В теле квадратной, трубчатой, крестовидной опоры, вдоль центральной оси, выполнен длинный паз ширина
которого соответствует диаметру запирающего элемента (фрикци- болта), а длина соответствует заданному
перемещению трубчатой, квадратной или крестообразной опоры. Запирающий элемент создает нагрузку в
сопряжении опоры - корпуса, с продольными протяжными пазами с контролируемым натяжением фрикци-болта
с медным клином обмотанным тросовой виброизолирующей втулкой (пружинистой гильзой) , забитым в
пропиленный паз стальной шпильки и обеспечивает возможность деформации корпуса и «переход» сопряжения
из состояния возможного перемещения в состояние «запирания» с возможностью перемещения только под
вибрационные, сейсмической нагрузкой, взрывные от воздушной волны.
Сущность предлагаемой конструкции поясняется чертежами, где на
фиг.1 изображена крестовидная опора на фрикционных соединениях с контрольным натяжением ;
на фиг.2 изображен вид сверху виброизолирующей опоры со стопорным (тормозным) фрикци –болт с забитым
в пропиленный паз стальной шпильки обожженным медным стопорным клином;
на фиг.3 изображен вид с боку крестовидной виброизолирующей, сейсмоизолирующей кинематической опоры
на фрикционных соединениях;
на фиг.4 изображен фрагмент квадратной опоры с длинными овальными отверстиями для протяжных
соединений ;
на фиг. 5 изображена квадратная виброизоирующая , сейсмоизолирующая кинематическая опора на протяжных
фрикционных соединениях;

181.

фиг. 6 изображена квадратная виброизолирующая, сейсмоизолирующая кинематическая опора с поднятым
корпусом с длинными овальными отверстиями;
фиг.7 изображен вид с верху квадратной виброизирующей, сейсмоизолирующей кинематической с
фрикционным креплением фрикци-болтами с контрольным натяжением -вид с верху с поднятым корпусом;
фиг. 8 изображена квадратная опора вид с верху и с боку три фигуры виброизолирующей, сейсмоизолирующей
кинематической опоры маятниковая установленная на гофрированных упругих ножках со свинцовым
основанием , листом –вид с верху и с боку ;
фиг. 9 изображена трубчатая опора, в разрезе с поднятым внутренним состоящим из двух С-образных
фрагментов штоком, установленная на свинцовый лист;
фиг. 10 вид с боку , изображена трубчатая виброизолирующая, сейсмоизолирубющая кинематическая опора
состоящая из двух частей штоков, для транспортировки к месту установки;
фиг. 11 изображена трубчатая сейсмоизолирующая опора маятниковая установленная на свинцовый лист –вид
с верху;
фиг. 12 изображена трубчатая виброизолирующая, сейсмоизолирующая кинематическая опора с протяжными
соединениями -вид с верху;
фиг 13 изображен фрагмент трубчатой виброизолирующей, сейсмоизолирующей кинематической опоры
установленный га гофрируемом пружинистом основании
и на свинцовый лист нижнего виброизолирующего пояса – вид с верху;
фиг 14 изображен вид сверху крестовидная виброизолирующей, сейсмоизолирующей кинематической опора с
поднятым крестообразным штоком, установленная на свинцовый лист;
фиг. 15 вид сверху , изображена крестообразная виброизолирующая кинематическая опора , установленная на
гофрированных виброизолирующих ножках и свинцовый лист с фрикционными соединениями, вид сверху;
фиг. 16 вид с боку, изображена трубчатая виброизолирующая , сейсмоизолирующая кинематическая опора , с
опущенным телескопическим трубчатым корпусом;
фиг. 17 изображен трубчатая виброизолирующая , сейсмоизолирующая кинематическая опора
фиг 18 вид с боку, изображена трубчатая виброизолирующая, сейсмоизолирующая кинематическая опора с
поднятым внутренним корпусом, по длинным овальным отверстиям;
фиг. 19 изображен разрез укладки пружинистого гофрированного основания под трубчатую, крестовидную, и
квадратную виброизолирующею, сейсмоизлирующею опору;
фиг. 20 изображена пружинистая гофра с демпфирующими ножками
фиг. 21 изображен демпфирующие фрикци –болты с тросовой гильзой (пружинистой втулкой)
фиг. 22 изображена виброизолирующий латунный фрикци –болта с забитыми обожженными медными
стопорными клиньями, забитыми в пропиленные пазы стальных шпилек для виброизолирующей,
сейсммоизолирующей кинематической опоры ;
фиг. 23 изображен пружинистый стальной трос в пластмассовой оплетке
фиг. 24 изображен упругоплатичный многослойный склеенный медный забивной клин в фрикци-болт
фиг. 25 изображен демпфирующих фрикци –болт,
клином
с запитым в пропиленный паз медным обожженным

182.

фиг. 26 изображен латунный фрикци -болт с пропиленным болгаркой пазом
фиг. 27 изображено протяжное фрикци -болт с забитым медным клином
фиг. 28 изображен способ определения коэффициента закручивания резьбового соединения" по изобретении.
№ 2148805 МПК G 01 L 5/25 " Способ определения коэффициента закручивания резьбового соединения" и №
2413098 "Способ для обеспечения несущей способности металлических конструкций с высокопрочными
болтами"
фиг. 29 изображено Украинское устройство для определения силы трения по подготовленным поверхностям для
болтового соединения по Украинскому изобретению № 40190 А, заявление на выдачу патента № 2000105588 от
02.10.2000, опубликован 16.07.2001 Бюл 8 и в статье Рабера Л.М. Червинский А.Е "Пути соевршенствоания
технологии выполнения фрикционных соединений на высокопрочных болтах" Национальная металлургический
Академия Украины , журнал Металлургическая и горная промышленность" 2010№ 4 стр 109-112
фиг. 30 изображен образец для испытания и Определение коэффициента трения между контактными
поверхностями соединяемых элементов СТП 006-97 Устройство соединений на высокопрочных болтах в стальных
конструкциях мостов, СТАНДАРТ ПРЕДПРИЯТИЯ УСТРОЙСТВО СОЕДИНЕНИЙ НА ВЫСОКОПРОЧНЫХ БОЛТАХ В
СТАЛЬНЫХ КОНСТРУКЦИЯХ МОСТОВ КОРПОРАЦИЯ «ТРАНССТРОЙ» МОСКВА 1998, РАЗРАБОТАНого Научноисследовательским центром «Мосты» ОАО «ЦНИИС» (канд. техн. наук А.С. Платонов,канд. техн. наук И.Б. Ройзман,
инж. А.В. Кручинкин, канд. техн. наук М.Л. Лобков, инж. М.М. Мещеряков) для испытаний на вибростойкость,
сейсмостойкость образца, фрагмента, узлов крепления протяжных фрикционно подвижных соединений (ФПС) .
Виброизолирующая кинематическая опора установленная на пружинистой гофре с демпфирующими ножками,
состоит из двух корпусов (нижний целевой), (верхний составной), в которых выполнены вертикальные длинные
овальные отверстия диаметром «D», шириной «Z» и длиной . Нижний корпус опоры охватывает верхний корпус
опоры (трубная, квадратная, крестовидная). При монтаже опоры верхняя часть корпуса опоры поднимается до
верхнего предела, фиксируется фрикци-болтами с контрольным натяжением, со стальной шпилькой болта, с
пропиленным в ней пазом и предварительно забитым в шпильке обожженным медным клином. и тросовой
пружинистой втулкой (гильзой) В стенке корпусов виброизолирующей, сейсмоизолирующей кинематической
опоры перпендикулярно оси корпусов опоры выполнено восемь или более длинных овальных отверстий, в
которых установлен запирающий элемент-калиброванный фрикци –болт с тросовой демпирующей втулкой,
пружинистой гильзой, с забитым в паз стальной шпильки болта стопорным ( пружинистым ) обожженным
медным многослойным упругопластичнм клином, с демпфирующей свинцовой шайбой и латунной втулкой
(гильзой), (фигура 21).
В теле крестовиной, трубчатой, квадратной опоры, штока вдоль оси выполнен продольный глухой паз длиной
«h» (допустимый ход штока) соответствующий по ширине диаметру калиброванного фрикци - болта,
проходящего через этот паз. В нижней части опоры, корпуса, выполнен фланец для фланцевого подвижного
соединения с длинными овальными отверстиями для крепления на фундаменте, а в верхней части корпуса
выполнен фланец для сопряжения с защищаемым объектом, вентиляционным оборудованием, сооружением,
мостом
Сборка опоры заключается в том, что составной ( сборный) крестовидный, трубчатый, квадратный корпус
сопрягается с монолитной крестовидной, трубчатой, квадратной опорой, основного корпуса по подвижной
посадке с фланцевыми фрикционно- подвижными соединениям (ФФПС). Паз крестовидной, трубчатой,
квадратной опоры, совмещают с поперечными отверстиями монолитной крестовидной, трубчатой, квадратной
поверхностью фрикци-болта (высота опоры максимальна). После этого гайку ( фигура 25, 27) затягивают
тарировочным ключом с контрольным натяжением до заданного усилия в зависимости от массы
вентиляционного оборудования, агрегатов, моста, здания. Увеличение усилия затяжки гайки на фрикци-болтах
приводит к деформации корпуса и уменьшению зазоров от «Z» до «Z1» в корпусе, что в свою очередь приводит
к увеличению допустимого усилия сдвига (усилия трения) в сопряжении отверстие в крестообразной, трубчатой,
квадратной опоре корпуса.
Величина усилия трения в сопряжении внутреннего и наружного корпусов для крестовидной, трубчатой,
квадратной опоры зависит от величины усилия затяжки гайки (болта) с контролируемым натяжением и для
каждой конкретной конструкции виброизолирующего, сейсмоизолирующей кинематической опоры

183.

(компоновки, габаритов, материалов, шероховатости и пружинистости стального тонкого троса уложенного
между контактирующими поверхностями деталей поверхностей, направления нагрузок и др.) определяется
экспериментально или расчетным машинным способом в ПК SCAD.
Виброизоляция, сейсмоизолирующая кинематической опора установленная на гофрированной пружинистое
основание , сверху и снизу закреплена на фланцевых фрикционо-подвижных соединениях (ФФПС). Во время
вибрационных нагрузок или взрыве за счет трения между верхним и нижним корпусом опоры происходит
поглощение вибрационной, взрывной и сейсмической энергии. Фрикционно- подвижные соединения состоят из
скрученных пружинистых тросов- демпферов сухого трения с энергопоглощающей гофрой и свинцовыми
(возможен вариант использования латунной втулки или свинцовых шайб) поглотителями вибрационной ,
сейсмической и взрывной энергии за счет демпфирующих гофрированных ножек, тросовой втулки из скрученного
тонкого стального троса, пружинистых многослойных медных клиньев и сухого трения, которые обеспечивают
смещение опорных частей фрикционных соединений на расчетную величину при превышении горизонтальных
вибрационных, взрывных, сейсмических нагрузок от вибрационных воздействий или величин, определяемых
расчетом на основные сочетания расчетных нагрузок, сама кинематическая опора при этом начет раскачиваться,
за счет выхода обожженных медных клиньев, которые предварительно забиты в пропиленный паз стальной
шпильки при креплении опоры к нижнему и верхнему виброизолирующему поясу .
Податливые демпферы представляют собой двойную фрикционную пару, имеющую стабильный коэффициент
трения по упругой многослойной, перекрестной гофре .
Сжимающее усилие создается высокопрочными шпильками, натягиваемыми динамометрическими ключами или
гайковертами на расчетное усилие. Количество болтов определяется с учетом воздействия собственного веса
вентиляционного оборудования, здания, сооружения, моста.
Сама составная опора выполнена крестовидной, квадратной (состоит из двух П-образных элементов) либо
стаканчато-трубного вида с фланцевыми фрикционно - подвижными болтовыми соединениями.
Сжимающее усилие создается высокопрочными шпильками с обожженными медными клиньями забитыми в
пропиленный паз стальной шпильки, натягиваемыми динамометрическими ключами или гайковертами на
расчетное усилие с контрольным натяжением.
Количество болтов определяется с учетом воздействия собственного веса (массы) оборудования, сооружения,
здания, моста, Расчетные усилия рассчитываются по СП 16.13330.2011 ( СНиП II -23-81* ) Стальные конструкции п.
14.4, Москва, 2011, ТКТ 45-5.04-274-2012 (02250), «Стальные конструкции» Правила расчет, Минск, 2013. п. 10.3.2
Фрикци-болт, является энергопоглотителем пиковых ускорений (ЭПУ), с помощью которого, поглощается
вибрационная, взрывная, ветровая, сейсмическая, вибрационная энергия. Фрикци-болт снижает на 2-3 балла
импульсные растягивающие нагрузки при землетрясении и при взрывной, ударной воздушной волне. Фрикци –
болт повышает надежность работы оборудования, сохраняет вентиляционные агрегаты для для Белорусской
АЭС, каркас здания, моста, ЛЭП, магистрального трубопровода, за счет уменьшения пиковых ускорений, за счет
использования протяжных фрикционных соединений, работающих на растяжение на фрикци- болтах,
установленных в длинные овальные отверстия с контролируемым натяжением в протяжных соединениях согласно
ТКП 45-5.04-274-2012 (02250) п. 10.3.2 стр. 74 , Минск, 2013, СП 16.13330.2011,СНиП II-23-81* п. 14.3- 15.2.
Тросовая скрученная из стального тонкого троса ( диаметр 2 мм) втулка (гильза) фрикци-болта при виброизоляции
нагревается за счет трения между верхней составной и нижней целевой пластинами (фрагменты опоры) до
температуры плавления и плавится, при этом поглощаются пиковые ускорения взрывной, сейсмической энергии
и исключается разрушение оборудования, ЛЭП, опор электропередач, мостов, также исключается разрушение
теплотрасс горячего водоснабжения от тяжелого автотранспорта и вибрации от ж/д.
В основе виброзащиты с использованием фрикционного соединения на фрикци-болтах с тросовой втулкой,
лежит принцип который, на научном языке называется "рассеивание", "поглощение" сейсмической, взрывной,
вибрационной энергии.
Виброизолирующая , сейсмоизолирующая кинематическая опора рассчитана на одну сейсмическую нагрузку (9
баллов), либо на одну взрывную нагрузку. После взрывной или сейсмической нагрузки необходимо заменить

184.

смятые или сломанные гофрированное виброиозирующее основание, в паз шпильки фрикци-болта,
демпфирующего узла забить новые демпфирующий и пружинистый медные клинья, с помощью домкрата
поднять, выровнять опору и затянуть болты на проектное контролируемое протяжное натяжение.
При воздействии вибрационных, взрывных нагрузок , сейсмических нагрузок превышающих силы трения в
сопряжении в крестообразной, трубчатой, квадратной сейсмоизолирующей маятниковых опор , происходит
сдвиг трущихся элементов типа шток, корпуса опоры, в пределах длины паза выполненного в составных частях
нижней и верхней крестовидной, трубчатой, квадратной опоры, без разрушения оборудования, здания,
сооружения, моста.
Ознакомиться с инструкцией по применению фланцевых фрикционно-подвижных соединений (ФФПС) можно
по ссылке: https://vimeo.com/123258523 http://youtube.com/watch?v=76EkkDHTvgM&feature=youtu.be
О характеристиках виброизолирующей, сейсмоизлирующей кинематической опоры (без раскрывания
новизны технического решения) сообщалось на научной XXVI Международной конференции «Математическое
и компьютерное моделирование в механике деформируемых сред и конструкций», 28.09 -30-09.2015, СПб ГАСУ:
«Испытание математических моделей установленных на сейсмоизолирующих фланцевых фрикционноподвижных соединениях (ФФПС) и их реализация в ПК SCAD Office» (руководитель испытательной лабораторией
ОО "Сейсмофонд" (стажер СПб ГАСУ, инж. Александр Иванович Коваленко) можно ознакомиться на сайте:
http://www.youtube.com/watch?v=MwaYDUaFNOk https://youtu.be/MwaYDUaFNOk
https://www.youtube.com/watch?v=GemYe2Pt2UU https://www.youtube.com/watch?v=TKBbeFiFhHw
https://www.youtube.com/watch?v=PmhfJoPlKUw https://www.youtube.com/watch?v=TKBbeFiFhHw
https://www.youtube.com/watch?v=2N0hp-3FAUs https://www.youtube.com/watch?v=eB1r8F7zkSw
https://www.youtube.com/watch?v=ulXjYw7fyJA https://www.youtube.com/watch?v=V7HKMKUujT4
С решениями фланцевых фрикционно-подвижных соединений (ФПС) и демпфирующих узлов крепления (ДУК) (без
раскрывания новизны технического решения) можно ознакомиться: dwg.ru, rutracker.org. www1.fips.ru.
dissercat.comhttp://doc2all.ru, см. изобретения №№ 1143895, 1174616,1168755 SU, № 4,094,111 US Structural steel
building frame having resilient connectors, TW201400676 Restraint anti-wind and anti-seismic friction damping device
(Тайвань).
С лабораторными испытаниями фланцевых фрикционно –подвижных соединений для виброизоирующей
кинематической опоры в испытательном центре СПб ГАСУ и ОО «Сейсмофонд» при СПб ГАСУ , адрес: 1900005,
СПб, 2-я Красноармейская ул.д 4 (без раскрывания новизны технического решения) можно ознакомиться по
ссылке :
http://www.youtube.com/my_videos?o=U https://www.youtube.com/watch?v=846q_badQzk
https://www.youtube.com/watch?v=EM9zQmHdBSU https://www.youtube.com/watch?v=3Xz--TFGSYY
https://www.youtube.com/watch?v=HTa1SzoTwBc https://www.youtube.com/watch?v=PlWoLu4Zbdk
https://www.youtube.com/watch?v=f4eHILeJfnU https://www.youtube.com/watch?v=a6vnDSJtVjw
Сопоставление с аналогами показывает следующие существенные отличия:
1. Между подошвой виброизоляционной кинематической опорой нижним и верхним виброизолирующем
поясом по всему периметру виброизолирующего основания под вентиляционные агрегаты Белоруской АЭС и
периметру размещения демпфирующих прокладок с продольными гофрами (5...10 штук) одинаковой высоты.
2. Упругая податливость демпфирующей гофрированной прокладки регулируется прочностью пружинной
стали, толщиной листа, высотой продольных гофров, числом гофров.
3. Под фрикци- болтами, соединяющими виброизолирующей кинематической опоры , применены упругие
тарельчатые шайбы, выполненные пружинными стальными.
4. В отличие от резиновых неметаллических прокладок, свойства которой ухудшаются со временем, из -за
старения резины, свойства демпфирующей прокладки остаются неизменными во времени, а долговечность их
такая же, как у вентиляционных агрегатов для Белоруской АЭС.
Экономический эффект достигнут из-за повышения долговечности демпфирующей упругой гофрированной
прокладки с виброизолирующей кинематической опоры , так как в ней отсутствует быстро изнашивающаяся и
стареющая резина , пружинные сложны при расчет и монтаже. Экономический эффект достигнут также из-за
удобства обслуживания узла при эксплуатации.
Литература

185.

1. Сабуров В.Ф. Закономерности усталостных повреждений и разработка методов расчетной оценки
долговечности подкрановых путей производственных зданий. Автореферат диссертации докт. техн. наук. ЮУрГУ, Челябинск, 2002. - 40 с.
2. Подкрановые конструкции. Патент 2067075. Россия МКИ В 66 С 7/00, 18.10.93. Бюл.№27, 1997.
3. Нежданов К.К., Туманов В.А., Нежданов А.К., Карев М.А. Патент России. RU №2192383 С1 (Заявка №2000
119289/28 (020257), Подкрановая транспортная конструкция. Опубликован 10.11.2002.
1. "СПОСОБ ЗАЩИТЫ ЗДАНИЯ И СООРУЖЕНИЯ ПРИ ВЗРЫВЕ С ИСПОЛЬЗОВАНИЕМ СДВИГОУСТОЙЧИВЫХ И
ЛЕГКОСБРАСЫВАЕМЫХ СОЕДИНЕНИЙ, ИСПОЛЬЗУЮЩИЕ СИСТЕМУ ДЕМПФИРОВАНИЯ ФРИКЦИОННОСТИ И
СЕЙСМОИЗОЛЯЦИЮ ДЛЯ ПОГЛОЩЕНИЯ ВЗРЫВНОЙ И СЕЙСМИЧЕСКОЙ ЭНЕРГИИ" № 2010136746 E 04 C 2/09 Дата
опубликования 20.01.2013
2. Патент на полезную модель № 165 076 " Опора сейсмостойкая" 10.10.2016 Б.л 28
3. Патент на полезную модель № 154506 "Панель противовзрывная" 27.08.2015 бюл № 28
4.Изобретение № 1760020 "Сейсмостойкий фундамент" 07.09.1992
5. Изобретение № 1011847 "Башня" 30.08.1982
6. Изобретение № 1038457 "Сферический резервуар" 30.08.1982
7. Изобретение № 1395500 "Способ изготовления ячеистобетонных изделий на пористых заполнителях"
15.05.1988 8. Изобретение № 998300 "Захватное устройство для колонн" 23.02.1983
9. Захватное устройство сэндвич-панелей № 24717800 опуб 05 05.2011
10. Стена и способ ее возведения № 1728414 опул 19.06.1989
11. Заявки на изобретение № 20181229421/20(47400) от 10.08.2018 «Опора сейсмоизолирующая «гармошка».
Используется Японии.
12. Заявки на изобретение № 2018105803/20 (008844) от 11.05.2018 «Антисейсмическое фланцевое фрикционноподвижное соединение для трубопроводов» F 16L 23/02 ,
13. Заявка на изобретение № 2016119967/20 ( 031416) от 23.05.2016 «Опора сейсмоизолирующая маятниковая»
E04 H 9/02.
1.. Журнал «Сельское строительство» № 9/95 стр.30 «Отвести опасность», А.И.Коваленко
2. Журнал «Жилищное строительство» № 4/95 стр.18 «Использование сейсмоизолирующего пояса для
существующих зданий», А.И.Коваленко
3. Журнал «Жилищное строительство» № 9/95 стр.13 «Сейсмоизоляция малоэтажных жилых зданий»,
4. Журнал «Монтажные и специальные работы в строительстве» № 4/95 стр. 24-25 «Сейсмоизоляция
малоэтажных зданий»,
5. Российская газета от 26.07.95 стр.3 «Секреты сейсмостойкости». А.И.Коваленко.
6. Российская газета от 11.06.95 «Землетрясение: предсказание на завтра», А.И.Коваленко
8. Газета «Грозненский рабочий» № 5 февраль 1996 «Честь мундира или сэкономленные миллиарды»,
9. «Голос Чеченской Республики» 1 февраль 1996 «Башни и баллы» А.И.Коваленко.
10. Республика ЧР № 7 август 1995 «Удар невиданной звезды или через четыре года». А.И.Коваленко
11. Газета «Земля России» за октябрь 1998 стр. 3 «Уникальные технологии возведения фундаментов без
заглубления – дом на грунте. Строительство на пучинистых и просадочных грунтах»
12. Газета «Земля России» № 2 ( 26 ) стр. 2-3 « Предложение ученых общественной организации инженеров
«Сейсмофонд» –
Фонда «Защита и безопасность городов» в области реформы ЖКХ.
13. Журнал «Жизнь и безопасность « № 3/96 стр. 290-294 «Землетрясение по графику» Ждут ли через четыре
года планету
«Земля глобальные и разрушительные потрясения «звездотрясения» А.И.Коваленко,
Е.И.Коваленко.
14. Журнал «Монтажные и специальные работы в строительстве» № 11/95 стр. 25 «Датчик регистрации
электромагнитных
волн, предупреждающий о землетрясении - гарантия сохранения вашей жизни!» и
другие зарубежные научные издания и
журналах за 1994- 2004 гг. А.И.Коваленко и др. изданиях С
брошюрой «Как построить сейсмостойкий дом с учетом народного опыта сейсмостойкого строительства
горцами Северного
Кавказа сторожевых башен» с.79 г. Грозный –1996. А.И.Коваленко в ГПБ им Ленина
г. Москва и РНБ СПб пл. Островского, д.3 .
Формула виброизолирующая опора
1. Виброизолирующая, сейсмоизолирующая кинематическая опора , повышенной
надежности с улучшенными демпфирующими свойствами, содержащая
крестовидный, трубообразный, квадратный корпус -опору и сопряженный с ним
подвижный узел с фланцевыми фрикционно-подвижными соединениями тросовой

186.

пружинистой , упругой втулкой (гильзой), закрепленные запорными элементами в
виде протяжного соединения контактирующих поверхности детали и накладок
выполнены из пружинистого троса между контактирующими поверхностями, с
разных сторон, отличающийся тем, что с целью повышения надежности
виброизолирующей кинематической опоры, корпус выполнен сборным и выполнен с
крестовидным, круглым и квадратным сечением и состоит из нижней целевой части
установленной на гофрированном демпфирующем основании, и сборной верхней
части подвижной в вертикальном направлении с кинематическим эффектом,
соединенные между собой с помощью фрикционно-подвижных соединений с
контрольным натяжением фрикци-болтов с тросовой пружинистой втулкой (гильзы) ,
расположенных в длинных овальных отверстиях , при этом пластины-лапы верхнего и
нижнего корпуса расположены на гофрированном демпфирующем основании ,
виброизолирующая кинематическая опора крепятся к нижнему и верхнему
виброизолирующему поясу с помощью фрикци-болтами с медным
упругоплатичном, пружинистом многослойном, склеенном клином или тросовым
пружинистым зажимом , расположенной в коротком овальном отверстии верха и
низа корпуса виброизолирующей кинематической опоры.
2. Узел упругого соединения гофры с виброизоирующей кинематической опорой
, отличающийся тем, что узел снабжен размещенной под опорой и опирающейся
на верхний пояс демпфирующей прокладкой, выполненной из пружинной стали с
продольными, имеющими плавные закругления гофрами и непрерывной по всей
длине периметра виброизолирующего основания , причем ширина упомянутой
демпфирующей гофры (прокладки) на 5-10% меньше ширины верхнего пояса , при
этом сквозь подошву снаружи верхнего пояса и сквозь поддерживающие верхний
пояс упомянутой опоры пропущены болты, снабженные тарельчатыми
пружинными шайбами.
3. Способ обеспечения несущей способности виброизолирующего фрикционно подвижного соединения с высокопрочными фрикци-болтами с тросовой втулкой
(гильзой), включающий приготовление образца-свидетеля, содержащего элемент
виброизолирующей опоры и тестовую накладку, контактирующие поверхности
которых предварительно обработаны по проектной технологии СПб ГАСУ и ОО
"Сейсмофонд" при СПб ГАСУ, соединяют высокопрочным фрикци- болтом и гайкой
при проектном значении усилия натяжения болта, устанавливают на элемент
виброизолирующей опоры ( устройство) для определения усилия сдвига и
постепенно увеличивают нагрузку на накладку до момента ее сдвига, фиксируют
усилие сдвига и затем сравнивают его с нормативной величиной показателя
сравнения, далее, в зависимости от величины отклонения, осуществляют
коррекцию технологии монтажа виброизолирующей опоры, отличающийся тем, что
в качестве показателя сравнения используют проектное значение усилия натяжения
высокопрочного фрикци- болта с медным обожженным клином забитым в
пропиленный паз латунной шпильки с втулкой -гильзы из стального тонкого троса ,
а определение усилия сдвига на образце-свидетеле осуществляют устройством,

187.

содержащим неподвижную и сдвигаемую детали, узел сжатия и узел сдвига,
выполненный в виде рычага, установленного на валу с возможностью соединения
его с неподвижной частью устройства и имеющего отверстие под нагрузочный болт,
а между выступом рычага и тестовой накладкой помещают самоустанавливающийся
сухарик, выполненный из закаленного материала.
4. Способ по п.1, отличающийся тем, что при отношении усилия сдвига к
проектному усилию натяжения высокопрочного фрикци-болта с втулкой и тонкого
стального троса в диапазоне 0,54-0,60 корректировку технологии монтажа
виброизолирующей кинематической опоры не производят, при отношении в
диапазоне 0,50-0,53 при монтаже увеличивают натяжение болта, а при отношении
менее 0,50, кроме увеличения усилия натяжения, дополнительно проводят
обработку контактирующих поверхностей телескопической виброизолирующей
опоры .
Фигуры к заявке на изобретение полезная модель Виброизолирующая опора
Фиг 1 Виброизолирующая опора
Фиг 2 Виброизолирующая опора
Фиг 3 Виброизолирующая опора

188.

Фиг 4 Виброизолирующая опора
Фиг 5 Виброизолирующая опора
Фиг 6 Виброизолирующая опора
Фиг 7 Виброизолирующая опора
Фиг 8 Виброизолирующая опора

189.

Фиг 9 Виброизолирующая опора
Фиг 10 Виброизолирующая опора
Фиг 11 Виброизолирующая опора
Фиг 12 Виброизолирующая опора
Фиг 13 Виброизолирующая опора

190.

Фиг 14 Виброизолирующая опора
Фиг 15 Виброизолирующая опора
Фиг 16 Виброизолирующая опора
Фиг 17 Виброизолирующая опора

191.

Фиг 18 Виброизолирующая опора
Фиг 19 Виброизолирующая опора
Фиг 20 Виброизолирующая опора
Фиг 21 Виброизолирующая опора
Фиг 22 Виброизолирующая опора

192.

Фиг 23 Виброизолирующая опора
Фиг 24 Виброизолирующая опора
Фиг 25 Виброизолирующая опора
Фиг 26 Виброизолирующая опора
Фиг 27 Виброизолирующая опора
Фиг 28 Виброизолирующая опора

193.

Фиг 29 Виброизолирующая опора
Фиг 30
Виброизолирующая опора
Описание изобретения на полезную модель Сейсмостойкая фрикционно- демпфирующая опора
https://yadi.sk/i/EHJPlBVUQ2CmSw https://yadi.sk/i/8MLW2O6wjm84tg
Авторы изобретения: Е04Н 9/02
Коваленко Александр Иванович,
Предлагаемое техническое решение предназначено для защиты строительных объектов , зданий сооружений,
мостов, магистральных трубопроводов, линий электропередач, рекламных щитов от сейсмических воздействий
за счет использования сейсмоизолирующего и виброизолирующего основания (опор) установленных на трубчатую
телескопическую опору на фрикционно-подвижных соединениях (ФПС) при знакопеременных нагрузках и
многокаскадном демпфировании и динамических нагрузках на протяжных фрикционное- податливых соединений
проф. ПГУПС дтн Уздина А М "Болтовое соединение" №№ 1143895 , 1168755 , 1174616 "Болтовое соединение
плоских деталей".
Известны фрикционные соединения для защиты объектов от динамических воздействий. Известно, например,
болтовое соединение плоских деталей встык, патент RU №1174616, F15B5/02 с пр. от 11.11.1983, RU 2249557 D
66C 7/00 " Узел упругого соединения трех главного рельса с подкрановой балкой ", RU № 2148 805 G 01 L 5/24
"Способ определения коэффициента закручивания резьбового соединения " Известна Японо-Американская

194.

фирма RUBBER BEARING FRICTION DAMPER (RBFD) HTTPS://WWW.DAMPTECH.COM/-RUBBERBEARING-FRICTION-DAMPER-RBFD HTTPS://WWW.DAMPTECH.COM/-RUBBER-BEARING-FRICTIONDAMPER-RBFD
https://www.damptech.com/for-buildings-cover https://www.youtube.com/watch?v=r7q5D6516qg
https://pdfs.semanticscholar.org/9e18/40d8ecd555c288babdf4f3272952788a7127.pdf
Фирмой разработан и запроектирован амортизирующий демпфер, который совмещает преимущества
вращательного трения амортизируя с вертикальной поддержкой эластомерного подшипника в виде вставной
резины . которая не долговечно и теряет свои свойства при контрастной температуре , а сам резина крошится
Амортизирующий демпфер испытан фирмы RBFD Damptech , где резиновый подшипник . является пластическим
шарниром в виде фрикционного демпфера.
Кроме того, фирмой Damptech , также создал амортизатор, который сочетает в себе преимущества
демпфирования трения вращения с вертикальной опорой , и создает эластомерный пластический подшипник.
Полное испытание с исследованиями прошли в от 2010, RBF Damptech (резиновый демфер трением
подшипника) , и начало применятся в Японии, США , для сейсмоизоляции мостов, зданий сооружений
Соединение содержит металлические листы, накладки и прокладки. В листах, накладках и прокладках выполнены
длинные овальные отверстия, через которые пропущены болты, объединяющие листы, прокладки и накладки в
пакет. При малых горизонтальных нагрузках силы трения между листами пакета и болтами не преодолеваются. С
увеличением нагрузки происходит взаимное проскальзывание листов или прокладок относительно накладок
контакта листов с меньшей шероховатостью.
Японской и американской фирмой не использованы фрикционно -подвижные соединения (ФПС) проф дтн ПГУПС
А.М.Уздина и не учтено изобретение № 165076 "Опора сейсмостойкая" советских инженеров. Взаимное
смещение листов происходит до упора болтов в края длинных овальных отверстий после чего соединения при
импульсных растягивающих нагрузках при многокаскадном демпфировании работают упруго. После того как все
болты соединения дойдут до упора края в длинных овальных отверстий, соединение начинает работать упруго,
а затем происходит разрушение соединения за счет смятия листов и среза болтов.
Недостатками известного решения являются: не возможность использовать опору в холодных станах , где
происходит крошение и разрушение от атмосферных осадков резины , расположенной внутри
сейсмоизолирующей и виброизолирующей опоры , ограничение демпфирования по направлению воздействия
только по горизонтали и вдоль овальных отверстий; а также неопределенности при расчетах из-за разброса по
трению. Известно также устройство для фрикционного демпфирования антиветровых и антисейсмических
воздействий, патент TW201400676(A)-2014-01-01. Restraint anti-wind and anti-seismic friction damping device,
E04B1/98, F16F15/10, патент США Structural stel bulding frame having resilient connectors № 4094111 E 04 B 1/98,
RU № 2148805 G 01 L 5/24 "Способ определения коэффициента закручивания резьбового соединения" , RU №
2413820 "Фланцевое соединение растянутых элементов замкнутого профиля", Украина № 40190 А "Устройство
для измерения сил трения по поверхностям болтового соединения", Украина патент № 2148805 РФ "Способ
определения коэффициента закручивания резьбового соединения"
Устройство содержит базовое основание, поддерживающее защищаемый объект, нескольких сегментов,
трубчатых, квадратных (податливых крыльев) и несколько внешних пластин. В сегментах выполнены продольные
пазы. Демпфирующее и амортизирующее трение создается между пластинами и наружными поверхностями
сегментов, вставленные вместо резинового сердечника, и за счет проложенного между контактирующими
поверхностями деталей виброизолирующего троса в пластмассой оплетке или без пластмассовой оплетке
пружинистого скрученного тонкого троса. Перпендикулярно вертикальной поверхности сегментов, через пазы,
проходят запирающие элементы-болты, которые фиксируют сегменты и пластины друг относительно друга.
Кроме того, запирающие элементы проходят через блок поддержки, две пластины, через паз сегмента и
фиксируют конструкцию в заданном положении.
Таким образом получаем сейсмоизолирующею и амортизирующею конструкцию кинематической или
маятниковой и амортизирующей опоры, которая выдерживает сейсмические нагрузки но, при возникновении
динамических, импульсных растягивающих нагрузок, взрывных, сейсмических нагрузок, превышающих расчетные
силы трения в сопряжениях, смещается от своего начального положения

195.

Недостатками указанной конструкции являются: не долговечность резинового сердечника опоры и сложность
расчетов из-за наличия большого количества сопрягаемых трущихся поверхностей и надежность болтовых
креплений
Целью предлагаемого решения является упрощение конструкции, и заменить резиновый сердечник , на стакан
трубчатый с отогнутыми лапками по изобретению № 165076 "Опора сейсмостойкая" и для повышения
долговечности опоры уменьшение количества сопрягаемых трущихся поверхностей до одного или нескольких
сопряжений отверстий корпуса- трубной, квадратной опоры, типа штока, тросовой втулки (гильзы) на фрикциболтовых демпфирующих податливых креплений и прокладки между контактирующими поверхностями упругую
обмотку из тонкого троса ( диаметр 2 мм ) в пластмассовой оплетке или без оплетки, скрученного в два или три
слоя пружинистого троса .
Сущность предлагаемого решения заключается в том, что виброизолирующая , сейсмоизолирующая
кинематическая опора ( квадратная, трубчатая) выполнена из разных частей: нижней - корпус, закрепленный на
фундаменте с помощью подвижного фрикци –болта с пропиленным пазом, в который забит медный
обожженный клин, с бронзовой втулкой (гильзой) и свинцовой шайбой и верхней - шток сборный в виде Гобразных стальных сегментов (для опор с квадратным сечением), в виде С- образных (для трубчатых опор),
установленный с возможностью перемещения вдоль оси и с ограничением перемещения за счет деформации и
виброизолирующего корпуса под действием запорного элемента в виде стопорного фрикци-болта с тросовой
виброизолирующей втулкой (гильзой) с пропиленным пазом в стальной шпильке и забитым в паз медным
обожженным клином, которая заменяется вместо резинового сердечника. .
В верхней и нижней частях опоры корпуса вставляются внутрь опоры и выполнены овальные длинные
отверстия, (сопрягаемые с цилиндрической поверхностью опоры) и поперечные отверстия (перпендикулярные к
центральной оси), в которые устанавливают запирающий элемент- стопорный фрикци-болт с контролируемым
натяжением, с медным клином, забитым в пропиленный паз стальной шпильки и с бронзовой или латунной
втулкой ( гильзой), с тонкой свинцовой шайбой. Кроме того в квадратных трубчатых или крестовидных корпусах,
параллельно центральной оси, выполнены восемь открытых длинных пазов, которые обеспечивают корпусу
возможность деформироваться за счет протяжных соединений с фрикци- болтовыми демпфирующими,
виброизолирующими креплениями в радиальном направлении.
В теле квадратной, трубчатой, опоры, замененной вместо резиново, на стальную на фрикционно-подвижных
соединениях вдоль центральной оси, выполнен длинный паз ширина которого соответствует диаметру
запирающего элемента (фрикци- болта), а длина соответствует заданному перемещению трубчатой, квадратной
или крестообразной опоры. Запирающий элемент создает нагрузку в сопряжении опоры - корпуса, с
продольными протяжными пазами с контролируемым натяжением фрикци-болта с медным клином обмотанным
тросовой виброизолирующей втулкой (пружинистой гильзой) , забитым в пропиленный паз стальной шпильки и
обеспечивает возможность деформации корпуса и «переход» сопряжения из состояния возможного
перемещения в состояние «запирания» с возможностью перемещения только под вибрационные, сейсмической
нагрузкой, взрывные от воздушной волны.
Сущность предлагаемой конструкции поясняется чертежами, где на
фиг.1 изображена я опора не на фрикционных соединениях с контрольным натяжением ; ФИРМЫ RUBBER
BEARING FRICTION DAMPER (RBFD) HTTPS://WWW.DAMPTECH.COM/CONTACT-1
на фиг.2 изображен вид сверху сейсмоизолирующей опоры фирмы https://www.damptech.com/contact-1 без
фрикци –болт с забитым в пропиленный паз стальной шпильки обожженным медным стопорным клином;
на фиг.3 изображен вид с боку сейсмоизолирующей опора , не на фрикционных соединениях; фирмы
RUBBER BEARING FRICTION DAMPER (RBFD)
https://www.damptech.com/contact-1
на фиг.4 изображен фрагмент шарнирных опор, с восьмигранника без овальными отверстиями для протяжных
соединений Фирмы RUBBER BEARING FRICTION DAMPER (RBFD)
на фиг. 5 изображен струнный сердечник проф Уздина А М (ПГУПС), которого устанавливается на фрикционоподвижных соединениях и вставляется, в систему фрикционно-демпфирующей опоры RUBBER BEARING FRICTION

196.

DAMPER (RBFD) https://www.damptech.com/contact-1 , согласно изобретения проф Уздина А М и др № 2550777
"Сейсмостойкий мост" ПГУПС и Стройкомплекс 5 для используемые как. вариант струнной амортизирующей
вставки диаграмма испытания фрикционного восьмигранника, как сейсмоизолирующую, амортизирующею
опору, на протяжных фрикционных соединениях;
фиг. 6 изображен сегмент фрикционного соединения восьмигранника с резиновым сердечником ,
сейсмоизолирующей , демпфирующей опоры, но уже с вставленной трубчатой опоры с пластическим шарниром
или телескопической трубой , с поднятым корпусом с длинными овальными отверстиями;
фиг.7 изображен вид с верху квадратной, сейсмоизолирующей опоры с фрикционным креплением фрикциболтами с контрольным натяжением -вид с верху с поднятым корпусом; вместо резинового сердечника
(заменен)
фиг. 8 изображена установка фрикционно-демпфирующей опоры, а вид с боку . Опора фрикционнодемпфирующая установленная , в цокольной части здания
фиг. 9 изображена испытание восьмигранной фрикционо- демпфирующей опоры с резиновым сердечником по
Японо-Американской технологии
фиг. 10 изображена трубчатая опора и изображена трубчатая, сейсмоизолирубющая кинематическая опора
состоящая из двух частей штоков, для транспортировки к месту установки;
фиг. 11 изображен мост , где установлены
сердечником –вид с боку моста ;
сейсмоизолирующие опоры , с резиновым недолговечным
фиг. 12 изображен фрикционный основной сегмент амортизации сейсмоизолирующей , демпфирующей опоры,
без протяжных соединениями -вид с боку;
фиг 13 изображен фрагмент фрикционно-демпфирующей , сейсмоизолирующей и амортизирующей опоры
установленный на сейсмоизолирующий фундамент
нижнего виброизолирующего пояса – вид с боку ;
фиг 14 изображен вид сверху восьмигранная фрикционно-демпфирующая ,
фиг. 15 вид сверху , изображена восьмигранная диаграмма лабораторных испытаний ,фрикционно амортизирующая опора сейсмоизолирующей демпфирующей опоры , испытанная по линии нагрузки (прямо) с
резиновым сердечником без фрикционных соединениями, вид сверху;
фиг. 16 изображена диаграмм испытаний , восьмигранной фрикционно -амортизирующая опора
сейсмоизолирующей демпфирующей опоры , испытанная по линии нагрузки ( под углом-косая, и прямой ) с
резиновым сердечником без фрикционных соединениями, вид сверху;
фиг. 17 изображена трубчатая опора, с ослабленными стенками -по линии нагрузки (одноразовая) , которая
вставляется вместо резинового сердечника
фиг 18 вид с боку, изображена трубчатая или квадратная опора с пластическим шарниром по линии нагрузки ,
вид с верху и с боку
фиг. 19 изображен сегмент фрикционно-демпфирующего соединения на упругом фрикционном шарнире
Японской фирмы
фиг. 20 изображена фрикционно - демпфирующая амортизирующая опора с резиновым не долговечным
сердечником и сама фрикционно-демпфирующая опора на упругом фрикционном шарнире Японской фирмы и
показан фрагмент моста , где она будет установлена
фиг. 21 изображена опора с пластическим шарниром по линии нагрузки и медный обожженный клин для фрикци
-болта

197.

фиг. 22 изображен сердечник вставной в фрикционно -подвижную и амортизирующею Японскую опору
трубчатого и квадратного вида на фрикционно -подвижных соединениях, с медным клином латунной забитыми и
обожженными медными стопорными клиньями, забитыми в пропиленные пазы стальных шпилек для
виброизолирующей, сейсммоизолирующей трубчатой опоры на протяжных фрикционно-подвижных
соединениях ;
фиг. 23 изображен квадратная трубчатый сердечник -вставка на фрикционно -подвижную и амортизирующею
Японскую опору трубчатого и квадратного вида на фрикционно -подвижных соединениях, с медным клином
латунной забитыми и обожженными медными стопорными клиньями, забитыми в пропиленные пазы стальных
шпилек для виброизолирующей, сейсммоизолирующей трубчатой опоры на протяжных фрикционноподвижных соединениях ;
фиг. 24 изображена трубчатый сердечник -вставка на фрикционно -подвижную и амортизирующею Японскую
опору трубчатого и квадратного вида на фрикционно -подвижных соединениях, с медным клином латунной
забитыми и обожженными медными стопорными клиньями, забитыми в пропиленные пазы стальных шпилек
для виброизолирующей, сейсммоизолирующей трубчатой опоры на протяжных фрикционно-подвижных
соединениях ;
фиг. 25 изображен фрикци-болт , упругоплатичный многослойный склеенный медный забивной клин и фрикциболтовое соединение с медной обожженной гильзой (гильза не показана ), зображен демпфирующих фрикци –
болт, с запитым в пропиленный паз медным обожженным клином
фиг. 26 изображен латунный фрикци -болт с пропиленным пазом болгаркой пазом
фиг. 27 изображено протяжное фрикци -болт с забитым медным обожженным клином
фиг. 28 изображен способ определения коэффициента закручивания резьбового соединения" по изобретении.
№ 2148805 МПК G 01 L 5/25 " Способ определения коэффициента закручивания резьбового соединения" и №
2413098 "Способ для обеспечения несущей способности металлических конструкций с высокопрочными
болтами"
фиг. 29 изображено Украинское устройство для определения силы трения по подготовленным поверхностям для
болтового соединения по Украинскому изобретению № 40190 А, заявление на выдачу патента № 2000105588 от
02.10.2000, опубликован 16.07.2001 Бюл 8 и в статье Рабера Л.М. Червинский А.Е "Пути соевршенствоания
технологии выполнения фрикционных соединений на высокопрочных болтах" Национальная металлургический
Академия Украины , журнал Металлургическая и горная промышленность" 2010№ 4 стр 109-112
фиг. 30 изображен образец для испытания и Определение коэффициента трения между контактными
поверхностями соединяемых элементов СТП 006-97 Устройство соединений на высокопрочных болтах в стальных
конструкциях мостов, СТАНДАРТ ПРЕДПРИЯТИЯ УСТРОЙСТВО СОЕДИНЕНИЙ НА ВЫСОКОПРОЧНЫХ БОЛТАХ В
СТАЛЬНЫХ КОНСТРУКЦИЯХ МОСТОВ КОРПОРАЦИЯ «ТРАНССТРОЙ» МОСКВА 1998, РАЗРАБОТАНого Научноисследовательским центром «Мосты» ОАО «ЦНИИС» (канд. техн. наук А.С. Платонов,канд. техн. наук И.Б. Ройзман,
инж. А.В. Кручинкин, канд. техн. наук М.Л. Лобков, инж. М.М. Мещеряков) для испытаний на вибростойкость,
сейсмостойкость образца, фрагмента, узлов крепления протяжных фрикционно подвижных соединений (ФПС) .
фиг 31 изображен резиновый сердечник Японской фирмы, который по заявке на изобретение заменяется на
трубчатую опору с пластическим шарниром с пропиленными пазами болгаркой или трубчатую (квадратную )
опору на фрикционо- подвижным протяжных соединениями или струнный сердечник ПГУПС, которого
устанавливается на фрикционо-подвижных соединениях и вставляется, в систему фрикционно-демпфирующей
опоры RUBBER BEARING FRICTION DAMPER (RBFD) https://www.damptech.com/contact-1 , согласно изобретения
проф Уздина А М и др № 2550777 "Сейсмостойкий мост" ПГУПС и "Стройкомплекс 5" для используемые как.
вариант струнной амортизирующей вставки
Сейсмостойкая фрикционно- демпфирующая трубчатая или квадратная опора установленная во фрагмент
фрикционно многогранника, с демпфирующим фрикци-ботом , состоит из двух корпусов (нижний целевой),
(верхний составной), в которых выполнены вертикальные длинные овальные отверстия диаметром «D», шириной
«Z» и длиной . Нижний корпус опоры охватывает верхний корпус опоры (трубная, квадратная, крестовидная).

198.

При монтаже опоры верхняя часть корпуса опоры поднимается до верхнего предела, фиксируется фрикциболтами с контрольным натяжением, со стальной шпилькой болта, с пропиленным в ней пазом и
предварительно забитым в шпильке обожженным медным клином. и тросовой пружинистой втулкой (гильзой) В
стенке корпусов виброизолирующей, сейсмоизолирующей кинематической опоры перпендикулярно оси
корпусов опоры выполнено восемь или более длинных овальных отверстий, в которых установлен запирающий
элемент-калиброванный фрикци –болт с тросовой демпирующей втулкой, пружинистой гильзой, с забитым в паз
стальной шпильки болта стопорным ( пружинистым ) обожженным медным многослойным упругопластичнм
клином, с демпфирующей свинцовой шайбой и латунной втулкой (гильзой).
В теле трубчатой, квадратной опоры, штока вдоль оси выполнен продольный глухой паз длиной «h»
(допустимый ход штока) соответствующий по ширине диаметру калиброванного фрикци - болта, проходящего
через этот паз. В нижней части опоры, корпуса, выполнен фланец для фланцевого подвижного соединения с
длинными овальными отверстиями для крепления на фундаменте, а в верхней части корпуса выполнен фланец
для сопряжения с защищаемым объектом, вентиляционным оборудованием, сооружением, мостом
Сборка опоры заключается в том, что составной ( сборный) крестовидный, трубчатый, квадратный корпус
сопрягается с монолитной крестовидной, трубчатой, квадратной опорой, основного корпуса по подвижной
посадке с фланцевыми фрикционно- подвижными соединениям (ФФПС). Паз крестовидной, трубчатой,
квадратной опоры, совмещают с поперечными отверстиями монолитной крестовидной, трубчатой, квадратной
поверхностью фрикци-болта (высота опоры максимальна). После этого гайку затягивают тарировочным ключом
с контрольным натяжением до заданного усилия в зависимости от массы вентиляционного оборудования,
агрегатов, моста, здания. Увеличение усилия затяжки гайки на фрикци-болтах приводит к деформации корпуса и
уменьшению зазоров от «Z» до «Z1» в корпусе, что в свою очередь приводит к увеличению допустимого усилия
сдвига (усилия трения) в сопряжении отверстие в крестообразной, трубчатой, квадратной опоре корпуса.
Величина усилия трения в сопряжении внутреннего и наружного трубчатого или квадратного корпусов для
крестовидной, трубчатой, квадратной опоры зависит от величины усилия затяжки гайки (болта) с
контролируемым натяжением и для каждой конкретной конструкции виброизолирующего, сейсмоизолирующей
кинематической опоры (компоновки, габаритов, материалов, шероховатости и пружинистости стального тонкого
троса уложенного между контактирующими поверхностями деталей поверхностей, направления нагрузок и др.)
определяется экспериментально или расчетным машинным способом в ПК SCAD.
Сейсмостойкая фрикционно- демпфирующая опора, сейсмоизолирующая , маятниковая опора установленная в
восьмигранный фрикци -демпфер , работающий на упругиз связях и амортизирующими соединениями, которые
закреплены на фланцевых фрикционо-подвижных соединениях (ФФПС). Во время динамических нагрузок или
взрыве за счет трения между верхним и нижним корпусом опоры происходит поглощение вибрационной,
взрывной и сейсмической энергии. Фрикционно- подвижные соединения состоят из скрученных пружинистых
тросов- демпферов сухого трения (возможен вариант использования латунной втулки или свинцовых шайб)
поглотителями вибрационной , сейсмической и взрывной энергии за счет демпфирующих узлов и тросовой
втулки из скрученного тонкого стального троса, пружинистых многослойных медных клиньев и сухого трения,
которые обеспечивают смещение опорных частей фрикционных соединений на расчетную величину при
превышении горизонтальных вибрационных, взрывных, сейсмических нагрузок от вибрационных воздействий
или величин, определяемых расчетом на основные сочетания расчетных нагрузок, сама кинематическая опора
при этом начет раскачиваться, за счет выхода обожженных медных клиньев, которые предварительно забиты в
пропиленный паз стальной шпильки при креплении опоры к нижнему и верхнему виброизолирующему поясу .
Податливые амортизирующие демпферы трубчатой опоры (сердечника) представляют собой двойную
фрикционную пару, имеющую стабильный коэффициент трения .
Сжимающее усилие создается высокопрочными шпильками, натягиваемыми динамометрическими ключами или
гайковертами на расчетное усилие. Количество болтов определяется с учетом воздействия собственного веса
вентиляционного оборудования, здания, сооружения, моста.
Сама составная опора выполнена трубчатой , квадратной (состоит из двух П-образных элементов) либо
стаканчато-трубного вида с фланцевыми протяжным фрикционно - подвижными болтовыми соединениями.

199.

Сжимающее усилие создается высокопрочными шпильками с обожженными медными клиньями забитыми в
пропиленный паз стальной шпильки, натягиваемыми динамометрическими ключами или гайковертами на
расчетное усилие с контрольным натяжением.
Количество болтов определяется с учетом воздействия собственного веса (массы)Э, моста, здания,
оборудования, сооружения. Расчетные усилия рассчитываются по СП 16.13330.2011 ( СНиП II -23-81* ) Стальные
конструкции п. 14.4, Москва, 2011, ТКТ 45-5.04-274-2012 (02250), «Стальные конструкции» Правила расчет,
Минск, 2013. п. 10.3.2
Фрикци-болт, является энергопоглотителем пиковых ускорений (ЭПУ), с помощью которого, поглощается
вибрационная, взрывная, ветровая, сейсмическая, вибрационная энергия. Фрикци-болт снижает на 2-3 балла
импульсные растягивающие нагрузки при землетрясении и при взрывной, ударной воздушной волне. Фрикци –
болт повышает надежность работы оборудования, сохраняет вентиляционные агрегаты, агрегаты АЭС, каркас
здания, моста, ЛЭП, магистрального трубопровода, за счет уменьшения пиковых ускорений, за счет
использования протяжных фрикционных соединений, работающих на растяжение на фрикци- болтах,
установленных в длинные овальные отверстия с контролируемым натяжением в протяжных соединениях согласно
ТКП 45-5.04-274-2012 (02250) п. 10.3.2 стр. 74 , Минск, 2013, СП 16.13330.2011,СНиП II-23-81* п. 14.3- 15.2.
Тросовая скрученная из стального тонкого троса ( диаметр 2 мм) втулка (гильза) фрикци-болта при виброизоляции
нагревается за счет трения между верхней составной и нижней целевой пластинами (фрагменты опоры) до
температуры плавления и плавится, при этом поглощаются пиковые ускорения взрывной, сейсмической энергии
и исключается разрушение оборудования, ЛЭП, опор электропередач, мостов, также исключается разрушение
теплотрасс горячего водоснабжения от тяжелого автотранспорта и вибрации от ж/д.
В основе сейсмозащиты использовалось фрикционное соединения , на фрикци-болтах с тросовой втулкой,
лежит принцип который, на научном языке называется "рассеивание", "поглощение" сейсмической, взрывной,
вибрационной энергии.
Сейсмостойкая фрикционно -демпфирующая и амортизирующая опора с пластическим шарниром (Фиг 17, 18),
рассчитана на одну сейсмическую нагрузку (9 баллов), либо на одну взрывную нагрузку. После взрывной или
сейсмической нагрузки необходимо заменить смятые или сломанные гофрированное виброиозирующее
основание, в паз шпильки фрикци-болта, демпфирующего узла забить новые демпфирующий и пружинистый
медные клинья, с помощью домкрата поднять, выровнять опору и затянуть болты на проектное контролируемое
протяжное натяжение.
При воздействии вибрационных, взрывных нагрузок , сейсмических нагрузок превышающих силы трения в
сопряжении в трубчатой, квадратной сейсмоизолирующей маятниковых вставных опорах (сердечник) ,
происходит сдвиг трущихся элементов типа шток, корпуса опоры, в пределах длины паза выполненного в
составных частях нижней и верхней крестовидной, трубчатой, квадратной опоры, без разрушения
оборудования, здания, сооружения, моста. А, составная , сдвоенная на фрикционно -подвижных протяжных
соединениях работает после землетрясения. Необходимо подомкратить и поднять просевшую опору и затянуть
гайки тензометрическим ключом
Ознакомиться с инструкцией по применению фланцевых фрикционно-подвижных соединений (ФФПС) можно
по ссылке: https://vimeo.com/123258523 http://youtube.com/watch?v=76EkkDHTvgM&feature=youtu.be
О характеристиках сейсмостойкой фрикционно- демпфирующей амортизирующей опоры сообщалось на
научной XXVI Международной конференции «Математическое и компьютерное моделирование в механике
деформируемых сред и конструкций», 28.09 -30-09.2015, СПб ГАСУ: «Испытание математических моделей
установленных на сейсмоизолирующих фланцевых фрикционно-подвижных соединениях (ФФПС) и их
реализация в ПК SCAD Office» ( заместитель президента ОО "Сейсмофонд" (стажер СПб ГАСУ, инж. Александр
Иванович Коваленко) . С докладом, можно ознакомиться на сайте:
http://www.youtube.com/watch?v=MwaYDUaFNOk https://youtu.be/MwaYDUaFNOk
https://www.youtube.com/watch?v=GemYe2Pt2UU https://www.youtube.com/watch?v=TKBbeFiFhHw
https://www.youtube.com/watch?v=PmhfJoPlKUw https://www.youtube.com/watch?v=TKBbeFiFhHw
https://www.youtube.com/watch?v=2N0hp-3FAUs https://www.youtube.com/watch?v=eB1r8F7zkSw
https://www.youtube.com/watch?v=ulXjYw7fyJA https://www.youtube.com/watch?v=V7HKMKUujT4

200.

С решениями фланцевых фрикционно-подвижных протяжных соединений (ФФПС) и демпфирующих узлов
крепления (ДУК) можно ознакомиться: dwg.ru, rutracker.org. www1.fips.ru. dissercat.comhttp://doc2all.ru, см.
изобретения №№ 1143895, 1174616,1168755 SU, № 4,094,111 US Structural steel building frame having resilient
connectors, TW201400676 Restraint anti-wind and anti-seismic friction damping device (Тайвань) и согласно
изобретения № 2010136746 E04 C2/00 " СПОСОБ ЗАЩИТЫ ЗДАНИЯ И СООРУЖЕНИЯ ПРИ ВЗРЫВЕ С
ИСПОЛЬЗОВАНИЕМ СДВИГОУСТОЙЧИВЫХ И ЛЕГКОСБРАСЫВАЕМЫХ СОЕДИНЕНИЙ, ИСПОЛЬЗУЮЩИЕ СИСТЕМУ
ДЕМПФИРОВАНИЯ ФРИКЦИОННОСТИ И СЕЙСМОИЗОЛЯЦИЮ ДЛЯ ПОГЛОЩЕНИЯ ВЗРЫВНОЙ И СЕЙСМИЧЕСКОЙ
ЭНЕРГИИ" опубликовано 20.01.2013 и патента на полезную модель "Панель противовзрывная" № 154506 E04B
1/92, опубликовано 27.08.2015 Бюл № 24 № 165076 RU E 04H 9/02 «Опора сейсмостойкая», опубликовано
10.10.16, Бюл. № 28 , заявки на изобретение № 20181229421/20 (47400) от 10.08.2018 "Опора
сейсмоизолирующая "гармошка", заявки на изобретение № 2018105803/20 (008844) от 11.05.2018
"Антисейсмическое фланцевое фрикционно-подвижное соединение для трубопроводов" F 16L 23/02 , заявки на
изобретение № 2016119967/20( 031416) от 23.05.2016 "Опора сейсмоизолирующая маятниковая" E04 H 9/02
,изобретениям №№ 1143895, 1168755, 1174616, 20101136746 E04 C 2/00 с использ. изобр. № 165076 E04 H
9/02 "Опора сейсмостойкая", заявка на изобретение "Виброизолирующая опора E04 Н 9 /02" номер заявка а
20190028 выданная Национальным Центром интеллектуальной собственности " Государственного комитета по
науке и технологиям Республики Беларусь от 5 февраля 2019 ведущим специалистом центра экспертизы
промышленной собственности Н.М.бортник Адрес: 220034 Минск, ул Козлова , 20 тел (017) 294-36-56, т/ф
(017) 285-26-05 [email protected] и изобретениям №№ 1143895,1174616, 1168755 SU, 165076 RU "Опора
сейсмостойкая", 2010136746, 2413098, 2148805, 2472981, 2413820, 2249557, 2407893, 2467170, 4094111 US,
TW201400676
С лабораторными испытаниями фланцевых фрикционно –подвижных соединений для виброизоирующей
кинематической опоры в испытательном центре СПб ГАСУ и ОО «Сейсмофонд» при СПб ГАСУ , адрес: 1900005,
СПб, 2-я Красноармейская ул.д 4 (без раскрывания новизны технического решения) можно ознакомиться по
ссылке :
http://www.youtube.com/my_videos?o=U https://www.youtube.com/watch?v=846q_badQzk
https://www.youtube.com/watch?v=EM9zQmHdBSU https://www.youtube.com/watch?v=3Xz--TFGSYY
https://www.youtube.com/watch?v=HTa1SzoTwBc https://www.youtube.com/watch?v=PlWoLu4Zbdk
https://www.youtube.com/watch?v=f4eHILeJfnU https://www.youtube.com/watch?v=a6vnDSJtVjw
Сопоставление с аналогами показывает следующие существенные отличия:
1. Сейсмостойкая фрикционно- демпфирующая опора , за счет фрикци -болта является маятниковой и
скользящей в овальных отверстиях с медной обожженной гильзой или тросовой втулкой из троса в плетке .
Качается на 5 -7 градусов за счет смятия медного обожженного или пружинистого клина .
2. Сейсмостойкая фрикционно- демпфирующая опора , является демпфирующей и амортизирующей за счет
свинцовой прокладки или установки на сейсмостойкая фрикционно- демпфирующая опора на тонкий
свинцовый лист , толщиной 2 мм.
3. Сейсмостойкая фрикционно- демпфирующая опора , крепится на тарельчатых шайбах, выполненные
пружинными стальными.
Экономический эффект сейсмостойкая фрикционно- демпфирующая опора достигнут из-за повышения
долговечности демпфирующей вставки из трубчатой опоры на фрикционно-подвижных соединениях.
Экономический эффект сейсмостойкая фрикционно- демпфирующая амортизирующей опора достигнут за счет
упругих тросовых гильз установленных при крепление опоры.
Литература
1. Сабуров В.Ф. Закономерности усталостных повреждений и разработка методов расчетной оценки
долговечности подкрановых путей производственных зданий. Автореферат диссертации докт. техн. наук. ЮУрГУ, Челябинск, 2002. - 40 с.
2. Подкрановые конструкции. Патент 2067075. Россия МКИ В 66 С 7/00, 18.10.93. Бюл.№27, 1997.
3. Нежданов К.К., Туманов В.А., Нежданов А.К., Карев М.А. Патент России. RU №2192383 С1 (Заявка №2000
119289/28 (020257), Подкрановая транспортная конструкция. Опубликован 10.11.2002.
1. "СПОСОБ ЗАЩИТЫ ЗДАНИЯ И СООРУЖЕНИЯ ПРИ ВЗРЫВЕ С ИСПОЛЬЗОВАНИЕМ СДВИГОУСТОЙЧИВЫХ И
ЛЕГКОСБРАСЫВАЕМЫХ СОЕДИНЕНИЙ, ИСПОЛЬЗУЮЩИЕ СИСТЕМУ ДЕМПФИРОВАНИЯ ФРИКЦИОННОСТИ И

201.

СЕЙСМОИЗОЛЯЦИЮ ДЛЯ ПОГЛОЩЕНИЯ ВЗРЫВНОЙ И СЕЙСМИЧЕСКОЙ ЭНЕРГИИ" № 2010136746 E 04 C 2/09 Дата
опубликования 20.01.2013
2. Патент на полезную модель № 165 076 " Опора сейсмостойкая" 10.10.2016 Б.л 28
3. Патент на полезную модель № 154506 "Панель противовзрывная" 27.08.2015 бюл № 28
4.Изобретение № 1760020 "Сейсмостойкий фундамент" 07.09.1992
5. Изобретение № 1011847 "Башня" 30.08.1982
6. Изобретение № 1038457 "Сферический резервуар" 30.08.1982
7. Изобретение № 1395500 "Способ изготовления ячеистобетонных изделий на пористых заполнителях"
15.05.1988 8. Изобретение № 998300 "Захватное устройство для колонн" 23.02.1983
9. Захватное устройство сэндвич-панелей № 24717800 опуб 05 05.2011
10. Стена и способ ее возведения № 1728414 опул 19.06.1989
11. Заявки на изобретение № 20181229421/20(47400) от 10.08.2018 «Опора сейсмоизолирующая «гармошка».
Используется Японии.
12. Заявки на изобретение № 2018105803/20 (008844) от 11.05.2018 «Антисейсмическое фланцевое фрикционноподвижное соединение для трубопроводов» F 16L 23/02 ,
13. Заявка на изобретение № 2016119967/20 ( 031416) от 23.05.2016 «Опора сейсмоизолирующая маятниковая»
E04 H 9/02.
1.. Журнал «Сельское строительство» № 9/95 стр.30 «Отвести опасность», А.И.Коваленко
2. Журнал «Жилищное строительство» № 4/95 стр.18 «Использование сейсмоизолирующего пояса для существующих зданий», А.И.Коваленко
3. Журнал «Жилищное строительство» № 9/95 стр.13 «Сейсмоизоляция малоэтажных жилых зданий»,
4. Журнал «Монтажные и специальные работы в строительстве» № 4/95 стр. 24-25 «Сейсмоизоляция малоэтажных зданий»,
5. Российская газета от 26.07.95 стр.3 «Секреты сейсмостойкости». А.И.Коваленко.
6. Российская газета от 11.06.95 «Землетрясение: предсказание на завтра», А.И.Коваленко
8. Газета «Грозненский рабочий» № 5 февраль 1996 «Честь мундира или сэкономленные миллиарды»,
9. «Голос Чеченской Республики» 1 февраль 1996 «Башни и баллы» А.И.Коваленко.
10. Республика ЧР № 7 август 1995 «Удар невиданной звезды или через четыре года». А.И.Коваленко
11. Газета «Земля России» за октябрь 1998 стр. 3 «Уникальные технологии возведения фундаментов без заглубления – дом на грунте. Строительство на
пучинистых и просадочных грунтах»
12. Газета «Земля России» № 2 ( 26 ) стр. 2-3 « Предложение ученых общественной организации инженеров «Сейсмофонд» –
Фонда «Защита и безопасность
городов» в области реформы ЖКХ.
13. Журнал «Жизнь и безопасность « № 3/96 стр. 290-294 «Землетрясение по графику» Ждут ли через четыре года планету
«Земля глобальные и разрушительные
потрясения «звездотрясения» А.И.Коваленко, Е.И.Коваленко.
14. Журнал «Монтажные и специальные работы в строительстве» № 11/95 стр. 25 «Датчик регистрации электромагнитных
волн, предупреждающий о
землетрясении - гарантия сохранения вашей жизни!» и другие зарубежные научные издания и
журналах за 1994- 2004 гг. А.И.Коваленко и др. изданиях С
брошюрой «Как построить сейсмостойкий дом с учетом народного опыта сейсмостойкого строительства горцами Северного
Кавказа сторожевых башен» с.79
г. Грозный –1996. А.И.Коваленко в ГПБ им Ленина г. Москва и РНБ СПб пл. Островского, д.3 .
Более подробно об изобретении можно ознакомится в социальных сетях по ссылкам : "Обеспечение сейсмостойкости
железнодорожных мостов на основе сейсмостойких фрикционно -демпфирующих опорах на ФПС" https://yadi.sk/i/rXA8wKaB2aOHoQ
https://yadi.sk/i/u9cVdrMhY3mXaA obespechenie seismostoykosti zheleznodorozhnikh mostov na osnove seismostoykikh friktsionno dempfir https://vimeo.com/347683198
https://rutube.ru/list/video/27898a46054d331b5f4d88774d029d98 https://www.youtube.com/watch?v=CN2ekFkfm2A https://www.youtube.com/watch?v=euhlePKQArI
Navodnenie k boyu HAARP klimaticheskoe oruzhie NATO protiv goev
https://www.youtube.com/watch?v=AGJ6qeHvwQY&t=994s
https://www.youtube.com/watch?v=AGJ6qeHvwQY
https://www.youtube.com/watch?v=Gga1a86gjNI
dom na seismoizoliruyuschikh nozhkakh s ispolzovaniem volshebnogo koltsa
https://www.youtube.com/watch?v=GJpsnCNREPk&t=202s
https://vimeo.com/346880023
https://www.youtube.com/watch?v=K6b8Pl7gkKw
https://www.youtube.com/watch?v=GJpsnCNREPk
https://rutube.ru/list/video/457fd0282d6c76f511ea1de06b143615/
Формула Сейсмостойкая фрикционно демпфирующая опора
1. Сейсмостойкая фрикционно- демпфирующая амортизирующая опора , повышенной надежности с
улучшенными демпфирующими и амортизирующими свойствами, содержащая фрикционно-демпфирующий
восьмигранник со вставкой трубообразного или квадратного корпуса -опору и сопряженный с ним подвижный
узел с протяжных фрикционно-подвижными соединениями, упругой тросовой втулкой (гильзой), закрепленные
запорными элементами в виде протяжного соединения контактирующих поверхности детали и накладок
выполнены из пружинистого троса, между контактирующими поверхностями, с разных сторон, отличающийся
тем, что с целью повышения надежности, сейсмостойкая фрикционно- демпфирующая и амортизирующей
опоры, корпус выполнен комбинированным и выполнен с вставкой в фрикционно-демпфирующий
восьмигранник, с заменой резинового сердечника амортизирующей опоры, на трубчатою, квадратною вставку
на фрикционно-подвижных соединениях или струнный (тросовой) сердечник, который состоит, между собой с
помощью протяжных фрикционно-подвижных соединений с контрольным натяжением фрикци-болтов с тросовой
пружинистой втулкой (гильзой) , расположенных в длинных овальных отверстиях, крепятся к нижнему и верхнему
виброизолирующему поясу с помощью фрикци-болтами с медным упругоплатичном, пружинистым,
многослойным клином, расположенной в пропиленном пазе латунной шпильки, а сама опора вставлена в

202.

фрикционо -демпфирующий многогранник (восьмигранник) , вместо быстроизнашиваемого резинового
сердечника.
2. Способ по п 1 обеспечения несущей способности сейсмостойкая фрикционно- демпфирующей и
амортизирующей опоры с фрикционно -демпфирующим или одноразовым пластическим шарниром,
отличающийся тем, что значение усилия натяжения высокопрочного фрикци- болта с медным обожженным
клином забитым в пропиленный паз латунной шпильки с втулкой -гильзы из стального тонкого троса , а
определение усилия сдвига на образце-свидетеле осуществляют устройством, содержащим неподвижную и
сдвигаемую детали, узел сжатия и узел сдвига, выполненный в виде рычага, установленного на валу с
возможностью соединения его с неподвижной частью устройства и имеющего отверстие под нагрузочный болт,
а между выступом рычага и тестовой накладкой помещают самоустанавливающийся сухарик, выполненный из
закаленного материала.
3. Способ по п.1, отличающийся тем, что при отношении усилия сдвига фрикционно-подвижного соединения
к проектному усилию натяжения высокопрочного фрикци-болта с втулкой и тонкого стального троса в
диапазоне 0,54-0,60 корректировку технологии монтажа сейсмостойкой фрикционно- демпфирующая и
амортизирующей опоры, при отношении в диапазоне 0,50-0,53 при монтаже увеличивают натяжение болта, а
при отношении менее 0,50 кроме увеличения усилия натяжения, дополнительно проводят обработку
контактирующих поверхностей телескопической сейсмостойкая фрикционно- демпфирующая, амортизирующая
опора, вставленной вместо резинового не долговечного сердечника
Фигуры к заявке на изобретение полезная модель Сейсмостойкая фрикционно- демпфирующая опора Е04Н 9/02
Фиг 1 Сейсмостойкая фрикционно- демпфирующая опора
Фиг 2
Сейсмостойкая фрикционно- демпфирующая опора
Фиг 3 Сейсмостойкая фрикционно- демпфирующая опора

203.

Фиг 4 Сейсмостойкая фрикционно- демпфирующая опора
Фиг 5 Сейсмостойкая фрикционно- демпфирующая опора
Фиг 6 Сейсмостойкая фрикционно- демпфирующая опора
Фиг 7 Сейсмостойкая фрикционно- демпфирующая опора
Фиг 8 Сейсмостойкая фрикционно- демпфирующая опора

204.

Фиг 9 Сейсмостойкая фрикционно- демпфирующая опора
Фиг 10 Сейсмостойкая фрикционно- демпфирующая опора
Фиг 11 Сейсмостойкая фрикционно- демпфирующая опора
Фиг 12 Сейсмостойкая фрикционно- демпфирующая опора
Фиг 13 Сейсмостойкая фрикционно- демпфирующая опора

205.

Фиг 14 Сейсмостойкая фрикционно- демпфирующая опора
Фиг 15 Сейсмостойкая фрикционно- демпфирующая опора
Фиг 16 Сейсмостойкая фрикционно- демпфирующая опора
Фиг 17 Сейсмостойкая фрикционно- демпфирующая опора

206.

Фиг 18 Сейсмостойкая фрикционно- демпфирующая опора
Фиг 19 Сейсмостойкая фрикционно- демпфирующая опора
Фиг 20 Сейсмостойкая фрикционно- демпфирующая опора
Фиг 21 Сейсмостойкая фрикционно- демпфирующая опора

207.

Фиг 22 Сейсмостойкая фрикционно- демпфирующая опора
Фиг 23 Сейсмостойкая фрикционно- демпфирующая опора
Фиг 24 Сейсмостойкая фрикционно- демпфирующая опора
Фиг 25 Сейсмостойкая фрикционно- демпфирующая опора
Фиг 26 Сейсмостойкая фрикционно- демпфирующая опора

208.

Фиг 27 Сейсмостойкая фрикционно- демпфирующая опора
Фиг 28 1 Сейсмостойкая фрикционно- демпфирующая опора
Фиг 29 Сейсмостойкая фрикционно- демпфирующая опора
Фиг 30 Сейсмостойкая фрикционно- демпфирующая опора
Фиг 31 Сейсмостойкая фрикционно- демпфирующая опора
РЕФЕРАТ
изобретения на полезную модель сейсмостойкая фрикционно- демпфирующая опора
Сейсмостойкая фрикционно- демпфирующая опора предназначена для защиты мостов, сооружений,
объектов, зданий. оборудования от сейсмических, взрывных, вибрационных, неравномерных воздействий за
счет использования упругой гофры, стержневых струнных виброизоляторов, многослойной втулки

209.

(гильзы) из упругого троса в полимерной из без полимерной оплетке и протяжных фланцевых
фрикционно- податливых соединений отличающаяся тем, что с целью повышения виброизолирующих
свойств опоры корпус опоры выполнен сборным с круглым и квадратным сечением и состоит из нижней
целевой части и сборной верхней части подвижной в вертикальном направлении с кинематическим
эффектом, соединенные между собой с помощью фрикционно-подвижных соединений и контактирующими
поверхностями с контрольным натяжением фрикци-болтов с упругой тросовой втулкой (гильзой) ,
расположенных в длинных овальных отверстиях, при этом пластины-лапы верхнего и нижнего корпуса
расположены на упругой перекрестной гофры (демпфирующих ножках) и крепятся фрикци-болтами с
многослойным из склеенных пружинистых медных пластин клином, расположенной в коротком овальном
отверстии верха и низа корпуса опоры.
Сейсмостойкая фрикционно- демпфирующая и амортизирующая опора , содержащая трубообразный,
квадратный корпус-опору и сопряженный с ним подвижный узел из контактирующих поверхностях между
которыми проложен демпфирующий трос в пластмассой оплетке с фланцевыми фрикционноподвижными соединениями с закрепленными запорными элементами в виде протяжного соединения.
Кроме того в корпусе, параллельно центральной оси, выполнено восемь или более открытых пазов с
длинными овальными отверстиями, расстояние от торца корпуса, больше расстояния до нижней точки
паза опоры.
Увеличение усилия затяжки фрикци-болта приводит к уменьшению зазора <Z> корпуса, увеличению сил
трения в сопряжении составных частей корпуса опоры и к увеличению усилия сдвига при внешнем
воздействии.
Податливые демпферы представляют собой двойную фрикционную пару, имеющую стабильный
коэффициент трения по свинцовому листу в нижней и верхней части виброизолирующих,
сейсмоизолирующих поясов, вставкой со свинцовой шайбой и латунной гильзой для создания протяжного
соединяя.
Сжимающее усилие создается высокопрочными шпильками с вбитыми в паз шпилек обожженными
медными клиньями, натягиваемыми динамометрическими ключами или гайковертами на расчетное
усилие. Количество болтов определяется с учетом воздействия собственного веса ( массы) оборудования,
сооружения, здания, моста и расчетные усилия рассчитываются по СП 16.13330.2011 ( СНиП II -23-81* )
Стальные конструкции п. 14.4, Москва, 2011, ТКТ 45-5.04-274-2012 (02250), «Стальные конструкции»
Правила расчет, Минск, 2013. п. 10.3.2 и согласно изобретениям №№ 2371627, 2247278, 2357146, 2403488,
2076985, 1143895,1174616, 1168755 SU «Structural steel building frame having resilient connectors US 4094111 A»,
4094111US, TW201400676 «Restraint anti-wind and anti-seismic friction damping device
Сама составная сейсмостойкая фрикционно- демпфирующая опора выполнена квадратной либо стаканчататрубного вида с фланцевыми, фрикционно - подвижными соединениями с фрикци-болтами установленная
на перекрестную виброизолирующею упругою гофру ( демпфирующие ножки) на свинцовых листах .
Фрикци-болт с тросовой втулкой (гильзой) - это вибропоглотитель пиковых ускорений (ВПУ) с помощью
которого поглощается вибрационная, взрывная, ветровая, сейсмическая, вибрационная энергия. Фрикциболт снижает на 2-3 балла импульсные растягивающие нагрузки при землетрясениях и взрывной нагрузки
от ударной воздушной волны. Фрикци–болт повышает надежность работы вентиляционного
оборудования, сохраняет каркас здания, мосты, ЛЭП, магистральные трубопроводы за счет уменьшения
пиковых ускорений, за счет протяжных фрикционных соединений, работающих на растяжение. ( ТКП 455.04-274-2012 (02250) п. 10.3.2 стр. 74 , Минск, 2013, СП 16.13330.2011,СНиП II-23-81* п. 14.3- 15.2).
Упругая втулка (гильза) фрикци-болта состоящая из стального троса в пластмассовой оплетке или без
пластмассовой оплетки, пружинит за счет трения между тросами, поглощает при этом вибрационные ,
взрывной, сейсмической нагрузки , что исключает разрушения вибрационного основания , опор под
вентиляционный агрегат, мостов, разрушении теплотрасс горячего водоснабжения от тяжелого
автотранспорта и вибрации от ж/д . Надежность friction-bolt на виброизолирующих опорах
достигается путем обеспечения многокаскадного демпфирования при динамических нагрузках,
преимущественно при импульсных растягивающих нагрузках на здание, сооружение, вентиляционного
оборудование, которое устанавливается на маятниковых сейсмоизолирующих опорах на фланцевых

210.

фрикционно- подвижных соединениях (ФФПС) по изобретению "Опора сейсмостойкая" № 165076 E 04 9/02 ,
опубликовано: 10.10.2016 № 28 от 22.01.2016 ФИПС (Роспатент) Авт. Андреев. Б.А. Коваленко А.И, RU
2413098 F 16 B 31/02 "Способ для обеспечения несущей способности металлоконструкций с
высокопрочными болтами" .
В основе фрикционного соединения на фрикци-болтах (поглотители энергии) лежит принцип который
называется "рассеивание", "поглощение" вибрационной, сейсмической, взрывной, энергии.
Использования фланцевых фрикционно - подвижных соединений (ФФПС), с фрикци-болтом в протяжных
соединениях с демпфирующими узлами крепления (ДУК с тросовым зажимом-фрикци-болтом ), имеет
пару структурных элементов, соединяющих эти структурные элементы со скольжением, разной
шероховатостью поверхностей в виде демпфирующих тросов или упругой гофры ( обладающие
значительными фрикционными характеристиками, с многокаскадным рассеиванием сейсмической,
взрывной, вибрационной энергии. Совместное скольжение включает зажимные средства на основе friktionbolt ( аналог американского Hollo Bolt ), заставляющие указанные поверхности, проскальзывать, при
применении силы.
В результате взрыва, вибрации при землетрясении, происходит перемещение (скольжение) фрагментов
фланцевых фрикционно-подвижных соединений ( ФФПС), сейсмостойкая фрикционно- демпфирующая опора
(фрагменты опоры) скользящих, по продольным длинным овальным отверстиям виброиолирующей и
сейсмоизолирующей опоры.
Происходит поглощение энергии за счет трения частей корпуса опоры при сейсмической, ветровой,
взрывной нагрузки, что позволяет перемещаться и раскачиваться виброизолирующей и
сейсмоизолирующей кинематической опоре с оборудованием на расчетное допустимое перемещение.
Сейсмостойкая фрикционно- демпфирующая опора , рассчитана на одно, два землетрясения или на одну
взрывную нагрузку от ударной взрывной волны.
После длительной сейсмической нагрузки необходимо заменить медный клин забитый в пропиленный паз
латунной шпильки, а смятый трос вынуть из контактирующих поверхностей, обмотать скользящий
двигающий шток новой тросовой обмоткой и вставить опять в квадратный или трубчатый стакан ,
забить в паз латунной шпильки демпфирующего узла крепления, новые упругопластичный стопорные
обожженные медный многослойный клин (клинья), с помощью домкрата поднять и выровнять
виброизолирующею опору под агрегатом, оборудования, сооружения, здание и затянуть фрикци- болт с
контрольным натяжением, на начальное положение конструкции с фрикционными соединениями,
восстановить протяжного соединения сейсмоизолирующей фрикционно-демпфирующей опоре, для
дальнейшей эксплуатации для надежной сейсмозащиты от многокаскадного демпфирования
сооружения, моста, здания

211.

212.

213.

214.

ОПОРА СЕЙСМОСТОЙКАЯ 165 076
РОССИЙСКАЯ ФЕДЕРАЦИЯ (19)

215.

RU
(11)
(13)
ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ U1
(51) МПК
СОБСТВЕННОСТИ
E04H
9/02 (2006.01)
(12) ОПИСАНИЕ ПОЛЕЗНОЙ МОДЕЛИ К ПАТЕНТУ 165 076
прекратил действие, но может быть восстановлен
Статус:
(последнее изменение статуса: 07.06.2017)
)(22) Заявка: 2016102130/03, 22.01.2016
) Дата начала отсчета срока действия патента:
22.01.2016
иоритет(ы):
) Дата подачи заявки: 22.01.2016
(72) Автор(ы):
Андреев Борис А
Коваленко Алек
(73) Патентооблада
Андреев Борис А
Коваленко Алек
) Опубликовано: 10.10.2016 Бюл. № 28
рес для переписки:
197371, Санкт-Петербург, пр. Королева, Коваленко Александр
Иванович
(54) ОПОРА СЕЙСМОСТОЙКАЯ 165 076
(57) Реферат:
Опора сейсмостойкая предназначена для защиты объектов от сейсмических
воздействий за счет использования фрикцион но податливых соединений. Опора
состоит из корпуса в котором выполнено вертикальное отверстие охватывающее
цилиндрическую поверхность щтока. В корпусе, перпендикулярно вертикальной
оси, выполнены отверстия в которых установлен запирающий калиброванный
болт. Вдоль оси корпуса выполнены два паза шириной <Z> и длиной <I> которая
превышает длину <Н> от торца корпуса до нижней точки паза, выполненного в
штоке. Ширина паза в штоке соответствует диаметру калиброванного болта. Для
сборки опоры шток сопрягают с отверстием корпуса при этом паз штока
совмещают с поперечными отверстиями корпуса и соединяют болтом, после чего
одевают гайку и затягивают до заданного усилия. Увеличение усилия затяжки
приводит к уменьшению зазора<Z>корпуса, увеличению сил трения в сопряжении
корпус-шток и к увеличению усилия сдвига при внешнем воздействии. 4 ил.
Предлагаемое техническое решение предназначено для защиты сооружений,
объектов и оборудования от сейсмических воздействий за счет использования
фрикционно податливых соединений. Известны фрикционные соединения для
защиты объектов от динамических воздействий. Известно, например Болтовое

216.

соединение плоских деталей встык по Патенту RU 1174616, F15B 5/02 с пр. от
11.11.1983. Соединение содержит металлические листы, накладки и прокладки. В
листах, накладках и прокладках выполнены овальные отверстия через которые
пропущены болты, объединяющие листы, прокладки и накладки в пакет. При малых
горизонтальных нагрузках силы трения между листами пакета и болтами не
преодолеваются. С увеличением нагрузки происходит взаимное проскальзывание
листов или прокладок относительно накладок контакта листов с меньшей
шероховатостью. Взаимное смещение листов происходит до упора болтов в края
овальных отверстий после чего соединения работают упруго. После того как все
болты соединения дойдут до упора в края овальных отверстий, соединение
начинает работать упруго, а затем происходит разрушение соединения за счет
смятия листов и среза болтов. Недостатками известного являются: ограничение
демпфирования по направлению воздействия только по горизонтали и вдоль
овальных отверстий; а также неопределенности при расчетах из-за разброса по
трению. Известно также Устройство для фрикционного демпфирования
антиветровых и антисейсмических воздействий по Патенту TW 201400676 (A)-201401-01. Restraint anti-wind and anti-seismic friction damping device, E04B 1/98, F16F
15/10. Устройство содержит базовое основание, поддерживающее защищаемый
объект, нескольких сегментов (крыльев) и несколько внешних пластин. В сегментах
выполнены продольные пазы. Трение демпфирования создается между пластинами
и наружными поверхностями сегментов. Перпендикулярно вертикальной
поверхности сегментов, через пазы, проходят запирающие элементы - болты,
которые фиксируют сегменты и пластины друг относительно друга. Кроме того,
запирающие элементы проходят через блок поддержки, две пластины, через паз
сегмента и фиксируют конструкцию в заданном положении. Таким образом
получаем конструкцию опоры, которая выдерживает ветровые нагрузки но, при
возникновении сейсмических нагрузок, превышающих расчетные силы трения в
сопряжениях, смещается от своего начального положения, при этом сохраняет
конструкцию без разрушения.
Недостатками указанной конструкции являются: сложность конструкции и
сложность расчетов из-за наличия большого количества сопрягаемых трущихся
поверхностей.
Целью предлагаемого решения является упрощение конструкции, уменьшение
количества сопрягаемых трущихся поверхностей до одного сопряжения отверстие
корпуса - цилиндр штока, а также повышение точности расчета.
Сущность предлагаемого решения заключается в том, что опора сейсмостойкая
выполнена из двух частей: нижней - корпуса, закрепленного на фундаменте и
верхней - штока, установленного с возможностью перемещения вдоль общей оси и
с возможностью ограничения перемещения за счет деформации корпуса под
действием запорного элемента. В корпусе выполнено центральное отверстие,
сопрягаемое с цилиндрической поверхностью штока, и поперечные отверстия
(перпендикулярные к центральной оси) в которые устанавливают запирающий
элемент-болт. Кроме того в корпусе, параллельно центральной оси, выполнены два

217.

открытых паза, которые обеспечивают корпусу возможность деформироваться в
радиальном направлении. В теле штока, вдоль центральной оси, выполнен паз
ширина которого соответствует диаметру запирающего элемента (болта), а длина
соответствует заданному перемещению штока. Запирающий элемент создает
нагрузку в сопряжении шток-отверстие корпуса, а продольные пазы обеспечивают
возможность деформации корпуса и «переход» сопряжения из состояния
возможного перемещения в состояние «запирания» с возможностью перемещения
только под сейсмической нагрузкой. Длина пазов корпуса превышает расстояние от
торца корпуса до нижней точки паза в штоке. Сущность предлагаемой конструкции
поясняется чертежами, где на фиг. 1 изображен разрез А-А (фиг. 2); на фиг. 2
изображен поперечный разрез Б-Б (фиг. 1); на фиг. 3 изображен разрез В-В (фиг. 1);
на фиг. 4 изображен выносной элемент 1 (фиг. 2) в увеличенном масштабе.
Опора сейсмостойкая состоит из корпуса 1 в котором выполнено вертикальное
отверстие диаметром «D», которое охватывает цилиндрическую поверхность штока
2 например по подвижной посадке H7/f7. В стенке корпуса перпендикулярно его
оси, выполнено два отверстия в которых установлен запирающий элемент калиброванный болт 3. Кроме того, вдоль оси отверстия корпуса, выполнены два
паза шириной «Z» и длиной «I». В теле штока вдоль оси выполнен продольный
глухой паз длиной «h» (допустмый ход штока) соответствующий по ширине
диаметру калиброванного болта, проходящего через этот паз. При этом длина пазов
«I» всегда больше расстояния от торца корпуса до нижней точки паза «Н». В нижней
части корпуса 1 выполнен фланец с отверстиями для крепления на фундаменте, а в
верхней части штока 2 выполнен фланец для сопряжения с защищаемым объектом.
Сборка опоры заключается в том, что шток 2 сопрягается с отверстием «D» корпуса
по подвижной посадке. Паз штока совмещают с поперечными отверстиями корпуса
и соединяют калиброванным болтом 3, с шайбами 4, с предварительным усилием
(вручную) навинчивают гайку 5, скрепляя шток и корпус в положении при котором
нижняя поверхность паза штока контактирует с поверхностью болта (высота опоры
максимальна). После этого гайку 5 затягивают тарировочным ключом до заданного
усилия. Увеличение усилия затяжки гайки (болта) приводит к деформации корпуса и
уменьшению зазоров от «Z» до «Z1» в корпусе, что в свою очередь приводит к
увеличению допустимого усилия сдвига (усилия трения) в сопряжении отверстие
корпуса - цилиндр штока. Величина усилия трения в сопряжении корпус-шток
зависит от величины усилия затяжки гайки (болта) и для каждой конкретной
конструкции (компоновки, габаритов, материалов, шероховатости поверхностей,
направления нагрузок и др.) определяется экспериментально. При воздействии
сейсмических нагрузок превышающих силы трения в сопряжении корпус-шток,
происходит сдвиг штока, в пределах длины паза выполненного в теле штока, без
разрушения конструкции.
Формула полезной модели
Опора сейсмостойкая, содержащая корпус и сопряженный с ним подвижный узел,
закрепленный запорным элементом, отличающаяся тем, что в корпусе выполнено
центральное вертикальное отверстие, сопряженное с цилиндрической

218.

поверхностью штока, при этом шток зафиксирован запорным элементом,
выполненным в виде калиброванного болта, проходящего через поперечные
отверстия корпуса и через вертикальный паз, выполненный в теле штока и
закрепленный гайкой с заданным усилием, кроме того в корпусе, параллельно
центральной оси, выполнено два открытых паза, длина которых, от торца корпуса,
больше расстояния до нижней точки паза штока.

219.

220.

221.

222.

223.

224.

225.

226.

227.

228.

229.

Патент изобретение ФИПС РОСПАТЕНТ Коваленко Александра Ивановича и другие название изобретения
СПОСОБ ЗАЩИТЫ ЗДАНИЯ И СООРУЖЕНИЯ ПРИ ВЗРЫВЕ С ИСПОЛЬЗОВАНИЕМ СДВИГОУСТОЙЧИВЫХ И

230.

ЛЕГКОСБРАСЫВАЕМЫХ СОЕДИНЕНИЙ, ИСПОЛЬЗУЮЩИЕ СИСТЕМУ ДЕМПФИРОВАНИЯ ФРИКЦИОННОСТИ И
СЕЙСМОИЗОЛЯЦИЮ ДЛЯ ПОГЛОЩЕНИЯ ВЗРЫВНОЙ И СЕЙСМИЧЕСКОЙ ЭНЕРГИИ
РОССИЙСКАЯ ФЕДЕРАЦИЯ
(19)
RU
(11)
2010136746
(13)
A
(51) МПК
E04C2/00 (2006.01)
ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
(12)
ЗАЯВКА НА ИЗОБРЕТЕНИЕ
По данным на 26.03.2013 состояние делопроизводства: Экспертиза по существу
(21), (22) Заявка: 2010136746/03, 01.09.2010
Приоритет(ы):
(22) Дата подачи заявки: 01.09.2010
(43) Дата публикации заявки: 20.01.2013
Адрес для переписки:
443004, г.Самара, ул.Заводская, 5, ОАО "Теплант"
(71) Заявитель(и):
Открытое акционерное общество "Теплант" (RU)
(72) Автор(ы):
Подгорный Олег Александрович (RU),
Акифьев Александр Анатольевич (RU),
Тихонов Вячеслав Юрьевич (RU),
Родионов Владимир Викторович (RU),
Гусев Михаил Владимирович (RU),
Коваленко Александр Иванович (RU)
(54) СПОСОБ
ЗАЩИТЫ ЗДАНИЯ И СООРУЖЕНИЯ ПРИ ВЗРЫВЕ С ИСПОЛЬЗОВАНИЕМ СДВИГОУСТОЙЧИВЫХ И
ЛЕГКОСБРАСЫВАЕМЫХ СОЕДИНЕНИЙ, ИСПОЛЬЗУЮЩИЕ СИСТЕМУ ДЕМПФИРОВАНИЯ ФРИКЦИОННОСТИ И
СЕЙСМОИЗОЛЯЦИЮ ДЛЯ ПОГЛОЩЕНИЯ ВЗРЫВНОЙ И СЕЙСМИЧЕСКОЙ ЭНЕРГИИ
(57) Формула изобретения
. Способ защиты здания от разрушений при взрыве или землетрясении, включающий
выполнение проема/проемов рассчитанной площади для снижения до допустимой величины
взрывного давления, возникающего во взрывоопасных помещениях при аварийных внутренних
взрывах, отличающийся тем, что в объеме каждого проема организуют зону, представленную в
виде одной или нескольких полостей, ограниченных эластичным огнестойким материалом и
установленных на легкосбрасываемых фрикционных соединениях при избыточном давлении
воздухом и землетрясении, при этом обеспечивают плотную посадку полости/полостей во всем
объеме проема, а в момент взрыва и землетрясения под действием взрывного давления
обеспечивают изгибающий момент полости/полостей и осуществляют их выброс из проема и
соскальзывают с болтового соединения за счет ослабленной подпиленной гайки.
1
2. Способ по п.1, отличающийся тем, что «сэндвич»-панели, щитовые панели смонтированы на
высокоподатливых с высокой степенью подвижности фрикционных, скользящих соединениях с
сухим трением с включением в работу фрикционных гибких стальных затяжек диафрагм
жесткости, состоящих из стальных регулируемых натяжений затяжек сухим трением и
повышенной подвижности, позволяющие перемещаться перекрытиям и «сэндвич»-панелям в
горизонтали в районе перекрытия 115 мм, т.е. до 12 см, по максимальному отклонению от
вертикали 65 мм, т.е. до 7 см (подъем пятки на уровне фундамента), не подвергая разрушению и

231.

обрушению конструкции при аварийных взрывах и сильных землетрясениях.
3. Способ по п.2, отличающийся тем, что каждая «сэндвич»-панель крепится на сдвигоустойчивых
соединениях со свинцовой, медной или зубчатой шайбой, которая распределяет одинаковое
напряжение на все четыре-восемь гаек и способствует одновременному поглощению
сейсмической и взрывной энергии, не позволяя разрушиться основным несущим конструкциям
здания, уменьшая вес здания и амплитуду колебания здания.
4. Способ по п.3, отличающийся тем, что за счет новой конструкции сдвигоустойчивого
податливого соединения на шарнирных узлах и гибких диафрагмах «сэндвич»-панели могут
монтироваться как самонесущие без стального каркаса для малоэтажных зданий и сооружений.
5. Способ по п.4, отличающийся тем, что система демпфирования и фрикционности и поглощения
сейсмической энергии может определить величину горизонтального и вертикального
перемещения «сэндвич»-панели и определить ее несущую способность при землетрясении или
взрыве прямо на строительной площадке, пригрузив «сэндвич»-панель и создавая расчетное
перемещение по вертикали лебедкой с испытанием на сдвиг и перемещение до землетрясения и
аварийного взрыва прямо при монтаже здания и сооружения.
6. Способ по п.5, отличающийся тем, что расчетные опасные перемещения определяются,
проверяются и затем испытываются на программном комплексе ВК SCAD 7/31 r5, ABAQUS 6.9,
MONOMAX 4.2, ANSYS, PLAKSIS, STARK ES 2006, SoliddWorks 2008, Ing+2006, FondationPL 3d, SivilFem
10, STAAD.Pro, а затем на испытательном при объектном строительном полигоне прямо на
строительной площадке испытываются фрагменты и узлы, и проверяются экспериментальным
путем допустимые расчетные перемещения строительных конструкций (стеновых «сэндвич»панелей, щитовых деревянных панелей, колонн, перекрытий, перегородок) на возможные при
аварийном взрыве и при землетрясении более 9 баллов перемещение по методике
разработанной испытательным центром ОО «Сейсмофонд» - «Защита и безопасность городов»

232.

233.

234.

235.

236.

237.

238.

239.

240.

241.

242.

243.

244.

245.

246.

247.

248.

249.

250.

251.

252.

253.

254.

255.

256.

257.

258.

259.

260.

261.

262.

263.

264.

265.

266.

267.

268.

269.

270.

271.

272.

273.

274.

275.

276.

277.

278.

279.

280.

281.

282.

283.

284.

285.

286.

287.

288.

289.

290.

291.

292.

293.

294.

295.

296.

297.

298.

299.

300.

301.

302.

303.

304.

305.

306.

307.

308.

309.

310.

311.

312.

313.

314.

315.

316.

317.

318.

319.

320.

321.

322.

323.

324.

325.

326.

327.

328.

329.

330.

331.

332.

333.

334.

335.

336.

337.

338.

339.

340.

341.

342.

343.

344.

345.

346.

347.

348.

349.

350.

351.

352.

353.

354.

355.

356.

357.

358.

359.

360.

361.

362.

363.

364.

365.

366.

367.

368.

369.

370.

371.

372.

373.

374.

375.

376.

377.

378.

379.

380.

381.

382.

383.

384.

385.

386.

387.

388.

389.

390.

391.

392.

393.

394.

395.

396.

397.

398.

399.

400.

401.

402.

403.

404.

405.

406.

407.

408.

409.

410.

411.

412.

413.

414.

415.

416.

417.

418.

419.

420.

421.

422.

423.

424.

425.

426.

427.

428.

429.

430.

431.

432.

433.

434.

435.

436.

437.

438.

439.

440.

441.

442.

443.

444.

445.

446.

447.

448.

449.

450.

451.

452.

453.

454.

455.

456.

457.

458.

459.

460.

461.

462.

463.

464.

465.

466.

467.

468.

469.

470.

471.

472.

ФГБОУ СПб ГАСУ № RA.RU.21 СТ39 от 27.05.2015, 190005, СПб, 2-я
Красноармейская ул. д 4, «Сейсмофонд» ОГРН: 1022000000824, т/ф:
(812) 694-78-10 , (996) 798-26-54, (911) 175-84-65 ,
[email protected]
Эксперты, СПб ГАСУ, аттестат аккредитации СРО «НИПИ
ЦЕНСТРОЙПРОЕКТ» № 0223.01-2010-2010000211-П-29 от 27.03.2012
http://www.npnardo.ru/news_36.htm и СРО «ИНЖГЕОТЕХ» № 060-20102014000780-И-12, выдано 28.04.2010 г. [email protected] эксперт,
к.т.н. СПб ГАСУ аттестат аккредитации СРО
«НИПИ[email protected]тел (921) 962-67-78 ктн Аубакирова И У, проф
дтн Ю.М.Тихонов
ЦЕНСТРОЙПРОЕКТ» № 0223.01-2010-2010000211-П-29 от 27.03.2012
http://www.npnardo.ru/news_36.htm и СРО «ИНЖГЕОТЕХ» № 060-20102014000780-И-12, выдано 28.04.2010 г.
http://nasgage.ru/[email protected] проф. д.т.н. СПб
ГАСУ(996) 798-26-54, (999) 535-47-29 Тихонов Ю.М.
Научные консультанты :
ФГБОУ СПб ГАСУ № RA.RU.21 СТ39 от 27.05.2015,
190005, СПб, 2-я
Красноармейская ул. д 4, «Сейсмофонд» ОГРН: 1022000000824, т/ф:
(812) 694-78-10 , (921) 962-67-78 [email protected] Копия
аттестата испытательной лаборатории ПГУПС № SP01.01.406.045 от
27.05.2014, действ 27.05.2019
прилагается к протоколу испытаний
организацией СПб ГАСУ и организацией "Сейсмофонд" при СПб ГАСУ
ИНН 2014000780
Научный консультант д.т.н. проф ПГУПС
[email protected]
Уздин А.М.
Научный консультант д.т.н. проф.ПГУПС[email protected] (996) 79826-54, (921) 962-677-78 Темнов В.Г.
Президент органа по сертификации продукции Испытательного Центра
организации «СейсмоФОНД» при СПб ГАСУ ОГРН 1022000000824 Хасан
Нажоевич Мажиев [email protected]

473.

Почтовый адрес испытательной лаборатории организации «Сейсмофнд»
при СПб ГАСУ: 190005, СПб, 2-я Красноармейская ул. д 4
krestianinformburo8.narod.ru [email protected]
Подтверждение компетентности СПб ГАСУ Номер решения о
прохождении процедуры подтверждения компетентности8590-гу (А5824) т/ф (812) 694-78-10 (999) 535-47-29
Подтверждение компетентности организации
https://pub.fsa.gov.ru/ral/view/13060/applicant
https://disk.yandex.ru/d/YP4toCOL97NPJg
https://ppt-online.org/1002236
https://ppt-online.org/1001983
https://disk.yandex.ru/d/fwW1DQSXVrtXuA
[email protected] [email protected]
[email protected] [email protected]
тел (921) 962- 67-78, ( 996) 798 -26-54, (911) 175 -84-65
English     Русский Rules